文档库 最新最全的文档下载
当前位置:文档库 › GPC-HPLC-MS·MS测定植物组织中IAA与 ABA的方法

GPC-HPLC-MS·MS测定植物组织中IAA与 ABA的方法

GPC-HPLC-MS·MS测定植物组织中IAA与 ABA的方法
GPC-HPLC-MS·MS测定植物组织中IAA与 ABA的方法

Advances in Analytical Chemistry 分析化学进展, 2017, 7(2), 131-138

Published Online May 2017 in Hans. https://www.wendangku.net/doc/6715207149.html,/journal/aac

https://https://www.wendangku.net/doc/6715207149.html,/10.12677/aac.2017.72018

Determination of IAA and ABA in Plant

Tissue by the GPC-HPLC/MS/MS

Liu Yang1, Shuai Liu1, Zongyi Wang2, Qingqin Cao3, Jianli Wang1, Yu Xing1, Ling Qin1*

1Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing

2Beijing Key Laboratory of Safety Detection and Control on Harmful Microbes and Pesticide Residues in

Agricultural Products, Beijing University of Agriculture, Beijing

3College of Biological Science and Engineering, Beijing University of Agriculture, Beijing Collaborative

Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing University of

Agriculture, Beijing

Received: May 8th, 2017; accepted: May 24th, 2017; published: May 27th, 2017

Abstract

The effectiveness and efficiency of the plant hormone detection is a prerequisite for plant re-search. The sample was purified with the GPC system, and the method employed HPLC-MS/MS for multiple reaction monitoring of concentrations of IAA, ABA, and deuterated IAA and ABA analogs. The condition of extraction and purification of hormones were optimized by orthogonal design. The results show that the composite of 0.5 g samples, 80% methanol extraction solvent, concentration temperature 35?C and C18 cartridge column for solid-phase extraction (SPE), were optimal extraction procedure for each type of plant tissue. The contents of IAA and ABA as high as 20.34 ng/g and 789.3 ng/g were achieved by this method, respectively; the detectable limits were 2.36 ng/g and 31.95 ng/g; the recoveries were 70.43% and 80.17%; the RSD were

1.87% and

2.26%.

Keywords

Liquid Chromatography-Mass Spectrometry, Purifying-Quantitative-Concentrated More Online

System, Internal Standard Method, Indole-3-Acetic, Abscisic Acid

GPC-HPLC-MS/MS测定植物组织中IAA与

ABA的方法

杨柳1,刘帅1,王宗义2,曹庆芹3,王建立1,邢宇1,秦岭1*

*通讯作者。

文章引用: 杨柳, 刘帅, 王宗义, 曹庆芹, 王建立, 邢宇, 秦岭. GPC-HPLC-MS/MS测定植物组织中IAA与ABA的方

杨柳 等

1

农业应用新技术北京市重点实验室·北京农学院植物科学技术学院,北京 2农产品有害微生物及农药残留检测与控制北京市重点实验室,北京 3

北京农学院生物科学与工程学院·北京林果业生态环境功能提升协同创新中心,北京

收稿日期:2017年5月8日;录用日期:2017年5月24日;发布日期:2017年5月27日

摘 要

植物激素检测的有效性和高效性是开展植物研究的前提。本试验采用净化-定量-浓缩多联机系统(GPC)纯化样品、利用HPLC-MS/MS 检测以及内标法定量测定植物组织内源IAA 和ABA 含量。通过正交试验设计优化适于激素提取和纯化的条件,结果表明:取样量0.5 g 、80%甲醇提取液、浓缩温度35℃和C18 SPE 柱为最优组合。IAA 和ABA 的含量分别为20.34 ng/g 和789.93 ng/g ;最低检出限分别为2.36 ng/g 和31.95 ng/g ;回收率为70.43%和80.17%;变异系数分别为1.87%和2.26%。

关键词

液相色谱-质谱联用仪(HPLC-MS/MS),净化-定量-浓缩多联机系统(GPC),内标法,吲哚乙酸,脱落酸

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/6715207149.html,/licenses/by/4.0/

1. 引言

IAA 和ABA 是植物体中两种重要的激素,许多研究都涉及到含量的测定,因此建立合理实用的定量分析方法,对研究植物的生长发育具有重要意义。植物激素测定首要工作是从植物材料中将激素充分提取出来,选择提取溶剂尤为重要,常用的有甲醇、丙酮、丙醇及其水溶液。甲醇由于分子量小,渗透性较强,在提取过程中可以渗透到细胞中,被广泛地用于植物激素的提取(Barkawi, 2008) [1]。植物粗提物中含有大量的植物次生代谢产物,为了降低或消除其干扰,需对激素进行纯化和富集,常用的萃取方式有液相萃取和固相萃取。目前在线SPE/凝胶净化/定量浓缩多联机系统(GPC)的产生,完善了提取纯化过程,曾见于植物体中农药的残留(王耀, 2011) [2]、土壤及食品中有毒物质(魏冬旭, 2009) [3]的前处理过程,在植物激素测定的方法中未见报道。

目前植物内源激素的分析方法主要有放射免疫法(RIA)、酶联免疫法(ELISA)、气相色谱(GC),高效液相色谱法(HPLC)、气质联用法(GC-MS)和液质联用法(LC-MS)等。RIA 具有较高的灵敏度,可以检测出微量物质,但是需要放射性同位素,由于同位素的不稳定以及对操作人身体的影响,RIA 现已很少使用。ELISA (Ross, 2004) [4]是用某些酶对免疫原(激素)进行标记,避免使用放射性物质,具有很高的灵敏度和安全性,但是植物激素提取物中含有同系物、前体、类似物等,使免疫分析法的特异性降低、重复性较差。GC 分析速度快,可用于分析测定所有的植物激素,但是待测激素必须形成易挥发的衍生物,衍生过程繁琐并且具有一定的危险性。HPLC 用于分析检测除乙烯外的所有植物激素,其结果准确性和灵敏度较高,与GC 相比前处理简单,对所测激素结构无破坏,但是HPLC 所采用的紫外和荧光检测器,

Open Access

杨柳等

不能满足超低含量植物激素定性定量分析的要求。LC-MS在很大程度上克服了传统色谱技术在植物激素定性和定量分析方面的不足(Vilaró, 2006) [5]、(Zhang, 2008) [6],不需目标物衍生处理,操作简便,而且灵敏度高、选择性和特异性好(Cao, 2006) [7]。

现在的测定方法仍存在流程繁琐、费时长、杂质含量高等问题,本试验根据正交试验设计,在GPC 系统处理后,LC-MS/MS进行测定,并利用同位素(D5-IAA,D6-ABA)内标法定量。本试验目的在于,使植物组织内源激素的提取纯化过程自动化、批量化,节省时间并减少人为因素的干扰,为研究植物内源激素的测定提供方法。

2. 材料与方法

2.1. 材料

试材选自怀柔板栗试验站种植的燕山红栗(Castanea mollissima)雄花序及坚果、北京农学院科技园实验基地种植的海棠(Malus spectabilis)果实、草莓(Fragaria × ananassa)叶片及果实,放入液氮中冷冻,然后置于?80℃冰箱保存,用于激素测定。

2.2. 仪器

高效液相色谱-质谱联用仪(Agilent1200型液相色谱仪-Agilent 6410型串联四极杆质谱);净化-定量-浓缩多联机系统GPC (LCTech, GmbH);离心机(SIGMA, 3K15)。

2.3. 试剂

IAA内标(Toronto Research Chemicals Inc, D5-IAA);ABA内标(Toronto Research Chemicals Inc, D6-ABA);C18柱(Cleanert S C18-SPE, 500 mg/3mL);阴离子交换柱(Cleanert SAX-SPE, 500 mg/3mL);纤维素柱(Agilent Bond Elut-Cellulose, 500 mg/3mL);二乙基二硫代氨基甲酸钠(BHJ);交联聚乙烯吡咯烷酮(PVPP);甲醇(色谱纯);超纯水为实验室提供;氨水、盐酸和醋酸均为分析纯。

2.4. 试验设计

采用L9(34)3水平4因素的正交试验设计方法,样品量选2.0、1.0、0.5 g,提取液甲醇浓度选0%、80%、70%,浓缩温度选35℃、40℃、35℃,固相萃取柱选取C18、阴离子交换、纤维素柱(见表1)。2.5. 样品制备

对Vine的方法(Vine, 1987) [8]进行改进,应用在线SPE/凝胶净化/定量浓缩多联机系统辅助处理样品,具体流程如图1所示。

2.5. 色谱条件

色谱柱:ZORBAX SB-C18柱:3.5 um,2.1 mm × 150 mm;流速:0.3 mL/min;柱温:30℃;进样量:5 uL;流动相A,水(0.1%乙酸水溶液),流动相B,甲醇;梯度洗脱:0 min,90% A;5 min,25% A;

8 min,50% A;10 min,35% A;13 min,90% A。

2.6. 质谱条件

ESI离子源,正负离子检测方式,MRM模式。离子源条件为干燥气温度(gas temp) 350℃,干燥气流量(gas flow) 10 L/min,雾化器压力(nebulizer) 20 psi,毛细管电压(capillary),4000 V,最优碎裂电压(frag)均为105 V,最优碰撞能量(CE)为30 V。

杨柳等

Table 1. L9(34) orthogonal design of experiment table 3 level 4 factors

表1. L9(34) 3水平4因素的正交试验设计表

处理Treatment

因素Factor

取样量(g)

Amount of sampling (g)

溶剂浓度(%)

The solvent concentration (%)

固相萃取柱

Solid phase extraction column

浓缩温度(℃)

Concentrated temperature (℃)

1 2.00 90 C18 45

2 2.00 80 阴离子交换柱40

3 2.00 70 纤维素柱35

4 1.00 90 阴离子交换柱35

5 1.00 80 纤维素柱45

6 1.00 70 C18 40

7 0.50 90 纤维素柱40

8 0.50 80 C18 35

9 0.50 70 阴离子交换45

Figure 1. Plant hormone extraction and purification steps

图1. 植物激素提取和纯化步骤

杨柳 等

2.7. 净化-定量-浓缩多联机系统条件

2.7.1. 浓缩条件

水加热温度(Temperature water heating):35℃;浓缩枪底部温度(Temperature bottom cone):35℃;吸液速度(Suction speed):20 ml/min ;定容溶液(Constant volume solution):超纯水。 2.7.2. 固相萃取条件

吸液速度(Suction speed):20 ml/min ;加样速度(Dispending speed):20 ml/min ;甲醇和0.1M 醋酸对SPE 柱进行活化、洗柱和洗脱。

2.8. IAA 与ABA 含量的计算

对得到的内源激素与内标物的峰面积,应用内标法按照以下公式计算内源激素ABA 、IAA 的浓度,试验结果使用Excel2007和SPSS 软件进行数据处理和统计分析。

××=

内源峰面积

加入内标量氘代率

内标峰面积内源激素含量样品重量

式中:A176

A18IAA 1=∑

内源峰面积内标峰面积,D5-IAA 的加入量为100 ng ,氘代率为98%; A263

A26ABA 9

=∑内源峰面积内标峰面积,D6-ABA 的加入量为500 ng ,氘代率为100%。

3. 结果与讨论

3.1. 特征离子的选择

选择IAA 和ABA 的特征离子,选择m/z 为176、263的两个离子为IAA 和ABA 的定量离子,选择m/z 为130、215的两个碎片离子为IAA 和ABA 的定性离子,如表2所示。

3.2. 标样与样品的全谱图

在设定的色谱条件下,IAA 和ABA 能与其他成分很好地分离。从图2中可以看出,标样IAA 、D 5-IAA 、ABA 和D 6-ABA 保留时间分别为:9.089 min ,9.123 min ,9.514 min ,9.539 min 。样品中IAA 、D 5-IAA 、ABA 和D 6-ABA 的保留时间与标样一致。

3.3. 提取纯化条件筛选

以板栗果实为实验试材,通过L 9(34)3水平4因素正交试验设计,在不同处理条件下得到板栗果实中IAA 、ABA 的含量(表3)。对表3中数据进行极差分析,各因素对IAA 提取纯化的影响程度依次为:固相萃取柱 > 浓缩温度 > 取样量 > 溶剂浓度,即固相萃取柱对IAA 提取纯化的影响程度最大,选择三种固相萃取柱,分别是纤维素柱、阴离子交换柱和C18柱,这三种柱子适合吸附pH 为2~3的物质,纯化效果依次为C18 > 阴离子交换柱 > 纤维素柱,使用纤维素柱未能检测到IAA 。考察各因子水平值发现,IAA 最适的提取纯化条件为:固相萃取柱以第一水平C18为最优、浓缩温度以第三水平35℃为最优、取样量以第三水平0.50g 为最优、甲醇浓度以第二水平80%为最优。各因素对ABA 提取纯化的影响程度依次为:取样量 > 固相萃取柱 > 浓缩温度 > 溶剂浓度,即取样量对ABA 提取纯化的影响程度最大。考察各因子水平值,ABA 最适的提取纯化条件为:取样量以第三水平0.50 g 为最优、固相萃取柱以第一水平C18为最优、浓缩温度以第三水平35℃为最优、甲醇浓度以第二水平80%最优。由此得出,IAA 和

杨柳等

Table 2. The choice of ABA, IAA and corresponding internal standard product characteristics of the ions 表2. ABA、IAA及相应内标产物的选择特征离子

激素种类Hormone kind 质荷比

m/z

质荷比

m/z

IAA 130 176

D3-IAA 134 181

ABA 215 263

D6-ABA 225 269 Table 3. IAA and ABA content in different processing conditions of chestnut fruit

表3. 不同处理条件板栗果实中IAA、ABA含量

处理Treatment

IAA含量(ng/g)

IAA of content (ng/g)

ABA含量(ng/g)

ABA of content (ng/g)

1 11.8

2 ± 1.18bB 348.80 ± 27.73cC

2 3.95 ± 0.77dD 137.84 ± 23.10eE

3 — 47.52 ± 1.65fF

4 7.06 ± 1.02cC 157.67 ± 11.5eE

5 — 254.67 ± 5.30dD

6 8.76 ± 0.86cC 135.04 ± 19.63eE

7 — 234.16 ± 27.81dD

8 20.34 ± 0.38aA 789.93 ± 17.88aA

9 8.58 ± 0.30cC 542.60 ± 17.27bB

注:表中数值为3次重复测定的平均数±标准误。大写字母表示在0.01水平下差异显著,小写字母表示在0.05水平下差异显著。“—”为未检出。

(a) (b)

注:(a)为IAA和ABA标样及内标的色谱图;(b)为IAA和ABA内标及样品的色谱图

Figure 2. HPLC chromatogram of chestnut seeds samples and hormone standards

图2. 板栗果实样品及激素标准样的色谱图

杨柳等

ABA最适的提取纯化条件相同,即表3、表4中处理8,取样量为0.50 g、甲醇浓度为80%、固相萃取柱为C18、浓缩温度为35℃。

3.4. 精密度与回收率

采用同位素内标法定量计算回收率,用样品中内标的峰面积与标样的峰面积之比(百分比)为回收率,重复3次,其结果如表4所示,处理8的提取纯化方法有较高的回收率,IAA和ABA的回收率分别为70.43%和80.17%;同时处理8的变异系数较低。此测定方法回收率、符合微量分析要求,说明本方法稳定性较好。

3.5. 方法的应用

3.5.1. 检出限

在处理8的基础上,逐渐降低样品量,分别取0.10 g、0.20 g、0.30 g、0.40 g、0.50 g板栗果实进行IAA和ABA含量的测定。经计算IAA和ABA的最低检出限分别是2.36 ng/g和31.95 ng/g。结果如表5所示,测定结果表明如果单独检测IAA,样品量不低于0.30 g;单独检测ABA,样品量可用0.10 g;两种激素同时测定,最适样品量是0.50 g。

3.5.2. 其它植物器官验证

采用已建立的前处理方法和测定方法,对不同植物器官进行研究。叶选取草莓叶片、花选取板栗雄花序、果实选取聚复果的草莓和仁果的海棠,以优化出的方法(处理8),分别对其进行IAA和ABA含量的测定(表6),从表6可见,可以从这些植物材料中检测出IAA和ABA的含量。

Table 4. Several parameters of endogenous hormone in plant tissue analysis

表4. 植物组织中内源激素分析的若干参数

处理Treatment

回收率(%)

Average recovery (%)

变异系数(%)

Coefficient of variation (%) (n = 3) IAA ABA IAA ABA

1 8.29 35.75 9.98 7.95

2 12.2

3 3.12

4 19.49 16.76

3 — 18.08 — 2.08

4 25.23 4.47 14.4

5 7.29

5 — 2.85 — 3.47

6 10.62 56.13 9.82 14.54

7 — 30.78 — 11.88

8 70.43 80.17 1.87 2.26

9 39.44 2.13 3.50 3.18 注:“—”为未检出。

Table 5. Different sample weight chestnut fruit of IAA and ABA content

表5. 不同样品量板栗果实的IAA和ABA含量

实验编号The serial number

取样量g

Amount of sampling (g)

IAA含量

IAA of content (ng/g)

ABA含量

ABA of content (ng/g)

1 0.10 — 517.08 ± 22.13

2 0.20 — 578.22 ± 21.79

3 0.30 12.9 ± 1.09 540.78 ± 14.13

4 0.40 13.34 ± 0.0

5 627.85 ± 26.59

5 0.50 20.34 ± 0.38 789.93 ± 17.88 注:表中数值为3次重复测定的平均数± 标准误。“—”为未检出。

杨柳等

Table 6. Different plant tissues of IAA and ABA content

表6. 不同植物组织的IAA和ABA的含量

植物Plant tissue

IAA含量(ng/g)

IAA of content (ng/g)

ABA含量(ng/g)

ABA of content (ng/g)

草莓叶片114.44 ± 14.49 319.18 ± 4.92

板栗雄花序102.84 ± 3.99 284.96 ± 12.83

草莓果实45.78 ± 5.10 428.95 ± 18.17

海棠果实16.45 ± 1.53 102.25 ± 15.27

注:表中数值为3次重复测定的平均数± 标准误。

4. 结论

本试验利用GPC系统的固相萃取(SPE)和定量浓缩(EVA)功能,自动完成SPE净化过程,且EVA由真空、加热、氮吹三位一体构成,三道红外传感器可精确定容,具有多种溶剂转换、蒸发至干、自动稀释、定量转移等功能。采用GPC代替传统旋转蒸发的方式,仪器自动进样、自动浓缩,减少人工换样的过程。采用红外定量浓缩,修正旋蒸中目测液面高度的误差,增加准确性。GPC代替传统的固相萃取过程,浓缩后的样品即可在线进行固相萃取。减少操作过程中的误差,实现了实验的自动化。每24小时可完成36个样品的浓缩,每24小时可以完成24个样品的固相萃取过程。加快了实验进程,实现前处理的批量化。

试验的最低检出限低,测定IAA含量需要0.3 g样品,0.1 g样品即可以完成ABA含量的测定,本方法可以满足少量样品的测定。

基金项目

北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20140509);农业应用新技术北京市重点实验室2013年度开放课题项目(KF2013002)。

参考文献(References)

[1]Barkawi, L.S.,Tam, Y.Y., Tillman, J.A.,et al. (2008) A High-Throughput Method for the Quantitative Analysis of

Indole-3-Acetic Acid and Other Auxins from Plant Tissue. Analytical Biochemistry, 372, 177-188.

[2]王耀, 张汉霞, 邹潍力, 等. ASE萃取/GPC-SPE净化/GC-MS法测定茶叶中的有机磷残留[J]. 食品研究与开发,

2011, 31(3): 128-131.

[3]魏冬旭, 江连洲, 郭伟, 等. ASE-GPC-GC法测定大豆及豆制品中六六六、滴滴涕农药残留[J]. 食品科学, 2009,

30(24): 351-354.

[4]Ross, A.R.S., Ambrose, S.J., Cutler, A.J., et al. (2004) Determination of Endogenous and Supplied Deuterated Abscis-

ic Acid in Plant Tissues by High-Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spec-trometry with Multiple Reaction Monitoring. Analytical Biochemistry, 329, 324-333.

[5]Vilaró, F., Canela-Xandri, A. and Canela, R. (2006) Quantification of Abscisic Acid in Grapevine Leaf (Vitis Vinifera)

by Isotope-Dilution Liquid Chromatography-Mass Spectrometry. Analytical and Bioanalytical Chemistry, 386, 306- 312.https://https://www.wendangku.net/doc/6715207149.html,/10.1007/s00216-006-0664-2

[6]Zhang, F.J., Jin, Y.J., Xu, X.Y., et al. (2008) Study on the Extraction, Purification and Quantification of Jasmonic Acid,

Abscisic Acid and Indole-3-Acetic Acid in Plants. Phytochemical Analysis, 19, 560-567.

https://https://www.wendangku.net/doc/6715207149.html,/10.1002/pca.1085

[7]Cao, J., Murch, S.J., O’Brien, R., et al. (2006) Rapid Method for Accurate Analysis of Melatonin, Serotonin and Auxin

in Plant Samples Using Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A, 1134, 333-337.

[8]Vine, J.H., Noiton, D., Plummer, J.A., et al. (1987) Simultaneous Quantitation of Indole 3-Acetic Acid and Abscisic

Acid in Small Samples of Plant Tissue by Gas Chromatography-Mass Spectrometry/Selected Ion Monitoring.Plant Physiology, 85, 419-422.https://https://www.wendangku.net/doc/6715207149.html,/10.1104/pp.85.2.419

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.wendangku.net/doc/6715207149.html,/Submission.aspx 期刊邮箱:aac@https://www.wendangku.net/doc/6715207149.html,

植物激素免疫测定指南

植物激素的酶联免疫吸附测定法(ELISA) 免疫测定是利用抗原、抗体特异性反应而建立的,根据可视化方法的不同可分为:酶联免疫、放射免疫、荧光免疫、化学发光免疫测定、生物发光免疫测定、浊度免疫测定法等。由于酶联免疫吸附分析法(Enzyme-linked Immunosorbent Assays, 简称ELISA)具有灵敏性、特异性高,且方便、快速、安全、成本低廉的特点,而日益被广泛应用于植物激素测定。目前,几大类植物激素IAA,ABA, GA3、GA4、iPA、ZR、DHZR等都建立了相应的ELISA方法并有试剂盒出售。 植物激素的酶联免疫检测方法有两种形式(见下图),一种是在固相载体上直接包被抗体(直接法,先包被二抗,再加一抗),另一种是包被抗原(间接法)。 直接法利用游离抗原和酶标抗原与吸附的抗体进行竞争。间接法利用游离抗原和吸附抗原与游离抗体进行竞争。间接法的原理可用下式表示: Ab+H+HP=AbH+AbHP 其中Ab表示抗体,H表示游离激素,HP表示吸附在板上的激素-蛋白质复合物。根据质量作用定律,当该反应体系中Ab及HP的量确定时,游离H越多,结合物AbH形成的就越多,而AbHP形成的就越少,即结合在板上的抗体就越少,通过酶标二抗检测结合物AbHP的多少,就可以确定游离H 量的多少。 材料、试剂及设备 1 材料 各种新鲜植物材料 2 仪器设备 研钵,冷冻离心机,台式快速离心浓缩干燥器或氮气吹干装置,酶联免疫分光光度计,吸水纸,恒温箱,冰箱,酶标板(40孔或96孔),可调微量液体加样器(10μl,40μl,200μl,1000μl),带盖瓷盘(内铺湿纱布)。 3 试剂 (1) 包被缓冲液:称取1.5g Na2CO3, 2.93g NaHCO3, 0.2g NaN3(可不加), 用量筒加1 000 ml蒸馏水,pH为9.6. (2) 磷酸盐缓冲液(PBS):称取8.0g NaCl, 0.2g KH2PO4 , 2.96g Na2HPO4 ·12H2O,用量筒加1 000 ml蒸馏水,pH为7.5。 (3) 样品稀释液:100 ml PBS中加0.1 ml Tween-20,0.1g明胶(稍加热溶解)。 (4) 底物缓冲液:称取5.10g C6H8O7·H2O(柠檬酸), 18.43g Na2HPO4·12H2O,溶解定容至1 000ml,再加1 ml Tween-20,pH为5.0。 (5) 洗涤液:1000ml PBS加1mlTween-20。 (6) 终止液:2mol/L H2SO4。 (7)提取液:80%甲醇,内含1 mmol/L BHT(二叔丁基对甲苯酚,为抗氧化剂,先用甲醇溶解BHT,在配成80%的浓度))。 (8)激素包被抗原、各激素抗体和标准物。 (9)酶标二抗:辣根过氧化物酶(HRP)标记的羊抗兔抗体。

最新植物生理指标测定方法

实验一植物叶绿素含量的测定(分光光度法) (张宪政,1992) 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。高等植物中叶绿素有两种:叶绿素a 和b,两者均易溶于乙醇、乙醚、丙酮和氯仿。叶绿素a和叶绿素b的比值反映植物对光能利用效率的大小,比值高则大,则反之。 二、材料、仪器设备及试剂 试剂:1)95%乙醇(或80%丙酮) 三、实验步骤 称取剪碎的新鲜样品0.2~0.3g,加乙醇10ml,提取直至无绿色为止。把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm和645nm下测定吸光度。四、实验结果按计算 丙酮法(Arnon法)【可以用于丙酮乙醇混合法和80%丙酮提取法的计算】 叶绿素a的含量(mg/g)=(12.71?OD663 – 2.59?OD645)V/1000*W 叶绿素b的含量(mg/g)=(22.88OD645 – 4.67OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(8.04?OD663 +20.29?OD645) V/1000*W 按Inskeep公式 叶绿素a的含量(mg/g)=(12.63?OD663 – 2.52?OD645)V/1000*W 叶绿素b的含量(mg/g)=(20.47OD645 – 4.73OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(7.90?OD663 + 17.95?OD645) V/1000*W

植物叶绿素测定方法

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 二、材料、仪器设备及试剂 (一)材料:新鲜(或烘干)的植物叶片。 (二)仪器设备:1)分光光度计;2)电子顶载天平(感量0.01g);3)研钵;4)棕色容量瓶; 5)小漏斗;6)定量滤纸;7)吸水纸; 8)擦境纸;9)滴管。 (三)试剂:1)95%乙醇(或80%丙酮)(v丙酮:v乙醇=2:1的95%水溶液);2)石英砂;3)碳酸钙粉。暗中2h,0.5g,25ml 三、实验步骤 1)取新鲜植物叶片(或其它绿色组织)或干材料,擦净组织表面污物,剪碎(去掉中脉),混匀。 2)称取剪碎的新鲜样品 0.2g ,共3份,分别放入研钵中,加少量石英砂和碳酸钙粉及2~3ml 95%乙醇,研成均浆,再加乙醇10ml,继续研磨至组织变白。静置3~5m 3)取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到25ml棕色容量瓶中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 4)用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入容量瓶中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至25ml,摇匀。 5)把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm 和645nm下测定吸光度。在波长663nm、645nm下或652nm测定吸光度。 四、实验结果计算 叶绿素a的含量 = 12.7 ? OD 663 – 2.69 ? OD 645 叶绿素a的含量 = 22.9 ? OD 645 – 4.86 ? OD 663 叶绿素a、b的总含量 = 8.02 ? OD 663 + 20.20 ? OD 645

实验植物组织渗透势的测定质壁分离法

实验1 植物组织渗透势的测定(质壁分离法) 一、实验目的 观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。 二、实验原理 当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。该溶液的浓度称为等渗浓度。 当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的溶液浓度。代入公式即可计算出渗透势。 三、实验仪器、试剂、材料等 显微镜;载玻片及盖玻片;镊子;刀片 配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。 称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。再配制成下列各种浓度: 0.50mol/L:吸母液25ml+水25ml 0.45mol/L:吸母液22.5ml+水27.5ml 0.40mol/L:吸母液20.0ml+水30.0ml 0.35mol/L:吸母液17.5ml+水32.5ml 0.30mol/L:吸母液15.0ml+水35.0ml 0.25mol/L:吸母液12.5ml+水37.5ml 0.20mol/L:吸母液10.0ml+水40.0ml 0.15mol/L:吸母液7.5ml+水42.5ml 0.10mol/L:吸母液5.0ml+水45.0ml 四、实验方法 将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。实验中必须

植物生理生化测定

2.1.8转基因植株在盐胁迫下的超氧化物歧化酶(SOD)活性测定 将转基因植株与非转基因对照植株继代于含有0.5% NaCl的MS固体培养上进行胁迫培养,培养条件为27±1℃,每天13 h、3000 lux光照。胁迫培养4 w后,取其叶片测定其SOD 活性,每个样品设3次重复,求其平均数,并进行多重比较。 2.1.8.1主要试剂及配方 (1)0.1 mol/l pH 7.8磷酸钠(Na2HPO4-NaH2PO4)缓冲液 A液(0.1 mol/l Na2HPO4溶液):称取Na2HPO4·12H2O 7.163 g,用少量蒸馏水溶解后定容至200 ml,4℃冰箱中保存备用; B液(0.1 mol/l NaH2PO4溶液):称取NaH2PO4·2H2O 0.780 g,用少量蒸馏水溶解后定容至50 ml,4℃冰箱中保存备用; 取上述A液183 ml与B液17ml充分混匀后即为0.1 mol/l pH 7.8的磷酸钠缓冲液,4℃冰箱中保存备用。 (2)0.026 mol/l甲硫氨酸(Met)磷酸钠缓冲液 称取甲硫氨酸(C5H11NO2S)0.388 g,用少量0.1 mol/l pH 7.8的磷酸钠缓冲液溶解后,再用相同磷酸钠缓冲液定容至100 ml,现用现配,4℃冰箱中保存可用1~2 d。 (3)7.5 × 10-4 mol/l NBT溶液 称取NBT(C40H30Cl2N10O6)0.153 g,用少量蒸馏水溶解后,定容至250 ml,现用现配,4℃冰箱中保存可用2~3 d。 (4)含1.0 μmol/l EDTA的20 μmol/l核黄素溶液 A液:称取EDTA 0.003 g,用少量蒸馏水溶解; B液:称取核黄素0.075 g,用少量蒸馏水溶解; C液:合并A液和B液,定容至100 ml,此溶液即为含0.1 mmol/l EDTA的2 mmol/l 核黄素溶液,避光保存(可用黑纸将装有该液的棕色瓶包好),4℃冰箱中可保存8~10 d,当测定SOD酶活时,将C液稀释100倍,即为含1.0 μmol/l EDTA的20 μmol/l核黄素溶液。 (5)含2% PVP的0.05 mol/l pH7.8磷酸钠缓冲液 取0.1 mol/l pH7.8的磷酸钠缓冲液50 ml,加入2 g PVP(聚乙烯吡咯烷酮),充分溶解后移入100 ml容量瓶中用蒸馏水定容至刻度,充分混匀,4℃冰箱中保存备用。 2.1.8.2提取及测定方法 (1)称取1.0 g样品叶片于预冷的研钵中,加入4 ml预冷的提取介质(含2% PVP的0.05 mol/l pH7.8磷酸钠缓冲液),冰浴研磨匀浆,转入10 ml离心管,并用提取介质定容至

叶绿体色素的提取分离理化性质和叶绿素含量的测定

实验报告 植物生理学及实验(甲)实验类型:课程 名称:实验名称:叶绿体色素的提取、分离、理化性质和叶 绿素含量的测定姓名:专业:学 号:指导老师:同组学生姓名: 实验日期:实验地点: 二、实验内容和原理一、实验目的和要求装 四、操作方法与实验步骤三、主要仪器设备订 六、实验结果与分析五、实验数据记录和处理 七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和 性质鉴定、定量分析的原理和方法。1 和b的方法及其计算。a2、熟悉在 未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为 材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。 原理如下:80%的乙醇或95%叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。、皂化反应。叶绿素是二羧酸酯,与强碱反应, 形成绿色的可溶性叶绿素2. 盐,就可与有机溶剂中的类胡萝卜素分开。- COOCHCOO3 Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH

HONC43230+C20H39OH 、3H+可依次被在酸性或加温条件下,叶-COOCOOCH39 20 绿素卟啉环中的Mg++取代反应。Mg2+, Cu2+ 取代Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。(H+和H+ ) 取代(Zn2+) 绿色褐色 、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。4645其中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。 652可直接用于总量分析。663用于定量叶绿素a,b及总量,而和C最大吸收光谱不同的两个组分的混合液,它们的浓度根据朗伯-比尔定律, *k+C*kOD=Ca*k与吸光值之间有如下的关系: OD=Ca*k+C b2 1g/L和b的80查阅文献得,2b1 b1a1a2b时,比吸收系%丙酮溶液,当浓度为 叶绿素a 值如下。数k k 比吸收系数波长/nm b 叶绿素a 叶绿素 9.27 82.04 663 45.60 645 16.75

植生实验 植物组织渗透势的测定

实验一、植物组织渗透势的测定 (质壁分离法) 一、实验原理: 将植物组织分别投入一系列浓度梯度的溶液中,使细胞将要产生初始质壁分离的浓度,就等于细胞液的浓度,根据浓度可计算出渗透势。 【注::典型植物细胞水势(Ψw)组成为:ψw=ψs+ψp+ψm (ψs 为渗透势,ψp为压力势,ψm为衬质势)。 渗透势(osmotic potential,ψs):由于溶质的存在而使水势降低的值称为渗透势或溶质势(solute potential,ψs),以负值表示。 渗透势值按公式ψs=-iCRT来计算(C为溶液的摩尔浓度;T为绝对温度,即实验温度+273;R为气体常数,R=0.0083;i为渗透系数,表示电解质溶液的渗透压非电解质溶液渗透压的倍数,如蔗糖i=1,NaCl i=1.8)。 压力势(pressure potential,ψp):由于细胞吸水膨胀时原生质向外对细胞壁产生膨压(turgor),而细胞壁向内产生的反作用力——壁压使细胞内的水分向外移动,即等于提高了细胞的水势。由于细胞壁压力的存在而引起的细胞水势增加的值叫压力势,一般为正值。当细胞失水时,细胞膨压降低,原生质体收缩,压力势则为负值。当刚发生质壁分离时压力势为零。 衬质势(matrix potential, ψm):衬质势是细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值,如处于分生区的细

胞、风干种子细胞中央液泡未形成。对已形成中心大液泡的细胞含水量很高,ψm只占整个水势的微小部分,通常一般忽略不计。因此一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成,即ψw=ψs+ψp 】。 将细胞置于纯水或稀溶液中,外液水势高于细胞水势,外侧水分向细胞内渗透,细胞吸水,体积变大;外液水势等于细胞水势,水分进出平衡,细胞体积不变;将植物置于浓溶液中,外液水势低于细胞水势,水从细胞内向外渗透,细胞失水,体积变小。 将植物材料(带色洋葱表皮组织)置于浓溶液中,由于细胞壁的伸缩性有限,而原生质层的伸缩性较大,当细胞继续失水时,原生质层便和细胞壁慢慢分离开来,这种现象被称为质壁分离。把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,原生质层很快会恢复原来的状态,重新与细胞壁相贴,这种现象称为质壁分离复原。 质壁分离质壁分离复原当外界溶液的渗透势略低于细胞液的渗透势时,原生质刚刚从细胞角隅上脱离细胞壁,即为初始质壁分离。刚发生质壁分离时,

植物生理生化指标测定

小黑豆相关生理指标测定 1.表型变化:鲜重、株高、主根长和叶面积 鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。 株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。每个测6个重复。 2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定 样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。 总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug)) 蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。 丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。采用双组分分光光度法,可计算出MDA含量。MDA的计算公式为:MDA(umol/L)=6.45OD532-0.56OD450. 反应体系为:400ul 0.6%TBA+350ul H2O+50ul样品,80℃水浴10min后,测OD532和OD450。对照用Tris-HCl. 0.6%TBA配方:称取硫代巴比妥0.6g,溶于少量1M NaOH中,待其完全溶解后用10%TCA(称取10gTCA三氯乙酸,溶于100ml蒸馏水中,待其溶解即可)定容至100ml。 H2O2测定(二甲酚橙法):样品反应体系(82ul溶液A+820ul溶液B (A:B=1:10)+150ul样品提取液),30℃水浴30min,测OD560。标准曲线为:Y=0.01734X-0.0555(Y代表OD560,X代表H2O2含量)

叶绿素含量的测定

叶绿素含量的测定 一.实验原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL.式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。就是吸光度的加和性。如欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 植物叶绿素含量测定----丙酮提取法 高等植物光合作用过程中利用的光能是通过叶绿体色素(光合色素)吸收的。叶绿体色素由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。叶绿体色素的提取、分离和测定是研究它们的特性以及在光合中作用的第一步。叶片叶绿素含量与光合作用密切相关,是反眏叶片生理状态的重要指标。在植物光合生理、发育生理和抗性生理研究中经常需要测定叶绿素含量。叶绿素含量也是指导作物栽培生产和选育作物品种的重要指标。 ● 叶绿素不溶于水,溶于有机溶剂,可用多种有机溶剂,如丙酮、乙醇或二甲基亚砜等研磨提取或浸泡提取。叶绿色素在特定提取溶液中对特定波长的光有最大吸收,用分光光度计测定在该波长下叶绿素溶液的吸光度(也称为光密度),再根据叶绿素在该波长下的吸收系数即可计算叶绿素含量。 ●利用分光光计测定叶绿素含量的依据是Lambert-Beer定律,即当一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。其数学表达式为: ●A=Kbc 式中:A为吸光度;K为吸光系数;b为溶液的厚度;c为溶液浓度。 ●叶绿素a、b的丙酮溶液在可见光范围内的最大吸收峰分别位于663、645nm处。叶绿素a 和b在663nm处的吸光系数(当溶液厚度为1cm,叶绿素浓度为g·L-1时的吸光度)分别为82.04和9.27;在645nm处的吸光系数分别为16.75和45.60。根据Lambert-Beer定律,叶绿素溶液在663nm和645nm处的吸光度(A663和A645)与溶液中叶绿素a、b和总浓度(a+b)(Ca、Cb 、Ca十b,单位为g·L-1),的关系可分别用下列方程式表示: ●A663=82.04C a+9.27C b (1) ●A645=16.76C a+45.60C b(2) ●C a=12.7 A663—2.59 A645(3) ●C b=22.9 A645—4.67 A663 (4) ●C a十b=20.3 A645—8.04 A663 (5) ●

植物激素检测方法

植物激素检测方法 一、什么是植物激素? 植物激素是植物体内合成的一系列痕量有机化合物,它在植物的某一部位产生,运输到另一个或一些部位,在极低的浓度下便可引发生理反应,几乎参与了调控植物从种子休眠、萌发、营养、生长和分化到生殖、成熟和衰老的每个生命过程,既可调控植物自身的生长发育,又通过与植物所生存的外部环境互相作用调节其对环境的适应。通过调控如细胞分裂素、油菜素内酯和生长素等植物激素的代谢可显著地改良作物的株型结构和产量构成,从而大幅度提高作物产量和品质。 植物激素主要包括生长素(auxin)、赤霉素(gibberellin,GA)、细胞分裂素(cytokinin,CTK)、脱落酸(abscisic acid,ABA)、油菜素甾醇类(brassinosteroids,BRs)、茉莉酸(jasmonic acid,JA)及其甲酯(MeJA)、水杨酸类(salicylic acids,SA)、乙烯(ethylene)和多肽激素(peptide hormones)等。 二、检测方法 科标生物检测中心可以提供各种植物样品检测服务,中心是通过权威认证的第三方机构,检测后出具权威检测报告。 三、主要分析技术 1、生物鉴定法是一类经典的植物激素检测方法,它利用激素作用于植物的组织或器官时产生的特异性反应对植物激素进行测定。 2、免疫检测技术是测定植物激素的常用方法。该方法是基于抗原和抗体的特异性结合,因此有较好的专一性。采用放射性元素标记的方法,即放射免疫分析(radioimmunoassay,RIA),其检测灵敏度高,重复性好,但对实验条件的要求较高。 3、气相色谱火焰离子化检测法(GC-FID)和气相色谱质谱法(GC-MS)能够对所分析样品进行准确、高灵敏度测量,但由于气相色谱对样品的特殊要求,使得待测组分需具有一定挥发性,因此在植物激素样品的前处理过程中需对样品进行衍生化。 4、高效液相色谱紫外检测法(HPLC-UV)、高效液相色谱荧光检测法(HPLC-FL)和高效

植物生理生化指标测定(精)

小黑豆相关生理指标测定 1. 表型变化:鲜重、株高、主根长和叶面积 鲜重 :取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测 6个重复。 株高 :取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长 :取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积 :取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长, 测叶片最窄处长度作为叶的宽, 叶片长和宽的乘积即为叶表面积。每个测 6个重复。 2. 总蛋白、可溶性糖、丙二醛(MDA 和 H2O2含量测定 样品处理:取 0.5g 样品(叶片要去除叶脉、根要先用清水清洗干净 ,速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入 1.5ml 的 Tris-HCl (pH7.4 抽提, 将抽提液转移到 2ml 的 EP 管中, 于 4℃, 12000rpm 离心 15min , 取上清, 保存在 -20℃下,上清液可用于总蛋白、丙二醛(MDA 、可溶性糖和 H2O2含量测定。 总蛋白测定(Bradford 法 :样品反应体系(800ul H2O+200ul Bradford+5ul样品 , 空白对照为(800ul H2O+200ul Bradford 。测定后带入标准曲线 Y=32.549X-0.224(Y代表蛋白含量, X 代表 OD595 ,计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml 蒽酮 +180ul ddH2O+20ul样品提取液 ; 空白对照 (1ml 蒽酮 +180ul ddH2O , 测定 OD625后带入标准曲线 : Y=0.0345X+0.0204(Y代表 OD625, X 代表可溶性糖含量(ug

植物组织中叶绿素含量测定

植物组织中叶绿素含量测定 (无机及分析化学实验II-设计性实验) 一、实验目的 1.设计用分光光度计测定植物组织中的叶绿素 2. 学习利用文献资料设计研究方案 3. 掌握分光光度计测定植物组织中的叶绿素的原理与方法 二、原理: 叶绿素广泛存在于果蔬等绿色植物组织中,并在植物细胞中与蛋白质结合 成叶绿体。当植物细胞死亡后,叶绿素即游离出来,游离叶绿素很不稳定,对 光、热较敏感;在酸性条件下,叶绿素生成绿褐色的脱镁叶绿素,在稀碱液中 可水解成鲜绿色的叶绿酸盐以及叶绿醇和甲醇。高等植物中叶绿素有两种,均 易溶于乙醇、乙醚、酒精和氯仿。 叶绿素a 叶绿素b 叶绿素a、b在长波方面最大吸收峰分别位于663nm和645nm,且两吸 收曲线相交于652nm处。叶绿素a、b的比吸收系数K为已知,可在663nm和 645nm测定试样吸光度(两组份混合试样测定,双波长法),根据Lambert-

Beer定律,列出浓度c与吸光度A之间的关系式: A 663 =82.04c a+9.27c b (1) A 645 =16.75c a+45.6c b (2) (1)、(2)式中的A 663、A 645 为叶绿素溶液在波长663nm和645nm时的吸光度 度。 c a 、c b为叶绿素a、b的浓度,单位为g/L。 82.04、9.27为叶绿素a、b在波长663nm时的比吸收系数16.75、45.6为叶绿素a、b在波长645nm时的比吸收系数。解方程式(1)(2),则得经验公式: c a =12.7 A 663 -2.69 A 645 (3) c b =22.9 A 645 -4.68 A 663 (4) c T =(c a + c b)=20.2 A645+8.02 A663...... (5) 此时,c T为总叶绿素浓度,c a、c b为叶绿素a、b的浓度,单位为mg/L ,利用上面(3)(4)(5)式,即可以计算a、b总叶绿素的浓度。 仪器:分光光度计、电子天平、棕色容量瓶(如使用白玻容量瓶,可用报纸遮光)、小漏斗、滤纸 试剂:95%乙醇 三、实验步骤 1、试材的采集 采集新鲜植株叶片(或含叶绿素的其他组织),夹于双层报纸中,风干(不能置于太阳光下晒)。将风干材料处理成细小颗粒,装入封口塑料袋,避光保存。 2、待测液的制备 (1)叶绿素的浸提 精密称定风干后的样品(约0.1g)于20mL 95%乙醇中,在室温浸提36-48h。 (2)叶绿素浸提液定容

实验二 植物组织水势和细胞渗透势的测定

实验二植物组织水势和细胞渗透势的测定 项目一植物组织水势的测定 一、原理 将植物组织分别放在一系列浓度递增的溶液中,当找到某一浓度的溶液与植物组织之间水分保持动态平衡时,则可认为此植物组织的水势等于该溶液的水势。因溶液的浓度是已知的,可以根据公式算出其渗透压,取其负值,为溶液的渗透势(ψπ),即代表植物的水势(ψw)(water potential)。 ψw=ψπ=-P=-CRT(大气压) 二、材料、仪器设备及试剂 (一)材料:小白菜、菠菜或其它作物叶片 (二)仪器设备:1.带塞青霉素小瓶12个;2.带有橡皮管的注射针头;3.镊子;4.打孔器5.培养皿。(三)试剂:1. 0.05、0.10、0.15、0.20、0.25、0.30 mol/L蔗糖溶液;2. 甲烯蓝粉末。 三、实验步骤 (一)取干燥洁净的青霉素瓶6个为甲组,各瓶中分别加入0.05~0.30mol/L蔗糖溶液约4 mL(约为青霉素瓶的2/3处),另取6个干燥洁净的青霉素瓶为乙组,各瓶中分别加入0.05~0.30 mol/L蔗糖溶液1mL 和微量甲烯蓝粉末着色,上述各瓶加标签注明浓度。 (二)取待测样品的功能叶数片,用打孔器打取小圆片约50片。用镊子分别夹入5~8个小圆片到盛有不同浓度的甲烯蓝蔗糖溶液的青霉素瓶中(乙组)。盖上瓶塞,并使叶圆片全部浸没于溶液中。放置约30~60min,为加速水分平衡,应经常摇动小瓶。 (三)经一定时间后,用注射针头吸取乙组各瓶蓝色糖液少许,将针头插入对应浓度甲组青霉素瓶溶液中部,小心地放出少量液流,观察蓝色液流的升降动向。(每次测定均要用待测浓度的甲烯蓝蔗糖溶液清洗几次注射针头)。如此方法检查各瓶中液流的升降动向。 若液流上升,说明浸过小圆片的蔗糖溶液浓度变小(即植物组织失水);表明叶片组织的水势高于该浓度糖溶液的渗透势;如果蓝色液流下降则说明叶片组织的水势低于该糖溶液的渗透势,若蓝色液流静止不动,则说明叶片组织的水势等于该糖溶液的渗透势,此糖溶液的浓度即为叶片组织的等渗浓度。 四、结果计算 将求得的等渗浓度值代入如下公式:ψw=ψπ=-CRTi×1.013×0.1。 式中:ψw=植物组织的水势(单位:Mpa),ψπ=溶液的渗透势,C=等渗浓度(mol/L),R=气体常数(0.008314MPa.mol/L-1.K-1),T=绝对温度,i=解离系数(蔗糖=1,CaCl2=2.60),1大气压=1.013 bar =0.1MPa。 五、思考题 小液流法测定植物组织水势的原理如何?

植物生理指标检测方法

植物组织中可溶性糖含量的测定 在作为营养物质主要是指可溶性糖和淀粉。它们在营养中的作用主要有:合成纤维素组成细胞壁;转化并组成其他有机物如核苷酸、核酸等;分解产物是其他许多有机物合成的原料,如糖在呼吸过程中形成的有机酸,可作为NH 3 的受体而转化为氨基酸;糖类作为呼吸基质,为作物的各种合成过程和各种生命活动提供了所需的能量。由于碳水化合物具有这些重要的作用,所以是营养中最基本的物质,也是需要量最多的一类。 Ⅰ蒽酮法测定可溶性糖 一、原理 糖在浓硫酸作用下,可经脱水反应生成糠醛或羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的定量测定。 该法的特点是几乎可以测定所有的碳水化合物,不但可以测定戊糖与己糖含量,而且可以测所有寡糖类和多糖类,其中包括淀粉、纤维素等(因为反应液中的浓硫酸可以把多糖水解成单糖而发生反应),所以用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。在没有必要细致划分各种碳水化合物的情况下,用蒽酮法可以一次测出总量,省去许多麻烦,因此,有特殊的应用价值。但在测定水溶性碳水化合物时,则应注意切勿将样品的未溶解残渣加入反应液中,不然会因为细胞壁中的纤维素、半纤维素等与蒽酮试剂发生反应而增加了测定误差。此外,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅,故测定糖的混合物时,常因不同糖类的比例不同造成误差,但测定单一糖类时,则可避免此种误差。 糖类与蒽酮反应生成的有色物质在可见光区的吸收峰为 620 nm ,故在此波长下进行比色。 二、实验材料、试剂与仪器设备 (一)实验材料 任何植物鲜样或干样。 (二)试剂 1. 80 %乙醇。 2. 葡萄糖标准溶液(100 μg/mL ):准确称取100 mg 分析纯无水葡萄糖,溶于蒸馏水并定容至100 mL ,使用时再稀释 10 倍( 100 μg/mL )。 3 .蒽酮试剂:称取 1.0 g 蒽酮,溶于 80% 浓硫酸(将 98% 浓硫酸稀释,把浓硫酸缓缓加入到蒸馏水中) 1000 mL 中,冷却至室温,贮于具塞棕色瓶内,冰箱保存,可使用 2 ~ 3 周。 (三)仪器设备 分光光度计,分析天平,离心管,离心机,恒温水浴,试管,三角瓶,移液管( 5 、 1 、0.5 mL ),剪刀,瓷盘,玻棒,水浴锅,电炉,漏斗,滤纸。 三、实验步骤 1. 样品中可溶性糖的提取称取剪碎混匀的新鲜样品0.5 ~ 1.0 g (或干样粉末 5 ~100 mg ),放入大试管中,加入15 mL 蒸馏水,在沸水浴中煮沸20 min ,取出冷却,过滤入100 mL 容量瓶中,用蒸馏水冲洗残渣数次,定容至刻度。 2. 标准曲线制作取 6 支大试管,从 0 ~ 5 分别编号,按表 24-1 加入各试剂。 表 24-1 蒽酮法测可溶性糖制作标准曲线的试剂量 将各管快速摇动混匀后,在沸水浴中煮10 min ,取出冷却,在620 nm 波长下,用空白调零测定光密度,以光密度为纵坐标,含葡萄糖量( μg )为横坐标绘制标准曲线。 3 .样品测定取待测样品提取液 1.0 mL 加蒽酮试剂 5 mL ,同以上操作显色测定光密度。重复 3 次。

叶片叶绿素含量的测定

植物叶片中叶绿素含量测定----丙酮提取法 1、原理 叶绿素a、b在长波的最大吸收峰分别在663nm、645nm,据Lamber-Beer 定律,可得浓度C与光密度D间的关系式: D663= + D645= + (浓度单位:g/mL) 叶绿素a的浓度:Ca= – 叶绿素b的浓度:Cb= –D663 总叶绿素的浓度:Ct = + (浓度单位:mg/L) 2、试剂与材料 试剂: 丙酮、石英砂、碳酸钙 材料: 新鲜叶片。 仪器与器皿: 分光光度计、天平、剪刀、研钵、移液管、漏斗、大试管 3、实验步骤 称叶用丙酮研磨 ↓ 匀浆过滤(用80%丙酮洗研钵及残渣,合并滤液) ↓ 滤液用80%丙酮定容至25mL ↓ 适当稀释后测A645、A663 取样:称取剪碎的叶片(提供的样品即为剪碎后冻于-80℃的叶片)放入研钵中。注意取样时要避开大的叶脉。 研磨提取:向研钵中加入80%丙酮,以及少许(约)CaCO3 (中和酸性,防止叶绿素酯酶分解叶绿素) 和石英砂,研磨成匀浆,再加入3ml 80%丙酮,继续研磨至组织变白,在暗处静止3~5min后,用一层干滤纸过滤到25ml容量瓶中,用滴管吸取80%丙酮将研钵洗净,清洗液也要过滤到容量瓶中,并用80%丙酮沿滤纸的周围洗脱色素,待滤纸和残渣全部变白后,用80%丙酮定容至刻度。 读取吸光度:取厚度为lcm的洁净比色皿,注意不要用手接触比色皿的光面,先用少量色素提取液清洗2~3次,注意清洗时要使清洗液接触比色皿内壁的所有部分,然后将色素提取液倒入比色皿中,液面高度约为比色皿高度的4/5,将撒在比色皿外面的溶液用滤纸吸掉(注意不能擦),再用擦镜纸擦干擦净。将比色

人教版必修3 第3章 植物的激素调节章节检测

必修三第3章植物的激素调节 一、单项选择题 1、向光性实验中在纸盒上打一个小孔的目的是 A.便于观察胚芽鞘生长 B.通风 C.形成单侧光 D.测量胚芽鞘的高度 2、植物产生向光性的原因是 A.茎的向光一侧生长素分布多,生长快 B.茎的背光一侧生长素分布多,生长快 C.茎的向光一侧温度高,生长快 D.茎的背光一侧温度高,生长快 3、正确反映一株白玉兰树上各部分生长素浓度大小的是 A.顶芽>侧芽老根>分生区B.顶芽<侧芽老根<分生区 C.顶芽<侧芽老根>分生区D.顶芽>侧芽老根<分生区 4、用燕麦胚芽鞘做向光性实验,发现植物生长素产生的部位、感光刺激的部位、向光弯 曲的部位分别是 A.胚芽鞘尖端;尖端下面一段;向光一面 B.胚芽鞘;胚芽鞘尖端;尖端下面一段C.胚芽鞘尖端;胚芽鞘尖端;尖端下面一段 D.胚芽鞘尖端;胚芽鞘;尖端下面一段5、飞行于太空中的宇宙飞船里,放置一株水平方向的幼苗,培养若干天后,根茎生长方 向是 A.根向下生长,茎向上生长 B.根向上生长,茎向下生长 C.根水平方向生长,茎向上生长 D.根和茎都向水平方向生长 6、关于植物激素的叙述,正确的是 A.植物激素是由植物体内的内分泌腺合成、分泌的微量有机物 B.植物的向光性可以说明生长素能促进植物的生长 C.乙烯能促进果实的成熟,所以在幼嫩的果实中含量较多 D.细胞分裂素能促进细胞的分裂和细胞的伸长,所以在茎尖、根尖含量较多 7、如右图所示,用燕麦胚芽鞘进行实验,一段 时间后,会引起弯曲现象的是 A.④⑤ B.①②③ C.①③④ D.①④ 8、将植物横放,测量根和茎生长素浓度与其生长状况的关系如甲图所示,则曲线上P点最可能对应于乙图中的位置是 A.a B.b C.c D.d

植物生理学实验指导

植物生理学实验指导主编胡君艳陈国娟张汝民 浙江农林大学植物学科 2013年8月

实验一植物组织水势的测定 水势与渗透势的测定方法可分为3大类:⑴液相平衡法,包括小液流法、重量法测水势,质壁分离法测渗透势;⑵压力平衡法(压力室法测水势);⑶气相平衡法,包括热电偶湿度计法、露点法等。 Ⅰ小液流法 【实验目的】 了解采用小液流法测定植物组织水势的方法。 【实验原理】 水势表示水分的化学势,像电流由高电位处流向低电位处一样,水从水势高处流向低处。植物体细胞之间,组织之间以及植物体和环境间的水分移动方向都由水势差决定。 当植物细胞或组织放在外界溶液中时,如果植物的水势小于溶液的渗透势(溶质势),则组织吸水而使溶液浓度变大;反之,则植物细胞内水分外流而使溶液浓度变小;若植物组织的水势与溶液的渗透势相等,则二者水分保持动态平衡,所以外部溶液浓度不变,而溶液的渗透势即等于所测植物的水势。可以利用溶液的浓度不同其比重也不同的原理来测定试验前后溶液的浓度变化,然后根据公式计算渗透势。 【实验器材与试剂】 1.实验材料:八角金盘、大叶黄杨等。 2.实验试剂:0.05、0.10、0.15、0.20、0.30mol·L-1蔗糖溶液、甲烯蓝溶液。 3.实验仪器:试管10支、微量注射器、镊子、打孔器、垫板。 【实验步骤】 1.取干燥洁净的试管5支为甲组,标记1~5,各支中分别加入0.05~0.30mol·L-1蔗糖溶液5mL。另取5支干燥洁净的试管为乙组,标记1'~5',各试管中分别加入0.05~0.30mol·L-1蔗糖溶液2ml。 2.取待测样品的功能叶数片,用打孔器打取小圆片约50片(避开叶脉),混合均匀。用镊子分别夹入10个小圆片到乙组试管中。并使叶圆片全部浸没于溶液中。放置约30~60min,为加速水分平衡,应经常摇动试管。 3.到时间后,在乙组试管中加入甲烯蓝溶液1~2滴,并用微量注射器取各试管糖液少许,将注射器插入对应浓度甲组试管溶液中部,小心地放出一滴蓝色溶液,并观察蓝色小液流的

植物激素测定方法述评_鲁哲

植物激素测定方法述评 鲁 哲,邹振华,路 婧,王若仲* (湖南农业大学植物激素与生长发育湖南省重点实验室,长沙410128) 摘 要:分析了传统植物激素测定的方法,提出了新的技术发展下,对植物激素快速、原位实时、高灵敏、高通量检测的必要性,对植物激素测定方法的前沿技术做出分析,并初步探讨了植物激素测定技术的未来趋势。 关键词:植物激素;测定方法;原位实时;生物传感器 中图分类号:Q94-331 文献标识码:A 文章编号:1001-5280(2011)05-0531-04 DOI:10.3969/j.issn.1001-5280.2011.05.28 Research Progress on Determination of Phytohormones LU Zhe,ZOU Zhen-hua,LU Jing,WAN G Ruo-zhong* (Hunan Pr ov incial Key L abo rat or y o f Phyt ohor mo nes and G r ow th Develo pment, Hunan A g ricultural U niv ersit y,Chang sha,Hunan410128,China) Abstract:In this ar ticle,the tr aditional methods for deter mination o f phy toho rmo nes w er e analy zed,and the necessity of rapid,in situ real-t ime,hig h sensitivit y and hig h thro ughput detectio n of phy to ho rmo nes w as put fo rw ar ded under co nditio n of the development of new techniques.A t the sam e time,the fr ontier techniques fo r det erminat ion of phy toho rmo nes w er e a nalyzed,and t he developmental trend of determinatio n techniques o f phyt ohor mo nes w as discussed. Key words:P hyto hor mones;Det erminat ion metho d;Situ and r eal-time;Biosensor 植物激素是植物体内合成的对植物生长发育有显著作用的微量物质。目前,植物激素有六大类,即生长素类(Auxins)、赤霉素类(GAs)、细胞分裂素类(CTKs)、脱落酸(abscisicacid,A BA)、乙烯(ethyne, ETH)和油菜素甾醇(Brassinosteroids,BR)[1]。植物激素作为植物体内的微量信号分子,调节植物几乎所有的生长发育过程。长期以来,植物激素与植物生长调节剂一直是生物学和农学领域的研究热点,其成果为农业科技进步做出了巨大的贡献。例如,各种植物生长调节剂的广泛使用,已成为实现农作物高产优质的重要措施之一,在推动“绿色革命”、大幅度提高作物产量和保证国家粮食安全方面发挥了不可替代的作用[2]。由于植物激素在植物体内含量极低(一般每克植物组织鲜样中的含量为1~100ng),易被光解、热解和氧化,因此,如何对微量植物激素进行简便、快速和准确的定量分析,一直是植物激素研究领域的难题之一。近年 收稿日期:2011-03-23 作者简介:鲁 哲(1984-),男,内蒙古赤峰人,硕士研究生。*通讯作者。 基金项目:湖南省科研条件创新专项重点项目(2010T Y1004);教育部新世纪优秀人才支持计划项目(NCET-10-0143)。来,随着功能基因组学、代谢组学(m etabolom ics)等整体性“组学”方法的提出以及生物学研究对活细胞单分子行为测定的日益关注,对植物激素等重要代谢调节物的测定技术提出了更高的要求。同时植物激素的生理功能具有时空特异性,植物激素作用机理和信号转导等前沿领域更是迫切需要对微量植物样品的超微量植物激素进行高灵敏、原位、实时测定。研究植物激素在植物组织或细胞中的分布特点及消长规律,目前常采用化学手段对内源激素水平进行检测,但测定结果的准确性较差[3],而且无法对激素进行定位研究,因为许多激素引起的很多生理反应常发生在激素受体分布的细胞器内[2],因此对植物激素的高灵敏、高通量、原位实时测定新技术提出了迫切要求。 传统植物激素和植物生长调节剂测定方法主要有以早期简单的小麦胚芽鞘切段伸长法为代表的生物测定法[4]、以气相色谱法[5](Gas Chro matography,GC)和高效液相色谱法[6](Hig h Performance Liquid Chr omatogr aphy,HPLC)为代表的理化测定法,及以酶联免疫吸附法[7](Enzy me Linked Immune sorbent Assays,ELISA)为代表的免疫测定法。传统植物激素和植物生长调节剂测定方法各有优缺点,下面分别进行评述。

相关文档
相关文档 最新文档