文档库 最新最全的文档下载
当前位置:文档库 › 中点弦问题 蔡汶伯

中点弦问题 蔡汶伯

中点弦问题  蔡汶伯
中点弦问题  蔡汶伯

关于圆锥曲线的中点弦问题

定理 在椭圆122

22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点

),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22

00a

b x y k MN

-=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,

则有???????=+=+)2(.1)1(,122

22

2222

1221 b y a x b y a x )2()1(-,得.022

22

122

22

1=-+-b

y

y a x x

.22

12121212a

b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN

==++--= .22

a

b x y k MN -=?∴ 同理可证,在椭圆122

22=+a

y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,

点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22

00b

a x y k MN

-=?.

补充:ka kb 也是定值

典题妙解

例1 设椭圆方程为14

2

2

=+y x ,过点)1,0(M 的

直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足

1()2OP OA OB =+ ,点N 的坐标为??

?

??21,21.当l 绕点

M 旋转时,求:

(1)动点P 的轨迹方程;

(2)||NP 的最大值和最小值.

直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:

(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;

(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。

一、求中点弦所在直线方程问题

例1 过椭圆14

162

2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所

在的直线方程。

解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:

016)12(4)2(8)14(2222=--+--+k x k k x k

又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是

1

4)

2(82

221+-=+k k k x x , 又M 为AB 的中点,所以21

4)

2(422

221=+-=+k k k x x , 解得2

1

-=k ,

故所求直线方程为042=-+y x 。

解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,

又A 、B 两点在椭圆上,则1642

12

1=+y x ,1642

22

2=+y x , 两式相减得0)(4)(2

22

12

22

1=-+-y y x x ,

所以

21)(421212121-=++-=--y y x x x x y y ,即21

-=AB k ,

故所求直线方程为042=-+y x 。

解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1),

则另一个交点为B(4-y x -2,),

因为A 、B 两点在椭圆上,所以有???=-+-=+16

)2(4)4(1642

222y x y x , 两式相减得042=-+y x ,

由于过A 、B 的直线只有一条,

故所求直线方程为042=-+y x 。

二、求弦中点的轨迹方程问题

例2 过椭圆136

642

2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方

程。

三、弦中点的坐标问题

例3 求直线1-=x y 被抛物线x y 42

=截得线段的中点坐标。 解:

上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。下面我们看一个结论

引理 设A 、B 是二次曲线C :

022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则

)

02(22000≠+++-

=E Cy E Cy D

Ax k AB 。

设A ),(11y x 、B ),(22y x 则

0112

121=++++F Ey Dx Cy Ax (1)

0222222=++++F Ey Dx Cy Ax (2)

)2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A

∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax ∴

0))(2())(2(210210=-++-+y y E Cy x x D Ax

020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-

=--00212

122即E Cy D Ax k AB ++-=0022。(说明:当B A ?→?时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,

E Cy D Ax k ++-

=0022)

推论1 设圆02

2=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00

≠y ,则

E y D x k AB ++-

=0022。(假设点P 在圆上时,则过点P 的切线斜率

为)

推论 2 设椭圆122

22=+b y a x 的弦AB 的中点为P ),(00y x ()00

≠y ,则0022y x a b k AB

?

-=。

(注:对a ≤b 也成立。假设点P 在椭圆上,则过点P 的切线斜率为

00

22y x a b k ?

-=)

推论3 设双曲线122

22=-b y a x 的弦AB 的中点为P ),(00y x ()00

≠y 则0022y x a b k AB

?=。(假设点P 在双曲线上,则过P 点的切线斜率为

0022y x a b k ?=)

推论4 设抛物线px y 22

=的弦AB 的中点为P ),(00y x ()00

≠y 则

0y p k AB =

。(假

设点P 在抛物线上,则过点P 的切线斜率为

)0y p k =

练: 由点)0,2(-向抛物线x y 42

=引弦,求弦的中点的轨迹方程。

分析:解决问题的关键是找到弦的端点A 、B 在直线上的性质和在抛物线上的性质的内在联系。

E y D

x k ++-=00

22

故得所求弦中点的轨迹方程是)2(22+=x y 在抛物线x y 42

=内部的部分。 评注:(1)求点的轨迹方程即是求曲线上的点的横、纵坐标所满足的关系式,本题所给出的两种方法,都是找动点),(y x 与已知条件的内在联系,列关于x ,y 的关系式,进而求出轨迹的方程。

(2)弦中点轨迹问题

设抛物线px y 22

=(0>p )的弦AB ,A ),(11y x ,B ),(22y x ,弦AB 的中点C ),(00y x ,

则有?????==)

2(2)1(22

2

21

21px y px y ,

(1)-(2)得)(2212

22

1x x p y y -=-, ∴

2

121212y y p

x x y y +=--,

将0212y y y =+,2121x x y y k AB --=

,代入上式,并整理得0

y p

k AB =,这就是弦的斜率

与中点的关系,要学会推导,并能运用。

练2 已知抛物线x y 22

=,过点)1,2(Q 作一条直线交抛物线于A ,B 两点,试求弦AB 的中点轨迹方程。

解:

1. 中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题;④圆锥曲线的相关最值(范围)问题;⑤求曲线的方程问题;⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题------点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策略:具有斜率的弦中点问题,常用设而不求法(点差法):若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 02020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 一、求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

圆锥曲线中点弦问题

关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4) 2(82 221+-=+k k k x x , 又M 为AB 的中点,所以21 4) 2(422 221=+-=+k k k x x , 解得2 1 -=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x , 两式相减得0)(4)(2 22 12 22 1=-+-y y x x , 所以 21)(421212121-=++-=--y y x x x x y y ,即21 -=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642 222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆 136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。 解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),

第3讲.解析几何之中点弦题型

第三讲.解析几何之中点弦题型 【教学目标】 1.掌握两点的中点坐标公式; 2.掌握韦达定理在解析几何中的应用; 3.会求解解析几何中相关的中点弦问题。 【知识、方法梳理】 1.若11(,)A x y ,22(,)B x y ,则AB 的中点坐标是1212(,)22 x x y y ++ 2.一元二次方程20ax bx c ++=,则有1212b x x a c x x a ?+=-????=?? 3.解析几何中遇到中点弦问题,基本解题思路是联立方程,利用韦达定理(注意判别式?) 【典例精讲】 例1.直线:1l y x =+与椭圆22 142 x y +=交于,A B 两点,求,A B 的中点坐标。 【解析】:将直线代入椭圆,得2 3420x x +-= 设1122(,),(,)A x y B x y ,中点00(,)x y 则1243x x +=-,1 20223x x x +==-,00113 y x =+= 所以中点21(,)33- 【点评】:看到中点,想到韦达定理

例2.设直线l 交椭圆2212x y +=于,A B 两点,且,A B 的中点为1(1,)2 M ,求直线l 的方程。 【解析】:直线l 斜率不存在的情况显然不可能,所以设直线1:(1)2 l y k x -=- 代入椭圆方程,整理得222113()2()0224 k x k k x k k +--+--= 设1122(,),(,)A x y B x y ,则12212()212 k k x x k -+=+,又因为1(1,)2M 所以1221()21122 k k x x k -+==+,解得1k =-,经检验此时0?> 所以3:2 l y x =-+ 【点评】:联立方程利用韦达定理是解决中点问题的基本方法 例3.已知双曲线2 2 12y x -=与点(1,2)P ,过P 点作直线l 与双曲线交于A B 、两点,若P 为AB 中点. (1)求直线AB 的方程; (2)若(1,1)Q ,证明不存在以Q 为中点的弦. 【解析】:(1)解:设过(1,2)P 点的直线AB 方程为2(1)y k x -=-, 代入双曲线方程得 2222(2)(24)(46)0k x k k x k k -+---+= 设1122(,),(,)A x y B x y , 则有2122242k k x x k -+=-- 由已知1212 p x x x +== ∴222422k k k -=-.解得1k =. 又1k =时,160?=>,从而直线AB 方程为10x y -+=. (2)证明:按同样方法求得2k =,而当2k =时,0?<,所以这样的直线不存在. 【点评】:注意检验?的重要性,上题中中点在椭圆内部,检验?只是形式而已,而双曲线的情况较为复杂,检验的步骤必不可少,具体的情况我们以后会做分析。

圆锥曲线经典中点弦问题

.. . … 中点弦问题专题练习 一.选择题(共8小题) 1.已知椭圆,以及椭圆一点P(4,2),则以P为中点的弦所在直线的斜率为()A.B.C.2D.﹣2 2.已知A(1,2)为椭圆一点,则以A为中点的椭圆的弦所在的直线方程为() A.x+2y+4=0 B.x+2y﹣4=0 C.2x+y+4=0 D.2x+y﹣4=0 3.AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K AB?K OM的值为() A.e﹣1 B.1﹣e C. e2﹣1 D. 1﹣e2 4.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为() A.3x+2y﹣12=0 B.2x+3y﹣12=0 C.4x+9y﹣144=0 D.9x+4y﹣144=0 5.若椭圆的弦中点(4,2),则此弦所在直线的斜率是() A.2B.﹣2 C.D. 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率是()A.B.C.D. 7.直线y=x+1被椭圆x2+2y2=4所截得的弦的中点坐标是() A.()B.(﹣,)C.(,﹣)D.(﹣,) 8.以椭圆一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 B.x﹣4y+3=0 C.4x+y﹣5=0 D.x+4y﹣5=0 二.填空题(共9小题) 9.过椭圆一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是_________ .

10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为:_________ . 11.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的斜率为_________ ,直线方程为_________ . 12.椭圆4x2+9y2=144有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为_________ . 13.过椭圆=1一定点(1,0)作弦,则弦中点的轨迹方程为_________ . 14.设AB是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则k AB?k OM= _________ . 15.以椭圆的点M(1,1)为中点的弦所在直线方程为_________ . 16.在椭圆+=1以点P(﹣2,1)为中点的弦所在的直线方程为_________ . 17.直线y=x+2被椭圆x2+2y2=4截得的线段的中点坐标是_________ . 三.解答题(共13小题) 18.求以坐标轴为对称轴,一焦点为且截直线y=3x﹣2所得弦的中点的横坐标为的椭圆方程.19.已知M(4,2)是直线l被椭圆x2+4y2=36所截的弦AB的中点,其直线l的方程. 20.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.21.已知椭圆,求以点P(2,﹣1)为中点的弦AB所在的直线方程. 22.已知椭圆与双曲线2x2﹣2y2=1共焦点,且过() (1)求椭圆的标准方程. (2)求斜率为2的一组平行弦的中点轨迹方程. 23.直线l:x﹣2y﹣4=0与椭圆x2+my2=16相交于A、B两点,弦AB的中点为P(2,﹣1).(1)求m的值;(2)设椭圆的中心为O,求△AOB的面积.

高中数学椭圆的弦长中点弦

椭圆弦长中点弦问题 1.已知椭圆2222b y a x +(a >b >0)的离心率36=e ,焦距是22. (1)求椭圆的方程; (2)若直线2(0)y kx k =+≠与椭圆交于C 、D 两点,5 26= CD ,求k 的值. 2.椭圆C:12222=+b y a x )0(>>b a 的离心率为36,短轴的一个端点到右焦点的距离为3. (1)求椭圆C 的方程; (2)设直线y=x+1与椭圆C 交于A ,B 两点,求A ,B 两点间的距离. 3.已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为36,椭圆C 上任意一点到椭圆两焦点的距离之和为6. (Ⅰ)求椭圆C 的方程; (Ⅱ)设直线2:-=x y l 与椭圆C 交于N M ,两点,O 是原点,求OMN ?的面积.

4.已知椭圆2222x 1(0)y a b a b +=>>经过点A (0,4),离心率为5 3; (1)求椭圆C 的方程; (2)求过点(3,0)且斜率为 5 4的直线被C 所截线段的中点坐标. 5.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为)(03,F -,且过点 ) (02,D . (1)求该椭圆的标准方程; (2)设点) ,(2 11A ,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程. 6.已知椭圆5x 2+9y 2=45,椭圆的右焦点为F , (1)求过点F 且斜率为1的直线被椭圆截得的弦长. (2)求以M (1,1)为中点的椭圆的弦所在的直线方程. (3)过椭圆的右焦点F 的直线l 交椭圆于A ,B ,求弦AB 的中点P 的轨迹方程.

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221ΛΛΛΛb y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--=Θ.22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为?? ? ??21,21.当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 . 焦点在y 上,.1,42 2 ==b a 假设直线l 的斜率存在.

高中数学椭圆与双曲线中点弦斜率公式及推广

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每 椭圆与双曲线中点弦斜率公式及其推论 圆锥曲线中点弦问题是问题在高考中的一个常见的考点.其解题方法一般是利用点差法和韦达定理,设而不求.但一般来说解题过程是相当繁琐的.若能巧妙地利用下面的定理则可以方便快捷地解决问题. 定理1(椭圆中点弦的斜率公式):设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不 平行y 轴)的中点,则有:2 2AB OM b k k a ?=- 证明:设11(,)A x y ,22(,)B x y ,则有 1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?+=????+=?? 两式相减得:2222 1212 22 0x x y y a b --+=整理得:22 2 1222 212y y b x x a -=--,即2 121221212()()()()y y y y b x x x x a +-=-+-,因为00(,)M x y 是弦AB 的中点,所以 0012 001222OM y x y y k x y x x +===+,所以22AB OM b k k a ?=- 定理2(双曲线中点弦的斜率公式):设00(,)M x y 为双曲线22 221x y a b -=弦AB

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每 (AB 不平行y 轴)的中点,则有2 2AB OM b k k a ?= 证明:设11(,)A x y ,22(,)B x y ,则有1212 AB y y k x x -=-,22 1122 22 2222 11x y a b x y a b ?-=????-=?? 两式相减得:22221212220x x y y a b ---=整理得:22 2 1222 212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a +-=+-,因为00(,)M x y 是弦AB 的中点,所以0012 001222OM y x y y k x y x x +===+,所以22AB OM b k k a ?= 例1、已知椭圆22 221x y a b -=,的一条弦所在的直线方程是30x y -+=,弦的中 点坐标是2,1M -(),则椭圆的离心率是( ) A 、 1 2 B 、2 C 、分析:本题中弦的斜率 1AB k =且1 2 OM k =-,根据定理有2212b a =,即 222 2112 a c e a -=-= ,解得e =,所以B 答案正确. 例2、过椭圆22 1164 x y + =内的一点(2,1)M 引一条弦,使弦被M 点平分,求这条弦所在的直线方程. 解:设弦所在的直线为AB ,根据椭圆中点弦的斜率公式知1 4 AB OM k k ?=-,显 然12OM k =,所以12AB k =-,故所求的直线方程为1 1(2)2y x -=--,即 240x y +-=.

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点弦问题中的妙用 广西南宁外国语学校 隆光诚(邮政编码 530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它 的一般方法联立直线和圆锥曲线的方程,借助于一兀二次方程的根的判别式、根与系数的关中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式 作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法 为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗 浅的探讨,以飨读者。 P(x 0,y °)是弦MN 的中点,弦MN 所在的直线I 的斜率为k MN ,则k M 典题妙解 例1已知双曲线C : y 2 1,过点P(2,1)作直线I 交双曲线C 于 定理 在双曲线 2 x ~2 a 2 ■y 2 1 ( a > 0, b > 0)中,若直线l 与双曲线相交于 M 、N 两点,点 b 2 b 2 ~ . a 证明:设M 、 N 两点的坐标分别为 (x i ,yj 、(X 2, y 2),则有 2 X 1 -2~ a 2 X 2 ~2 a 2 y 1 2 y 2 1, 1. (1) 2 X 1 (1) (2),得丄 2 X 2 ~2 a 2 2 y 1 y 2 0. y 2 y 1 X 2 X 1 y 2 y 1 X 2 X 1 b 2 2 . a 又 k|MN y y 1 X 2 X 1 X 1 X 2 2 y 2X 0 y 。 X 0 k MN X b 2 2 . a 同理可证,在双曲线 2 y 2 a (a > 0, b > 0)中,若直线I 与双曲线相交于 M 、N 两点, 点P(X 0, y °)是弦MN 的中点,弦 MN 所在的直线I 的斜率为k MN , 则 k MN y X 0 2 a_ 衣.

双曲线中点弦 存在

双曲线中的中点弦 一道课后作业题的教学所思 绵阳南山中学 青树国 在双曲线的教学过程中,经常会遇到对中点弦所在直线的存在性的探究。题目有时解是存在的,有时虽然计算出来直线方程但经检验又必须舍去,而且有时检验的计算量又很大。这部分的技巧学生掌握起来难度较大,题目丢分现象比较普遍。在此我通过对课后习题的讲解和反思总结情况形成了一个猜想,用来判断双曲线弦的中点位置,能迅速帮助学生判断中点所在的位置是否合理,在此和大家一起分享与交流。 一、课本习题再现 普通高中课程标准实验教科书,数学选修2-1(人民教育出版社 A 版)第二章第三节课后习题 B 组第4题:已知双曲线12 2 2 =-y x ,过 点)1,1(P 能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?这是一探索性问题,通过对作业的批改,绝大多数学生有对探索性问题的解决办法即:假设——推理——验证——下结论。具体来说普遍采用了以下两法。 法一:(设而不求)假设能作这样的直线l ,通过作图可知:直线 l 的斜率显然,设其为k ,从而直线的方程为:)1(1-=-x k y 即: 1+-=k kx y ,联立直线和双曲线的方程并消去未知数y 可得 032)1(2)2(222=-+--+-k k x k k x k 。(*)设),(11y x A 、),(22y x B 由题意可知1x 、2x 是方程 (*)的两个根。故022≠-k 且0)32)(2(4)1(42222>+--+-=?k k k k k ,

由题意可知:22) 1(22 21=--- =+k k k x x ,解之得2=k ,带入判别式知0

高考数学专题复习之圆锥曲线的中点弦问题

高考数学专题复习之圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1 过椭圆14 162 2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 016)12(4)2(8)14(2222=--+--+k x k k x k 又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是 1 4)2(82221+-=+k k k x x , 又M 为AB 的中点,所以21 4)2(422221=+-=+k k k x x , 解得2 1-=k , 故所求直线方程为042=-+y x 。 解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y , 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x , 两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即2 1-=AB k , 故所求直线方程为042=-+y x 。 解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,), 因为A 、B 两点在椭圆上,所以有???=-+-=+16 )2(4)4(1642222y x y x , 两式相减得042=-+y x , 由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。 二、求弦中点的轨迹方程问题 例2 过椭圆136 642 2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。

椭圆中互相垂直的弦中点过定点问题

椭圆中互相垂直的弦中点过定点问题 (1)过椭圆22 221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点22 2 (,0)a c a b +。 (2)过椭圆22 221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (,0)a s a b +。 设AB 的直线为x my s =+,则CD 的直线方程为1 x y s m =- +, 222222 x my s b x a y a b =+??+-=?,22222222 ()2()0m b a y b msy b s a +++-=, 22 22 2 2 4()0a b m b a s ?=+->,21122 22msb y y m b a -+=+,22211222 () a s a y y m b a -?=+, 由中点公式得M 22 22 2222 (,)a s msb m b a m b a -++, 将m 用1m -代换,得到N 的坐标222 22 2222 (,)a sm msb m a b m a b ++ MN 的直线方程为222222222222 ()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x a b =+ 所以直线MN 恒过定点22 2 (,0)a s a b +。 (3)过椭圆22 221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB , CD 。若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222 (0,)b t a b +。

圆锥曲线经典中点弦问题

中点弦问题专题练习 一.选择题(共8小题) .已知椭圆,以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为(1) 2 C.D.B.A.﹣2 2.已知A(1,2)为椭圆内一点,则以A为中点的椭圆的弦所在的直线方程为() 2x+y+4=0 x+2y+4=0 C.D.2x+y﹣4=0 B.x+2yA.﹣4=0 (a>b>0)的任意一条与x轴不垂直的弦,O3.AB是椭圆是椭圆的中心,e为椭圆的离心率,M为AB的中点,则K?K的值为()OMAB22D.﹣1e C.A.e﹣1 B.﹣ee﹣1 122)P的弦恰好以P为中点,那么这弦所在直线的方程为(+9y=144内有一点P(3,2)过点4.椭圆4x 144=0 ﹣.9x+4yD12=0 C.4x+9y﹣144=0 12=0 A.3x+2y ﹣B.2x+3y﹣)),则此弦所在直线的斜率是(5.若椭圆的弦中点(4,2 2..A.D.B ﹣2 C 6.已知椭圆的一条弦所在直线方程是x﹣y+3=0,弦的中点坐标是(﹣2,1),则椭圆的离心率 是() B.CA..D.

227.直线y=x+1被椭圆x+2y=4所截得的弦的中点坐标是() A.B.C.D.(﹣,))()(﹣,)(,﹣8.以椭圆内一点M(1,1)为中点的弦所在的直线方程为() A.4x﹣3y﹣3=0 x C.4x+y﹣5=0 D.+4y﹣5=0 4y+3=0 B.x﹣ 二.填空题(共9小题) 9.过椭圆内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是 _________. 10.已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为: _________. 22,_________那么这弦所在直线的斜率为PP),(内有一点+9y椭圆11.4x=144P32过点的弦恰好以为中点,._________直线方程为 22 _________.的弦恰好以P为中点,那么这弦所在直线的方程为(4x+9y=144内有一点P3,2)过点P12.椭圆________.1,0)作弦,则弦中点的轨迹方程为 1.过椭圆=1内一定点(是椭圆的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则ABk?k=_________.14.设OMAB .以椭圆内的点M(1,1)为中点的弦所在直线方程为 15_________. +=1内以点P(﹣2,161.在椭圆)为中点的弦所在的直线方程为_________. 2217.直线y=x+2被椭圆x+2y=4截得的线段的中点坐标是_________. 三.解答题(共13小题) 所得弦的中点的横坐标为的椭圆方程.2 且截直线y=3x18﹣.求以坐标轴为对称轴,一焦点为22的方程.的中点,其直线ll19.已知M(4,2)是直线被椭圆x+4y=36所截的弦AB

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

秒杀题型09 圆锥曲线中的中点弦(解析版)

秒杀题型:玩转压轴题之中点弦问题: 秒杀题型一:圆、椭圆、双曲线的中点弦问题: 注:方程:2 2 1mx ny +=,①当0,>n m 且n m ≠时,表示椭圆; ②当0,>n m 且n m =时,表示圆; ③当n m ,异号时,表示双曲线。 秒杀策略:点差法:简答题模板:step1:设直线与曲线 :设直线:l y kx t =+与曲线:2 2 1mx ny +=交于 两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B , Step2:代入点坐标:即1122y kx t y kx t =+??=+?;22 1122 22 1 (1) 1 (2) mx ny mx ny ?+=??+=??, Step3:作差得出结论:(1)-(2)得:..AB AB OP y m k k k x n =-=中中。(作为公式记住,在小题中直接用。) 题型一:求值 : 〖母题1〗已知椭圆 22 1164 x y +=,求以点P(2,-1)为中点的弦所在的直线方程. 【解析】:由结论可得: 16421-=?-k ,得2 1 -=k ,直线方程为:240x y --=。 1.(2013年新课标全国卷I10)已知椭圆22 22:1(0)x y G a b a b +=>>的右焦点为()0,3F ,过点F 的直线交椭圆 于B A ,两点.若AB 的中点坐标为()11-, ,则E 的方程为 ( ) A. 1364522=+y x B.1273622=+y x C.1182722=+y x D.19182 2=+y x 【解析】:由结论可得: 22 2111a b -=?-,得222b a =,3= c ,选D 。 2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F 的直线l 与E 相交于 ,A B 两点,且AB 的中点为()12,15N --,则E 的方程为 ( )

相关文档
相关文档 最新文档