文档库 最新最全的文档下载
当前位置:文档库 › 最新自动化专业英语第三版-王宏文

最新自动化专业英语第三版-王宏文

最新自动化专业英语第三版-王宏文
最新自动化专业英语第三版-王宏文

UNIT 1

Electrical Networks

A 电路

An electrical circuit or network is composed of elements such as res istors, inductors, and capacitors connected together in some manner. I f the network contains no energy sources, such as batteries or elect rical generators, it is known as a passive network. On the other ha nd, if one or more energy sources are present, the resultant combina tion is an active network. In studying the behavior of an electrical network, we are interested in determining the voltages and currents that exist within the circuit. Since a network is composed of pass ive circuit elements, we must first define the electrical characterist ics of these elements.

电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性.

In the case of a resistor, the voltage-current relationship is given by Ohm's law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value

of the resistance. Mathematically, this is expressed as

就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)

式中u=电压,伏特;i =电流,安培;R = 电阻,欧姆。

The voltage across a pure inductor is defined by Faraday’s law, which states that the voltage across the inductor is proporti onal to the rate of change with time of the current through the in ductor. Thus we have

纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt

式中di/dt = 电流变化率,安培/秒;L = 感应系数,享利。

The voltage developed across a capacitor is proportional to the elect ric charge q accumulating on the plates of the capacitor. Since the accumulation of charge may be expressed as the summation, or integr al, of the charge increments dq, we have the equation

电容两端建立的电压正比于电容两极板上积累的电荷q 。因为电荷的积累可表示为电荷增量dq的和或积分,因此得到的等式为u= ,

式中电容量C是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为i = dq/dt。因此电荷增量dq 等于电流乘以相应的时间增量,或dq = i dt,那么等式(1-1A-3) 可写为式中 C = 电容量,法拉。

归纳式(1-1A-1)、(1-1A-2) 和(1-1A-4)描述的三种无源电路元件如图1-1A-1所示。注意,图中电流的参考方向为惯用的参考方向,因此流过每一个元件的电流与电压降的方向一致。

Active electrical devices involve the conversion of energy to electr ical form. For example, the electrical energy in a battery is derive d from its stored chemical energy. The electrical energy of a genera tor is a result of the mechanical energy of the rotating armature. 有源电气元件涉及将其它能量转换为电能,例如,电池中的电能来自其储存的化学能,发电机的电能是旋转电枢机械能转换的结果。

Active electrical elements occur in two basic forms: voltage sources and current sources. In their ideal form, voltage sources generate a constant voltage independent

of the current drawn from the source. The aforementioned battery and generator are regarded as voltage sources since their voltage is es sentially constant with load. On the other hand, current sources prod uce a current whose magnitude is independent of the load connected t o the source. Although current sources are not as familiar in practi ce, the concept does find wide use representing an amplifying device, such as the transistor, by means of an equivalent electrical circui t.

有源电气元件存在两种基本形式:电压源和电流源。其理想状态为:电压源两端的电压恒定,与从电压源中流出的电流无关。因为负载变化时电压基本恒定,所以上述电池和发电机被认为是电压源。另一方面,电流源产生电流,电流的大小与电源连接的负载无关。虽然电流源在实际中不常见,但其概念的确在表示借助于等值电路的放大器件,比如晶体管中具有广泛应用。电压源和电流源的符号表示如图1-1A-2所示。

A common method of analyzing an electrical network is mesh or loop analysis. The fundamental law that is applied in this method is Ki rchhoff’s first law, which states that the algebraic sum of the voltages ar ound a closed loop is 0, or, in any closed loop, the sum of the voltage rises must equal the sum of the voltage drops. Mesh analysis consists of assuming that currents-termed loop currents-flow in each loop of a network, algebraically summing the voltage drops around e ach loop, and setting each sum equal to 0.

分析电网络的一般方法是网孔分析法或回路分析法。应用于此方法的基本定律是基尔霍夫第

一定律,基尔霍夫第一定律指出:一个闭合回路中的电压代数和为0,换句话说,任一闭合回路中的电压升等于电压降。网孔分析指的是:假设有一个电流——即所谓的回路电流——流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。

考虑图1-1A-3a 所示的电路,其由串联到电压源上的电感和电阻组成,假设回路电流i ,那么回路总的电压降为因为在假定的电流方向上,输入电压代表电压升的方向,所以输电压在(1-1A-5)式中为负。因为电流方向是电压下降的方向,所以每一个无源元件的压降为正。利用电阻和电感压降公式,可得等式(1-1A-6)是电路电流的微分方程式。

或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。正如图1-1A-1指出的用积分代替式(1-1A-6)中的i,可得1-1A-7 A

A Operational Amplifier

A 运算放大器

One problem with electronic devices corresponding to the generalized a mplifiers(n. 放大器)is that the gains, Au of Ai, depend upon internet properties of the two –port system (, ,iR,oR , etc.). This makes design difficult since these parameters usually vary from devise to devise, as well as with temperature. The operational amplifier, or Op-Amp, is designed to device to minimize this dependence and to maximize the ease of design .An Op-Amp is an integrated circuit

that has many component parts such as resistors and transistor built into the device. At this point we will make no attempt to describ e these inner workings.

运算放大器像广义放大器这样的电子器件存在的一个问题就是它们的增益AU或AI取决于双端口系统(m、b、RI、Ro等)的内部特性。器件之间参数的分散性和温度漂移给设计工作增加了难度。设计运算放大器或Op-Amp的目的就是使它尽可能的减少对其内部参数的依赖性、最大程度地简化设计工作。运算放大器是一个集成电路,在它内部有许多电阻、晶体管等元件。就此而言,我们不再描述这些元件的内部工作原理。

A totally general analysis of the Op-Amp is beyond the scope of s ome texts. We will instead study one example in detail, then present the two Op-Amp laws and show how they can be used for analysis i

n many practical circuit applications. These two principles allow one to design many circuits without a detailed understanding of the dev ice physic. Hence, Op-Amp are quiet useful for a researcher in a va riety of technical field who need to build simple amplifier but do not want to design at the transistor lever. In the text of electric al circuits and electronics they will also show how to built simple filter circuits using Op-Amps. The transistor amplifiers, which are building block(积木)from which Op-Amp integrated circuits are constructed, will be discuss ed.

运算放大器的全面综合分析超越了某些教科书的范围。在这里我们将详细研究一个例子,然后给出两个运算放大器定律并说明在许多实用电路中怎样使用这两个定律来进行分析。这两个定律可允许一个人在没有详细了解运算放大器物理特性的情况下设计各种电路。因此,运算放大器对于在不同技术领域中需要使用简单放大器而不是在晶体管级做设计的研究人员来说是非常有用的。在电路和电子学教科书中,也说明了如何用运算放大器建立简单的滤波电路。作为构建运算放大器集成电路的积木—晶体管,将在下篇课文中进行讨论。

The symbol used for an ideal Op-Amp is shown in Fig.1-2A-1. Only th ree connections are shown: the positive and negative inputs, and the output. Not shown are other connections necessary to run the Op-Amp such as its attachment to power supplies and to ground potential (n. 电势). The latter connections are necessary to use the Op-Amp in a p ractical circuit but are not necessary when considering the ideal Op-Amp applications we study in this unit. The voltages at the two inp uts and output will be represented by the symbols. Each is measured with respect to ground potential Operational amplifiers are different ial devices. By this we mean that the output voltage with respect t o ground is given by the expression.

理想运算放大器的符号如图1-2A-1所示。图中只给出三个管脚:正输入、负输入和输出。让运算放大器正常运行所必需的其它一些管脚,诸如电源管脚、接零管脚等并未画出。在实际电路中使用运算放大器时,后者是必要的,但在本文中讨论理想的运算放大器的应用时则不必考虑后者。两个输入电压和输出电压用符号U +、U -和Uo 表示。每一个电压均指的是相对于接零管脚的电位。运算放大器是差分装置。差分的意思是:相对于接零管脚的输出电压可由下式表示(1-2A-1)

Where A is the gain of the Op-Amp and

andUUthe voltages at inputs. In other words, the output voltage is A times the difference in potential between the two inputs.

式中 A 是运算放大器的增益,U + 和U - 是输入电压。换句话说,输出电压是A 乘以两输入间的电位差。

Integrated circuit technology allows construction of many amplifier cir cuits on a single composite ―

chip‖of semiconductor material. One key to the success of an opera tional amplifier is the ―cascading‖(n, v. 串联adj 串联的) of a number of transistor amplifiers to create a very large

total gain. That is, the number A in Eq.(1-2A-1)can be on the order of(属于同类的,约为) 100,000 or more. (For example, cascading of five transistor amp lifiers, each with a gain of 10, would yield this value for A.) A second important factor is that these circuits can be built in suc h a way that the current flow into each of he inputs is very smal l. A third important design feature is that the output of the devic e acts like an ideal voltage source.

集成电路技术使得在非常小的一块半导体材料的复合“芯片”上可以安装许多放大器电路。运算放大器成功的一个关键就是许多晶体管放大器“串联”以产生非常大的整体增益。也就是说,等式(1-2A-1)中的数A约为100,000或更多(例如,五个晶体管放大器串联,每一个的增益为10,那么将会得到此数值的A )。第二个重要因素是这些电路是按照流入每一个输入的电流都很小这样的原则来设计制作的。第三个重要的设计特点就是运算放大器的输出阻抗(Ro )非常小。也就是说运算放大器的输出是一个理想的电压源。

We now can analyze the particular amplifier circuit given in

Fig.1-2A-2 using these characteristics. First we note that the voltage at the positive input,U+, is equal to the source voltage,_UU .Various currents are defined in part b lf the figure. Applying KV L around the outer loop in Fig.1-2A-2b and remembering tat the outpu t voltage,oU, is

measured with respect ground ,we have

我们现在利用这些特性就可以分析图1-2A-2所示的特殊放大器电路了。首先,注意到在正极输入的电压U +等于电源电压,即U + =Us。各个电流定义如图1-2A-2中的b图所示。对图1-2A-2b的外回路应用基尔霍夫定律,注意输出电压Uo 指的是它与接零管脚之间的电位,我们就可得到因为运算放大器是按照没有电流流入正输入端和负输入端的原则制作的,即I - =0。那么对负输入端利用基尔霍夫定律可得I1 = I2,利用等式(1-2A-2) ,并设I1 =I2 =I ,U0 = (R1 +R2 ) I (1-2A-3)根据电流参考方向和接零管脚电位为零伏特的事实,利用欧姆定律,可得负极输入电压U - :因此U - =IR1 ,并由式(1-2A-3)可得:因为现在已有了U+ 和U-的表达式,所以式(1-2A-1)可用于计算输出电压,综合上述等式,可得:最后可得:

This is the gain factor for the circuit. If A is a very larg e number, large enough that the denominator, by the AR term. The fa ctor A, which is in both the numerator and denominator, then cancels out and the gain is given by the expression

这是电路的增益系数。如果A 是一个非常大的数,大到足够使AR1 >> (R1 +R2),那么分式的分母主要由AR1 项决定,存在于分子和分母的系数A 就可对消,增益可用下式表示这表明(1-2A-5b),

This shows that if A is very large, then the gain of the circuit

is independent of the exact value of A and can be controlled by th e choice of 21andRR. This is one of the key feature of Op-Amp itse lf. Note that if A=100,000 the price we have paid for this advantag e is that we have used a device with a voltage gain of 100,000 to produce an amplifier with a gain if 10. In some sense, by using an Op-Amp we trade off (换取)―power‖for ―control‖.

如果A 非常大,那么电路的增益与A 的精确值无关并能够通过R1和R2的选择来控制。这是运算放大器设计的重要特征之一——在信号作用下,电路的动作仅取决于能够容易被设计者改变的外部元件,而不取决于运算放大器本身的细节特性。注意,如果A=100,000,而(R1 +R2) /R1=10,那么为此优点而付出的代价是用一个具有100,000倍电压增益的器件产生一个具有10倍增益的放大器。从某种意义上说,使用运算放大器是以“能量”为代价来换取“控制”。

A similar mathematical analysis can be made in any Op-Amp circuit, b ut this is cumbersome

and there are some very useful shortcuts that involve application if the two laws of Op-Amps which we now present.对各种运算放大器电路都可作类似的数学分析,但是这比较麻烦,并且存在一些非常有用的捷径,其涉及目前我们提出的运算放大器两个定律应用。

1) The first law states this in normal Op-Amp circuits we may assum

e that the voltage difference between the input terminals is zero, t hat is,

第一个定律指出:在一般运算放大器电路中,可以假设输入端间的电压为零,也就是说,2) The second law states that in normal Op-Amp circuits both is of the input currents may be assumed to be zero:

2) 第二个定律指出:在一般运算放大器电路中,两个输入电流可被假定为零:I+=I-=0

The first law is due to the large value of the intrinsic(adj. 内在的)gain A. for example, if the output if an Op-Amp is 1V and A=100,00 0, then510

UUV. this is such a small number that it can often be ignored, and we set

UU. The second law comes from the construction of the circuitry (n.

电路)inside the Op-Amp which is such that almost mo current flows into e ither of the two input.

第一个定律是因为内在增益A的值很大。例,如果运算放大器的输出是1V ,并且A=100,000, 那么这是一个非常小、可以忽略的数,因此可设U+=U-。第二个定律来自于运算放大器的内部电路结构,此结构使得基本上没有电流流入任何一个输入端。AA

The Transfer Function and the Laplace Transformation BB 传递函数和拉普拉斯变换传递函数的概念

If the input-output relationship of the linear system of Fig.1 is known , the characteristics of the system itself are also known . The inputoutput relationship in the Laplace domain is called the transfer function (TF or G Gain) . By definition , the transfer function or system is the ration of the transformed output to the transformed input:

如果像式2-1B-1表示的线性系统的输入输出关系已知,则系统的特性也可以知道。在拉普拉斯域表示的输入输出关系被称做传递函数。由定义,元件或系统的传递函数是经拉氏变换的输出与输入的比值:

This definition of the transfer function requires the system to be linear and stationary , with continuous variables and with zero initial conditions . The transfer function is most useful when the system is lumped parameter and when transport lags are absent or neglected . Under these conditions the transfer function itself can be expressed as a ratio of two polynomials in the complex Laplace variables, or

此传递函数的定义要求系统是线性的和非时变的,具有连续变量和零起始条件。传递函数最适用于系统是集中参数和当传输延迟不存在或可忽略的情况。在这种条件下,传递函数本身可表示为拉普拉斯复数变量s的两个多项式的比值:

For physical systems , N(s) will be of lower order than D(s) since nature integrates rather than differentiates. It will be shown later that a frequency transfer function for use in the frequency domain can be obtained by replacing the Laplace variable s in the transfer function by jwt . For a closed-loop system, closedthe transfer function is:

对于物理系统,由于系统特性是积分而不是微分,所以N(s)的阶次比D(s)要低。后面我们将看到用于频域的频率传递函数,它是通过把传递函数中拉普拉斯变量s用j t代换得到的。

在式2-1B-2中,传递函数分母D(s)由于包含系统中所有的物理特征值而被称做特征方程。令D(s)等于0即得到特征方程。特征方程的解决定系统的稳定性和对任一输入下的暂态响应的一般特性。多项式N(s)是表示输入如何进入系统的函数。因而N(s)并不影响绝对稳定性或者暂态模式的数目和特性。

在特定的输入下,它决定每一暂态模式的大小和符号,从而确定暂态响应的图形和输出的稳态值。

石油化工自动化仪表常见故障分析及处理 钟凡

石油化工自动化仪表常见故障分析及处理钟凡 摘要:自动化仪表在石油化工生产工作中具备监管的作用,因此其运行的平稳 性直接影响着企业生产的安全性。深层探索石油化工自动化仪表在工作中经常出 现的故障,了解发生的原因,并提出相对应的解决方案,可以保障自动化仪表在 应用中的效率和质量,提升石油化工生产工作的水平。 关键词:石油化工;自动化仪表;常见故障;处理措施 引言 目前石油化工企业内的自动化仪表主要有温度仪表、压力仪表、流量仪表以 及液位仪表,这些仪表在使用的过程中不可避免的会出现故障问题,企业需要根 据故障出现的原因,结合仪表的运行原理,采用有效的措施及处理步骤,保障自 动化仪表正常运行。 1.温度仪表故障分析及处理措施 1.1温度仪表简介 在石油化工生产工作中,有很多化学反应和化学变化都要在规定条件下进行 操作,因此为了保障生产工作环境的变化符合要求,准确掌握温度的控制范围, 工作人员一定要在生产中安装相应的温度测量仪表。现阶段,对温度的控制主要 选择接触式测量,一般会用热电偶与热电阻等原件来加以控制,并依据生产现场 的总线技术构建自动化测量控制系统。 1.2温度仪表故障分析 这一自动化仪表出现问题后,工作人员要先观察两方面的内容,一方面是仪 表引用电动仪表进行测量、指示及管理;另一方面系统仪表的测量一般要滞后。 具体情况分为以下几点:其一,温度仪表系统的指示数值突然变大或变小通常是 仪表系统出现问题。由于温度仪表系统的测量较为落后,所以不会突然出现问题,此时出现故障的缘由大都是因为热电偶、补偿导线断线等因素带来的;其二,温 度仪表系统指示出现加速震荡问题,一般情况下是由PID调节不正确带来的;其三,温度仪表系统的指示若是出现较大变化,一般是由手工操作带来的,如当时 的操作没有问题,就表明仪表控制系统本身存在问题 1.3处理措施及步骤 在温度仪表日常运行的过程中,一般仪表内的测量组件主要采用的是热电偶,该种类型的组件一般都是采用的双金属显示,所以控制室内的温度测量仪表显示 数值应和现场的温度测量仪表显示数值相同,如果两者的温度不同,则说明温度 仪表出现了故障问题。在处理温度仪表的故障时,由于双金属显示的组件相对较 为简单,所以需要从控制室内的温度仪表入手,首先对热电偶的热电势数值进行 测量,同时查看其对应的温度变化情况,如果热电偶的热电势数值相对较低,这 说明热电偶出现了问题,该种问题大多数都是由于热电偶保护组件内积水造成, 由于热电偶进行温度测量的过程中采用的是点温测量原理,当保护组件内大量积水,会使得热电势大大降低。 2.压力仪表故障分析及处理措施 2.1压力仪表简介 这种仪表的类型有很多种,如变送器、传感器及特种压力等。在石油化工企 业生产工作中应用的压力仪表需要适宜高温环境,且可以在高温、腐蚀性强的环 境下正常测量。通常情况下,石油化工在生产阶段实施压力调节都要以压力变送 器为基础进行操作,此时可以让生产阶段收集的信息传递到控制系统中,以此实

关于石油化工自动化仪表技术的应用探讨

关于石油化工自动化仪表技术的应用探讨 发表时间:2019-01-21T15:37:40.093Z 来源:《建筑模拟》2018年第31期作者:牛文海 [导读] 从改革开放以来,国家的社会经济水平一直在努力发展,不断追逐世界的脚步。科学技术的发展促使国家对于各种能源的需求也逐渐增加。 牛文海 青岛石化检修安装工程有限责任公司山东青岛 266043 摘要:从改革开放以来,国家的社会经济水平一直在努力发展,不断追逐世界的脚步。科学技术的发展促使国家对于各种能源的需求也逐渐增加。石油,作为我国能源使用的主要生产原料,其开发采集的油田数量以及石油产量对于整个国家都非常重要。生产采集石油的化工企业,其社会责任也因此变得非常重大,他们必须做到满足国家经济运转和人民生活活动两方面对于石油的双重需要。石油化工领域内,自动化仪表技术经过长久的发展提升,依旧作为保证石油化工企业正常运作的最主要的仪器设备之一。它是企业生产、提升石油质量和产量、降低企业工业化生产原料技术成本的关键性技术,在企业之间的相对竞争力提升方面发挥着巨大的作用。就目前而言,自动化仪表技术已经在石油化工领域取得了一定成就,为企业工业化生产赢取了一定的社会收益和经济收益。本文将通过分析石油企业工业化生产过程中所采用的自动化仪表技术的应用,从而推动自动化仪表技术的优化发展,推广自动化技术在石油化工企业中的实际应用与发展,为后人的研究和使用提供理论依据。 关键词:石油化工;自动化仪表技术;应用探讨 引言 在石化生产中,化工仪表构成了其中的核心部分,运用化工仪表可以测定石化工业的数据及信息,从而为自动化的石化工业控制提供根据。近些年来,石化企业更多运用了新型的自动化技术,在自动化控制的前提下改进了工业仪表,进而确保了化工仪表具备更高的可靠性与精准性,从而创造更优良的石化生产效益。为此对于石油化工领域而言,有必要明确自动化控制的基本特征及其内容;结合自动化仪表技术的运用现状,探究可行的技术措施。 1自动化仪表技术使用的必要性 石油工业化生产过程中始终存在人工依赖问题和环境问题等,这些问题的出现不仅企业生产造成一定不利影响,同时企业生产出的产品质量也会遭受一定的影响。故企业在工业化生产过程中利用自动化仪表技术来改善和控制上述问题的出现是非常必要的,这也是自动化技术在石油化工生产领域内应用的重要性。对于要求生产质量高标准的企业而言,聘用操作人员,在生产过程中采取人工操作的方式很难达到企业所要求的精度标准,采取人工操作不仅会造成原料投入控制不稳定,生产流程和产品质量等方面都难以满足企业的要求,甚至有可能出现温度或压力过高的现象,导致对于最后的成品质量造成巨大的影响。严重时还会出现作业环境中的安全隐患,给操作人员的生命安全带来威胁。多数情况下采取单纯的人工操作会使生产过程中出现工作质量低等问题。石油化工企业的生产流程本身就是比较复杂、庞大的生产作业流水技术流程,如果过度依赖人工操作会产生对于劳动力的严重需求,这样不仅增加企业生产成本,还极有可能出现人力短缺的情况。人工操作的工作效率地下,远不如机械自动化生产的工作效率,所以人工操作的生产方式难以实现企业生产的需要,也无法跟上社会发展的步伐。 2自动化控制的基本技术特征 在传统的生产控制中,石油化工行业通常运用DCS控制的自动化策略来实现生产控制,DCS系统有助于简化流程,操作简单。近些年来,自动化控制相关的技术更新很快,更加先进智能。具体而言,自动化控制应当具备如下的技术特性。 2.1自动化的仪表控制有利于优化技术措施 近些年来,自动化控制的具体措施正在获得改进和提升。从化工领域来讲,大量使用单回路和串级控制。对于控制器规律通常可以选择PID方式。PID设置了独立性的软件包,包含了各种整定方法,智能PID还密切联系了软测量技术与动态变量技术等。目前很多化工企业已意识到PID技术的价值,因而开始尝试大量运用串级控制的仪表测控方式。 2.2交互界面是化工仪表控制的重要一环 化工仪表实现自动化控制,这个过程不能缺少交互性的人机界面。在显示器的辅助下,操作员可以观察到被控参数值,通过输入自动控制的设定值命令现场执行机构动作,进而为化工决策提供必要的参考。这在根本上符合了集成性的化工生产。从现状来看,人性化的交互界面正在逐步推广与普及,特别是新型自动化系统产生后,操作软件访问数据更加简单。交互界面是化工仪表控制的重要一环。 2.3自动化控制在本质上保障了安全性 石化行业表现出较强风险性,大多数生产操作都蕴含危险。为了消除风险,自动化的化工仪表有必要确保安全,对于各项风险都应当予以控制并且尽量消除。对于安全性加以综合考虑,自动化控制最根本的目标就在于在保证安全的前提下提升效益并且杜绝频繁发生化工事故。 3石油化工行业自动化仪表的控制技术的应用 3.1常规控制 常规控制是控制理论中最为基础的控制方式,主要包括顺序控制、批量控制和连续控制等。一般来说,常规控制的内容是比较固定的,即使系统已经升级更新,对于常规控制而言几乎没有变化。传统控制的发展,比如从常规DCS到新一代DCS,电气单元的有机组合等,其中包含的部分和内容如何都基本没发生什么变化。其次,常规控制涵盖的内容主要有:比例调节、分程调节控制、和PID调节等,其中PID调节是控制理论中最简单的调节控制方式。传统控制在控制学中,是对自动化工具最基本部分的控制,由于块数据和控制算法基本维持不变,因此主要通过配置选项和控制方案进行优化。 3.2先进控制 随着科学技术的不断发展,控制理论与多门学科不断地交叉融合,已经进入了现代控制阶段,出现了大量基于现代控制理论的智能算法,而且多变量的控制技术得到了广泛的应用。相较于传统的PID控制,目前,智能PID控制器已经比较常见了,而且应用前景广阔,因为它具有级联控制功能,能够使控制的效率更高,而且比传统的单轨控制系统更稳定。对于石化企业而言,智能PID控制器的出现,能够大大

自动化专业英语常用词汇

自动化专业英语常用词汇 acceleration transducer 加速度传感器 accumulated error 累积误差 AC-DC-AC frequency converter交-直-交变频器 AC (alternating current) electric drive 交流电子传动 active attitude stabilization 主动姿态稳定 adjoint operator 伴随算子 admissible error 容许误差 amplifying element 放大环节 analog-digital conversion 模数转换 operational amplifiers运算放大器 aperiodic decomposition 非周期分解 approximate reasoning 近似推理 a priori estimate 先验估计 articulated robot 关节型机器人 asymptotic stability 渐进稳定性 attained pose drift 实际位姿漂移 attitude acquisition 姿态捕获 AOCS (attitude and orbit control system) 姿态轨道控制系统attitude angular velocity 姿态角速度 attitude disturbance 姿态扰动 automatic manual station 自动-手动操作器 automaton 自动机 base coordinate system 基座坐标系 bellows pressure gauge 波纹管压力表 gauge测量仪器

自动化专业英语第三版王树青unit1翻译

第1章工业过程控制原理 近年来,工艺装置的性能要求已变得越来越难以满足。更激烈的竞争,更加严格的环保和安全法规和瞬息万变的经济环境已经在收紧厂的产品质量标准的关键因素。更复杂的是,现代化的进程变得更加难以操作,因为更大,更高度集成的植物更小的浪涌能力之间的各种处理单元的趋势。这些植物给运营商很少有机会能防止翻倒从一台设备传输到其他互联单位。鉴于放置在安全的越来越重视。高效的工厂运营,这是很自然的主题,过程控制,在最近几年变得越来越重要。事实上,在没有过程控制中,就成了不能够操作最现代化过程安全,有益,同时满足植物的质量标准。 1.1.1举例说明 作为一个引进的过程控制。考虑在图所示的连续搅拌槽加热器。1。1。1的进气口的液体流具有的质量流量w和温度T。搅拌罐内容,并提供问答瓦的电加热器加热。据推测,在入口和出口的流率是相同的,液体密度p保持恒定的,即是在温度变化足够小,可以忽略不计的温度依赖性的p。在这些条件下,液体在槽中的体积V保持恒定。 搅拌罐的加热器的控制目标是保持的出口温度T在 恒定的参考值TR。的基准值被称为对照术语作为设定点。接下来,我们考虑两个问题。 问题1。多少热量必须被供给到搅拌槽加热器加热的液体从入口温度T,的出口温度TR? 要确定所需的热量输入,为设计工况条件下,我们需要写一个稳态能量平衡的液体在槽中。在写这种平衡,它假定罐被完全混合,听到的损失是可以忽略不计。在这些条件下有 制作人:中国石油大学(华东)信控学院xueyue 内的排名的内容是没有温度梯度,因此,出口温度是罐中的液体的温度相等。甲稳态能量平衡罐表明添加的热等于焓变化之间 在入口和出口流: Q = WC(T-Ti)的(1) 其中,Ti的Tw和Q表示体的Tw和Q的额定稳态设计值。和C是比热的液体。我们假设,C为常数。在设计条件下,T = TR(设定点)。这种替代式。(1)给出的表达式{或标称输入热量 Q = WC(TR-T)(2) 方程(2)是对听者的设计方程。如果我们的假设是正确的,如果在入口流率和入口温度等于其nomin81值,然后由方程给出的热输入。(2)的出口温度保持在所需的值,TR。但是,如果条件发生变化吗?这给我们带来了第二个问题: Quesrion2。假设入口温度Ti随时间的变化。我们怎样才能保证T保持在设定点附近TR吗? 作为一个具体的例子。承担的Ti提高到一个新的值大于钛,如果Q是保持不变的人的名义Q值,我们知道,出口温度将增加,使T> TR。(cf.Eq.(1))。 为了对付这种情况,也有一些可能的策略用于控制退出 温度T。 方法。测量T和调Q。的一种方式控制T,尽管这件T干扰。调Q根据T.直观地测量,如果T是太高,我们应该减少Q; T是太低了,我们应加大控制策略往往会问:这移动?朝向的设定点(TR)和可以在许多不同的方式实施。例如,工厂操作员可以观察测得的温度,并比较测量值到TR。然后,操作员会以适当的方式变化q。这将是一个手动控制的应用。但是,它可能会更方便,更经济,有这个简单的控制任务的电子设备,而不是一个人,那就是,利用自动控制自动执行。 方法2。测量钛调整问:作为另一种合作方式l。我们可以测量变量T和相应的调Q。因此,如果Ti 大于钛,我们将减少Q;为钛 Q. 方法3。测量T调整W,而不是调整问:我们可以选择操作质量流量W。因此。如果T是太高,我们会增加w来降低相的质量流率的搅拌罐中的能量输入速率,从而降低出口 温度。 方法4。钛调整w在的类比方法3,如果这也是高的措施。W应

石油化工自动化仪表技术的的应用分析

石油化工自动化仪表技术的的应用分析 摘要:针对石油化工自动化仪表技术的应用进行分析,介绍了石油化工企业当 中自动化仪表技术的几个类型,分别为,物味仪表,流量仪表。结合当前石油化 工企业发展现状,探讨可使用自动化仪表技术的必要性。最后,结合这些内容, 总结石油化工企业自动化仪表技术的应用情况,内容主要有:自适应控制、最优 控制、理性引进、加大科技投入。 关键词:石油化工;自动化仪表;物位仪表 随着科学技术的不断发展,在石油化工企业中也引进了大量的先进技术和先 进设备,石油化工企业具有一定特殊性,对自动化仪表技术进行应用,能够在一 定程度上提升产品生产效率,同时为工作人员的人身安全提供一定保障。因此, 研究当前石油化工企业使用的自动化仪表技术情况,分析不同自动化仪表技术的 适用范围,探讨在对这些设备使用过程中应当注意的问题,对于石油化工企业未 来发展具有重要意义。 1 石油化工自动化仪表的类型 1.1 物味仪表 结合应用对象的不同将物位仪表进行进一步划分,还可以将仪表分成两种类型,分别为料位表和液位表。这两种仪表通常被应用在两相物资的计量中,被人 们称作是相位计。其中电子型物位仪表的应用较为广泛,这种仪表的使用量已经 超过了机械式物位仪表。人们应用的电子型物位仪表当中,使用和发展最为广泛 的是非接触式物位仪表。 1.2 流量仪表 流量仪表主要被应用在对是由输送管道当中的单位时间内流载物体的体积进 行测量,该种类型的仪表同样在石油化工企业当中广泛应用,属于一种自动化仪表。对于流量计而言,其已经被应用在石油开采、石油运输和石油冶炼、石油交 工等领域,伴随着当前我国石油贸易不断增加,能够对大量的输送管道进行测量,同时也可以对微小的输送管道进行测量,该仪器逐渐成为石油化工企业的新能需要。流量仪表使用过程中,稳定性极高,同时还具备一定的耐腐蚀性能,测量精 度较高,并不会因为其他因素而干扰。 2 应用石油化工自动化仪表技术的必要性 对于石油化工企业而言,进行具体生产过程中,存在一定的人工依赖问题, 同时也存在一定环境问题等,这些问题的存在不但给石油化工企业带来一定影响。同时还会对企业生产和质量带来影响。因此,对自动化仪表技术进行科学应用, 并且对其进行进一步改善和控制,十分必要,这也是应用自动化技术的重要性。 当石油化工企业具体生产过程中,一些企业对生产过程要求较高,采用人工 操作方式,难以达到工作精度的需求,这不仅给材料控制带来影响,也导致生产 流程和产品追量等方面很难满足企业对质量的需求。在一定程度上,还有可能会 导致温度超标现象,这种情况下,会给最后的品质带来影响,如果后果严重,可 能会出现安全隐患,从而给工作人员的生命安全带来威胁[1]。 如果过分依赖人工操作方式,会导致操作程度过低、工作效率低下等问题, 这种情况下,所生产出来的产品中会出现一定量的次品。对于对于石油化工企业 而言,可能会有人力短缺的现象出现。对于人力操作而言,其工作效率有限,和 机械相比存在较大的差距,这就促使企业生产需求难以实现,导致企业竞争力下降。如果生产过程中,一个区域中集中大量的工人,也为其安全埋下隐患。

自动化仪表基础知识

第十二章自动化仪表基础知识 第一节测量误差知识 一、测量误差的基本概念 冶金生产过程大多具有规模大、流程长、连续化、自动化的特点,为了有效地进行工艺操作和生产控制,需要用各种类型的仪表去测量生产过程中各种变量的具体量值。虽然进行测量时所用的仪表和测量方法不同,但测量过程的机理是相同的,即都是将被测变量与其同种类单位的量值进行比较的过程。各种测量仪表就是实现这种比较的技术工具。对于在生产装置上使用的各种测量仪表,总是希望它们测量的结果准确无误。但是在实际测量过程中,往往由于测量仪表本身性能、安装使用环境、测量方法及操作人员疏忽等主客观因素的影响,使得测量结果与被测量的真实值之间存在一些偏差,这个偏差就称为测量误差。 二、测量仪表的误差。 误差的分类方法多种多样,如按误差出现的规律来分,可分为系统误差、偶然误差和疏失误差;按仪表使用的条件来分,有基本误差、辅加误差;按被测变量随时间变化的关系来分,有静态误差、动态误差;按与被测变量的关系来分,有定值误差、累计误差。测量仪表常凋的绝对误差、相对误差和引用误差是按照误差的数值表示来分类的。 1、绝对误差 绝对误差是指仪表的测量值与被测变量真实值之差。用公式表示为: △C=Cm-Cr 式(1-1) 试中Cm代表测量值,Cr代表真实值(简称真值),△C代表绝对误差。事实上,被测变量的真实值并不能确切知道,往往用精确度比较高的标准仪器来测量同一被测变量,其测量结果当作被测变量的真实值。 绝对误差有单位和符号,但不能完整地反映仪表的准确度,只能反应某点的准确程度。我们将各点绝对误差中最大的称为仪表的绝对误差。绝对误差符号相反的值称为修正值。 2、相对误差 相对误差是指测量的绝对误差与被测变量之比。用公式表示为 式(1-2) 式中AC为测量的绝对误差,Cr为被测变量的真实值。 由上式可见,相对误差C0是一个比值,它能够客观地反映测量结果的准确度,通常以百分数表示。 如某化学反应釜中物料实际温度为300℃,仪表的示值为298.5℃。 求得测量的绝对误差 测量的相对误差 3、引用误差(相对折合误差或相对百分误差) 测量仪表的准确性不仅与绝对误差和相对误差有关,而且还与仪表的测量范围有关。工业仪表通常用引用误差来表示仪表的准确程度,即绝对值与测量范围上限或测量表量程的比值,以非分比表示:

自动化专业英语PartⅤ-Ⅵ 课文原文内容

Part Ⅴ Sensors and Transmitters In a feedback control system, the elements of a process-control systemare defined interms of separate functional parts of the system . The four basic components of controlsystems are thesensors, transmitter , controller , and final control elements . Thesecomponents per form the three basic operations of every control system: measurementdecision, and action. Sensors and transmitters perform the measurements operation of control system. Thesensor produces a phenomenon, mechanical, or the like related to the process variable that itmeasures. The function of transmitter in turn is to convert the signal from sensor to the formrequired by the final control device. The signal, therefor e, is related to the process variable. Two analog standards are in common u se as a means of representing the range ofvariables in control systems. For electrical systems we use a range of electric current carriedin wires , and for pneumatic systems we use a range of gas pressure carried in pipes . Thesesignals are used primarily to transmitvariable information over some distance, such as to andfrom the control room and the plant .Fig .5 . 9 shows a diagram of a process- controlinstallation where current is used to transmit measurement data about the controlled variableto the control room, and gas pressure in pipes is used to transmit a feedback signal to a valve to change flow as the controlling variable . Fig .5 .9 Electrical current and pneumatic pressures are the most common means of information transmitter in the industrial environment Current signal The most common current transmission signal is 4 to 20 mA . Thu s , in the preceding temperature example, 20℃might be represented by 4 mA, and 120℃by 20 mA, with all temperatures in between represented by a proportional current . The gain is 略 That is , we can say that the gain of sensor/ transmitter is ratio of the span of the output to the span of input . Current is used instead of voltage because the system is then les s dependent on load . Voltage is not used for transmission because of its susceptibility to changes of resistance in the line . Pneumatic signals The most common standard for pneumatic signal transmitter is 3 to 15 psi . In this case, when a sensor measures some variable in a range it is converted into a proportionalpressure of gas in a pipe . The gas is usually dry air .The pipe may be many hundreds of meters long , but as long as there is no leak in the system the pressure will be propagated down the pipe . This English system standard is still widely used in the U .S ., despite the move to the SI system of units . The equivalent SI range that will eventually be adopted is 20 to 100 kPa. The two cases presented show that the gain of the sensor/ transmitter is constant over its completeoperating range . For most sensor/ transmitter this is the case; however , there are some in stances , such as a differential pressure sensor used to measure flow, when this is not the case . A differential pressure sensor measures the differential pressure ,h, across an orifice . This differential pressure is related to the square of the volumetric flow rate F . That is F2 ah . The equation that describes the output signal form an electronicdifferential pressure transmitter when used to measure volumetric flow with a range of 0~F maxgpm is

石油化工自动化仪表选型设计规范样本

石油化工自动化仪表选型设计规范 SH 3005-1999 3 温度仪表 3.1单位和量程 3.1.1温度仪表的标度(刻度)单位, 应采用摄氏度(C)。 3.1.2 温度标度(刻度)应采用直读式。 3.1.3 温度仪表正常使用温度应为量程的50%一70%, 最高测量值不应超过量程的90%。多个测量元件共用一台显示表时, 正常使甩温度应为量程的20%一90%, 个别点可低到量程的10%。 3.2 就地温度仪表 3.2.1就地温度仪表应根据工艺要求的测温范围、精确度等级, 检测点的环境、工作压力等因素选用。 3.2.2一般情况下, 就地温度仪表宜选用带外保护套管双金属温度计, 温度范围为-80一5OOC。刻度盘直径宜为1OOmm; 在照明条件较差、安装位置较高或观察距离较远的场合, 可选用15Omm。需要位式控制和报警的, 可选用耐气候型或防爆型电接点双金属温度计。仪表外壳与保护管连接方式, 宜按便于观察的原则选用轴向式或径向式, 也可选用万向式。 3.2.3 在精确度要求较高、振动较小、观察方便的场合, 可选用玻璃液体温度计, 其温度范围:有机液体的为-80一1OO℃。需要位式控制及报警, 且为恒温控制时, 可选用电接点温度计。

3.2.4 被测温度在-200一50℃或-80一500℃范围内, 在无法近距离读数、有振动、低温且精确度要求不高的场合, 可选用压力式温度计。压力式温度计的毛细管应有保护措施, 长度应小于2Om。 3.2.5 就地测量、调节, 宜选用基地式温度仪表。 3.2.6关键的温度联锁、报警系统, 需接点信号输出的场合, 宜选用温度开关。 3.2.7 安装在爆炸危险场所的就地带电接点的温度仪表、温度开关, 应选用隔爆型或本安型。 3.3集中检测温度仪表 3.3.1要求以标准信号传输的场合, 应采用温度变迭器。在满足设计要求的情况下, 可选用测量和变送一体化的温度变送器。 3.3.2 检测元件及保护套管, 应根据温度测量范围、安装场所等条件选择(不同检测元件的温度测量范围见表 3.3.2), 且应符合下列规定: 1热电偶适用于一般场合; 热电阻适田于精确度要求较高、无振动场合; 热敏电阻适用于要求测量反应速度快的场合。 2 采用热电阻温度检测元件时, 宜采用PtlO0热电阻。 3 测量设备或管道的外壁温度, 应选用表面热电偶或表面热电阻。 4 测量流动的含固体颗粒介质的温度, 应选用耐磨热电偶。 5 下列情况, 可选用销装热电阻、热电偶: a测量部位比较狭小, 测温元件需要弯曲安装; b 被测物体热容量非常小;

自动化专业英语全文翻译

《自动化专业英语教程》-王宏文主编-全文翻译 PART 1Electrical and Electronic Engineering Basics UNIT 1A Electrical Networks ————————————3 B Three-phase Circuits UNIT 2A The Operational Amplifier ———————————5 B Transistors UNIT 3A Logical Variables and Flip-flop ——————————8 B Binary Number System UNIT 4A Power Semiconductor Devices ——————————11 B Power Electronic Converters UNIT 5A Types of DC Motors —————————————15 B Closed-loop Control of D C Drivers UNIT 6A AC Machines ———————————————19 B Induction Motor Drive UNIT 7A Electric Power System ————————————22 B Power System Automation PART 2Control Theory UNIT 1A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30 B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32 B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory 38 B State Equations 40 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 Computer Control Technology UNIT 1 A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 UNIT 2 A Interfaces to External Signals and Devices 44 B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control

自动化专业英语单词(王宏文)

Abound v.大量存在Accelerate v.加速Access v.存取,接近Accommodate v.容纳,使适应 Acoustic adj.听觉的Acousticsensor声传感器,声敏原件 Acronym n.首字母缩写词 Active adj.主动的,有源的 Active network 有源网络 Actuator n.执行器 Ad hoc 尤其,特定地Address n.寻址Addressgenerators地址发生器 Adjoint n.,adj.伴随(的),共轭(的) Admissible adj.可采纳的,允许的 Advent n.出现Aerodynamic adj.空气动力学的Aerodynamic n.空气动力学,气体力学Aesthetically adv.美术地,美学地Aforementioned adj.上述的,前面提到的Agility n.灵活,便捷 Ai 人工智能 Air gap 气隙 Aircraft n.飞行器 Airgap=air gap 气隙 Air-to-close(AC)adj.气关的 Air-to-open(AO)adj.气开的 Albeit conj.虽然Algebraic equation 代数方程Alignment n.组合 All-electricrange全电动 行驶里程 Alleviate v.减轻,缓和 Allowance for finish 加 工余量 Alloy n.合金 Alnico n.铝镍钴合金,铝 镍钴永磁合金 Aloft adv.高高地 Alphanumeric adj.字母 数字混合的 Alternative n.可供选择 的办法 Altitude n.海拔 Aluminum n.铝 Amortisseur n.阻尼器 Amplifier n.放大器 Amplify v.放大 Amplitude n.振幅 Answeringmachine电话 答录机 Anthropomorphically adv. 拟人的 Anti-aliasfilter抗混叠滤 波器 Antilockbrakingsystem 防抱死系统 APICS=AmericanProduct ionandInventoryControl Society美国生产与库存 管理学会 Apparatus n.一套仪器, 装置 Application n.应用(程序) Approach n.途径,方法; 研究 Aptness n.恰当 Arbitrary adj.任意的 Arbitrary adj.任意的 Architecture n.架构 Architecture n.体系结构 Archive v.存档 Argument n.辐角,相位 Arithmetic-logic unit 算 术逻辑部件 Armature n.电枢,衔铁, 加固 Arrival angle 入射角 Arrival point 汇合点 Artificial intelligence 人 工智能 Artillery shell 炮弹 ASIC=ApplicationSpecific IntegratedCircuit特定用 途集成电路 Assembly n.装置,构件 Assemblyline装配生产 线 Assumption n.假设 Asymmetric adj.不对称 的 Asymptote n.渐近线 Asymptotically stable 渐近稳定 Asynchronous adj.异步 的 At rest 处于平衡状态 At the most 至多 Attached adj.附加的 Attain v.达到,实现 Attenuate v.减弱 Attenuation n.衰减 Attitude n.姿态 Attribute n.品质,特征 Audio adj.音频的 Auto-isolation n.自动隔 离 Automatictellermachine 自动柜员机 Autonomous adj.自治的 Autonomous adj.自治的, 自激的 Auto-restoration n.自动 恢复供电 Auto-sectionalizing n.自 动分段 Auxiliary material 辅助 材料 Axon n.轴突 Backlash n.齿隙游移 Bandwidth n.带宽 Bar code scanner 条码 扫描仪 Baud n.波特 Become adept in 熟练 Bench mark 基准点 Bias n.偏压 Bi-directional adj.双向 的 Binary adj.二进制的 Binary-coded adj.二进 制编码的 Biomass n.生物质 Biopsy n.活体检查 Bipolar adj.双向的 Bjt 双极结型晶体管 Blackout n.(大区域的) 停电 Bldm 无刷直流电动机 Block diagram algebra 方块图计算(代数) Boiler n.汽锅,锅炉 Boolean algebra 布尔代 数 Boost chopper 升压式 变压器 Bound v.限制 Bracket v.加括号 Break frequency 转折 频率 Breakaway point 分离 点 Breakdown n.击穿,雪崩 Breakover n.导通 Brush n.电刷 Buck chopper 降压式变 压器 Building blocks 积木 Buildingautomation楼 宇自动化 Bulky adj.庞大的,笨重

当代石油化工自动化仪表的性能评价和发展趋势

当代石油化工自动化仪表的性能评价和发展趋势 一、自动化仪表控制系统的发展方向 科学技术的飞速提升推动了我国石油化工产业的不断发展,从而使其自动化仪表的研究方面也觉得了惊人的成果。自动化仪表的出现,不仅有效的提高了石油化工产业的工作效率,还减轻了石油企业工作人员的总体劳动量,使我國的石油化工企业逐渐实现了信息化管理。从现阶段的情况来看,我国的自动化技术已经克服了传统自动化技术在使用中存在的不稳定现象,获得了各行各业的高度认可。自动化技术的出现,意味着自动化控制系统也将得到及时的更新,并在未来的发展中不断引领新的发展方向。 1.发展中小型DCS 分散控制系统(DCS)因具有体积小、价格低、功能强等优点备受用户的青睐。随着科学技术的进步,DCS采用了性能更强大的微处理器,大大增强了CPU的控制处理能力。中小型DCS独立性比较强,布置方法灵活,使用范围十分广。随着化工生产运行时间延长,DCS 不仅可以满足生产控制的需求,还可以使每个小系统分别控制各个生产环节,切出检修也比较方便快捷。近年来,随着DCS联网技术的发展,多套中小型的DCS通过网络构成了较大规模的DCS,满足整个工艺装置的控制要求,使工厂投资周期短,收益速度更快。 2.发展先进高效安全的通信技术 通信网络技术的DCS十分重要的组成部分,若要保证DCS系统的先进性,就必须研究开发先进、高效安全的通信网络技术。我国DCS 通常由大规模集成电路构成,受静电、杂波的影响比较敏感,导致故障发生频率较高,严重影响着生产过程的控制。为了确保DCS的安全,必须不断开发新一代通信网络技术,提高DCS的整体质量和性能。 3.发展嵌入式人工智能技术

仪表自动化培训大纲

化工自动化控制仪表特种作业人员安全生产培训大纲及考核标准1 范围 本标准规定了化工自动化控制仪表特种作业人员培训的要求,培训和再培训的内容及学时安排,以及考核的方法、内容,再培训考核的方法、要求与内容。 本标准适用于化工自动化控制仪表特种作业人员的培训与考核。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 《特种作业人员安全技术培训考核管理规定》(国家安全生产监督管理总局30号令)《危险化学品安全管理条例》(中华人民共和国国务院令第344号) 《气体防护急救管理规定》 GB/T 16483 化学品安全技术说明书内容和项目顺序 GB/T 13861-92 生产过程危险和有害因素分类与代码 GB 18218 重大危险源辨识 GB 11651 劳动防护用品选用规则 GB 50093-2002 自动化仪表工程施工及验收规范 ~15 爆炸性气体环境用电气设备 AQ3009-2007 危险场所电气安全防爆规范 AQ3021-2008 化学品生产单位吊装作业安全规范 AQ3022-2008 化学品生产单位动火作业安全规范 AQ3025-2008 化学品生产单位高处作业安全规范 AQ3026-2008 化学品生产单位设备检修作业安全规范 AQ3027-2008 化学品生产单位盲板抽堵作业安全规范 AQ3028-2008 化学品生产单位受限空间作业安全规范 HG/T 20507-2000 自动化仪表选型设计规定 3 术语和定义 下列术语和定义适用于本标准。 化工自动化控制仪表作业特种作业人员Special operator of chemical industry automation control instrument 指化工自动化控制仪表系统安装、维修、维护的作业人员。 4 基本条件 取得化工自动化控制仪表作业上岗资格证; 无色弱、色盲等禁忌症; 培训前需在相应岗位实习3个月以上。 5 培训大纲 培训要求

相关文档
相关文档 最新文档