文档库 最新最全的文档下载
当前位置:文档库 › 高等数学_大一_上学期知识要点

高等数学_大一_上学期知识要点

高等数学_大一_上学期知识要点
高等数学_大一_上学期知识要点

高数总复习(上)

一、求极限的方法:

1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则

(加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB = (除法运算) ()0,lim

()f x A

B g x B

≠=若 推论1: lim (),lim[()][lim ()]n n n

f x A f x f x A === (n 为正整数)

推论2: lim ()[lim ()]cf x c f x =

②结论m n a x b x --+++++11结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则

0lim ()()x

x

f x f x →= 2、利用等价无穷小代换及无穷小的性质;

①定义1: 若0

lim ()0x x f x →=或(lim ()0x f x →∞

=) 则称()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小:

若lim 1β

α

=, 则称α与β是等价无穷小, 记为αβ.

②性质1:有限个无穷小的和也是无穷小.

性质2: 有界函数与无穷小的乘积是无穷小.

推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设~,~α

αββ'',

且lim βα''存在, 则

(因式替换原则)

常用等价无穷小:

sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x

()()2

12

1cos ~,1~,11~,ln 1~,x

x x e x x x x x μ

μ--+-+

1~ln ,x a x a -()0→x

3、利用夹逼准则和单调有界收敛准则;

①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123;

(2)lim lim n n

n n y z a →∞→∞

==,

则数列n x 的极限存在, 且lim n n x a →∞

=.

②准则II: 单调有界数列必有极限.

4、利用两个重要极限。

0sin lim 1x x x →= 10lim(1)x x x e →+= 1lim(1)x x e x

→∞+= 5、利用洛必达法则。

未定式为0,,,0,00∞

∞∞-∞?∞∞

类型.

①定理(x a →时的0

型): 设

(1)lim ()lim ()0x a

x a

f x F x →→==;

(2) 在某(,)U a δ内, ()f x 及()F x 都存在且()0F x ≠; ()(3)lim ()

x a

f x F x →''存在(或为无穷大)

二、求导数和微分 : 1.定义

①导数:函数()y f x =在0x x =处的导数:0000000()()()()

()lim lim .x x x f x f x f x x f x f x x x x

→?→-+?-'==-?

函数()y f x =在区间I 上的导函数:

0()()()lim .x f x x f x dy

f x x dx

?→+?-==?

②函数的微分:().dy f x dx '=

2.导数运算法则(须记住P140导数公式)

① 函数和差积商求导法则:函数()u x 、()v x 可导,则:

(()())()()u x v x u x v x αβαβ'''+=+

(()())()()()().u x v x u x v x u x v x '''=+

(

)2

(()0)u u v uv v x v v

''-''=≠

②反函数求导法则:若()x y ?=的导数存在且()0y ?'≠,

则反函数()y f x =的导数也存在且为

1().()

f x y ?'=

' ③复合函数求导法则(链式法则):()u x ?=可导,()y f u =可

导,

则(())y f x ?=可导,且

.dy dy du dx du dx

= ④隐函数求导法则:

⑤参数方程求导法则:

(),()x t y t ?ψ=??=?

若()0t ?'≠则()

()

dy t dx t ψ?'='.

2

2()()()1()t dy d d d y t dx dx dx dx dt

dt

ψ?''=

=? 3.微分运算法则

三、求积分:

1.概念:原函数、不定积分。定积分是一个数,是一个和的极限形式。

1

()lim ()n

b

i i a

i f x dx f x λξ→∞

==?∑?

性质1:

()0,()()a a b

a b

a

f x dx f x dx f x dx =-=???

性质2:[()()]()()b

b

b

a

a

a

f x

g x dx f x dx g x dx +=+??? 性质3:()(),().b b

a a

kf x dx k f x dx k =??是常数

性质4:

()()()c c

b

b

a

a

f x dx f x dx f x dx =+?

?? (去绝对值, 分

段函数积分)

性质5:

b

a

dx b a =-?

2.计算公式:P186基本积分表; P203常用积分公式;

①第一换元法(凑微分):

()

() (())()(())()()

u x

u x

f x x dx f x d x f u du

?

?????=

=

??

'==

?????

2

2

arcsin arccos,

1

11

(),2.

dx d x d x

x

dx d dx d x

x x x

==-

-

=-=

②第二换元法:

()

2.()(())()

x t

f x dx f t t dt

?

??

=

'

=

??

③分部积分法:

3.()()()()()()u x v x dx u x v x u x v x dx ''=-??

udv uv vdu

=-??)(反对幂指三”,前,后u v '

④有理函数积分:

循环解出; 递推公式

分部化简 ;

混合法 (赋值法+特殊值法)确定系数

⑤牛顿莱布尼茨公式:

4.()()()[()](()())b b a

a

f x dx F b F a F x F x f x '=-==?其中 ⑥定积分换元法:

5.()(())()(())b a

f x dx f t t dt

a b β

α

???α?β'=??=()=

(换元换限,配元(凑微)不换限) ⑦定积分分部积分法:

[]6.()()()()()()b

b

b

a a

a

u x v x dx u x v x u x v x dx ''=-??

⑧结论(偶倍奇零):

① 若函数()f x 为偶函数,则0

()2()a

a

a

f x dx f x dx -=?

?。

②若函数()f x 为奇函数,则

()0a

a

f x dx -=?

注意:

1. 利用“偶倍奇零”简化定积分的计算;

2. 定积分几何意义求一些特殊的积分(如2

04

a

a π=

?)

⑨ 变限积分求导

四、微分和积分的应用

1. 判断函数的单调性、凹凸性、求其极值、拐点、描绘函数图形

① 判断单调性:

第一步:找使 ()0f x '=的点和不可导点。

第二步:以驻点和不可导点划分单调区间,在每个区间上讨论

()f x '的正负,()0,f x '>函数递增,()0,f x '<

函数递减。

② 判断凹凸性:

第一步:找使()0f x ''=的点和不可导点。

第二步:以这些点划分定义区间,在每个区间上讨论()f x 的正

负, ()0f x ''>,是凹区间,()0f x ''<,是凸区间。(拐点:左右两边()f x ''的符号相反)

③ 判断函数极值:

第一步:找使 ()0f x '=的点和不可导点。

第二步:判断这些点两边()f x '的正负,若左正右负极大值点

左负右正极小值点。

2.1 定积分的几何应用---求面积,体积和弧长

所求图形的面积为:[()()]b

a

S f

x f

x dx =

-?下

所求图形的面积为:[()()]d c

S y y dy ??=

-?

右左

y + y +

-

旋转体:由连续曲线 y =f (x )、直线 x =a 、x =b 及 x 轴所围成的曲边梯 形绕 x 轴旋转一周而成的立体。

旋转体:由连续曲线 ()x y ?= 、 直线 y =c 、y =d 及 y 轴所围曲边梯 形绕 y 轴旋转一周而成的立体

2[()]d

c

V y dy π?=?

?b

a [f (x )]2

π dx =π?b

a [f (x )]2dx 。

2.3 定积分的物理应用

变力沿直线做功;水(侧)压力;引力

思路: 建立坐标系,选取积分变量(如x ),在[x, x+d x ]上给出微元

第六 空间解析几何

1. 向量x y z a a i a j a k =++在坐标轴上的投影分别为:

,,x y z a a a ;在坐标轴上的分量分别为:,,x y z a i a j a k 。

||a →

=,(cos ,cos ,cos )||a a

e a αβγ==

2. 利用坐标作向量的线性运算

(,,),x y z a a a a = (,,),x y z b b b b =

a b ±= (,,)x x y y z z a b a b a b ±±±,

a λ= (,,)x y z a a a λλλ,

数量积(数):

||||cos(,)x x y y z z a b a b a b a b a b a b ∧

?=++=

向量积(向量)

x y z x y z

i j k

a b a a a b b b ?=

a b a ?⊥,a b b ?⊥,且 a b ?,,a b 构成右手系,

||||||sin (,)a b a b a b ∧

?= (几何意义: 平行四边形的面积)

3.向量之间的关系

a b ⊥?0x x y y z z a b a b a b a b ??++=

//00y x z

x

y z x y z

x

y z

i

j k

a a a a

b a b a a a b b b b b b ?==??=?=()

4.平面图形及其方程

平面的法向量:和平面垂直的非零向量。

①点法式方程:

设平面过点0000(,,)M x y z 法向量(,,)n A B C =(其中,,A B C 不全为0), 则平面的方程为

000()()()0A x x B y y C z z -+-+-=

②一般方程:

0Ax By Cz D +++=

[ 当 D = 0 时, A x + B y + C z = 0 表示 通过原点的平面; 当 A = 0 时, B y + C z + D = 0表示平行于 x 轴的平面; Ax+Cz+D = 0 表示平行于 y 轴的平面; Ax+By+D = 0 表示平行于 z 轴的平面 Cz + D = 0 表示平行于 xoy 面 的平面; Ax + D =0 表示平行于 yoz 面 的平面; By + D =0 表示平行于 zox 面 的平面]

设平面∏1的法向量为1111(,,)n A B C =, 平面∏2的法向量为2222(,,)n A B C =,

则两平面夹角θ 的余弦为:

12

12cos n n n n θ?=

平面外一点()000,,P x y z 到平面0Ax By Cz D +++=的距离:

d =

5.空间直线及其方程

① 一般方程:直线可视为两平面交线,其一般式方程为:

1111222200A x B y C z D A x B y C z D +++=??+++=?

方向向量: 12s n n =?

②点向式方程

方向向量: (,,)s m n p =

③参数方程 (求交点)

p z z n y y m

x x 000-=

-=-?

??+=+=t n y y t

m x x 00

大一上学期高数期末考试题

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由 x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 121 1--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

(完整版)大一上学期(第一学期)高数期末考试题[1]

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的 无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大学高等数学重点绝密通用复习资料,绝对有用

高等数学(通用复习) 师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意 第一章 函数与极限 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δ δ=-< (U a 1.由n x ∴N 2.即对?∴x ∞ →lim ○x →1.由(f ∴δ=2.即对?∴x x →0 lim ○→x 1.由(f ∴X 2.即对?∴x ∞ →lim 第三节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1 f x -为无穷小;反之,若()x f 为无穷小,且 ()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →?????(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2. →x (→x 3(x →0lim x x → 3 9 x x →-【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()() 2 3 3 3 33 11lim lim lim 9 333 6 x x x x x x x x x →→→--==== -+-+ 其中3x =为函数()2 39 x f x x -= -的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

大学高等数学知识点

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =;*1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞;*lim ()x f x →∞ (含x →±∞);*0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学考试知识点

《高等数学》考试知识点 一、函数、极限、连续 考试内容: 1.函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数简单应用问题的函数关系的建立; 2.数列极限与函数极限的定义以及它们的性质;函数的左极限与右极限; 3.无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较; 4.极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限,; 5.函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理);考试要求: 1.理解函数的概念,掌握函数的表示方法; 2.了解函数的奇偶性、单调性、周期性和有界性; 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念; 4.掌握基本初等函数的性质及其图形; 5.会建立简单应用问题中的函数关系式; 6.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系; 7.掌握极限的性质及四则运算法则; 8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法; 9.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限;

10.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型; 11.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质; 二、一元函数微分学 考试内容: 1.导数和微分的概念;导数的几何意义和物理意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;基本初等函数的导数; 2.导数和微分的四则运算;复合函数、反函数、隐函数以及参数方程所确定的函数的微分法; 3.高阶导数的概念;某些简单函数的n阶导数; 4.一阶微分形式的不变性; 5.罗尔(Roll)定理;拉格朗日(Lagrange)中值定理;柯西(Cauchy)中值定理;泰勒(Taylor)定理; 6.洛必达(L’Hospital)法则; 7.函数的极值及其求法;函数单调性函数;图形的凹凸性、拐点及渐近线;函数最大值和最小值的求法及简单应用; 8.弧微分、曲率的概念;曲率半径; 考试要求: 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系; 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分; 3.了解高阶导数的概念,会求简单函数的n阶导数; 4.会求分段函数的一阶、二阶导数;

大一上学期(第一学期)高数期末考试题(有标准答案)详解

大一上学期高数期末考试 、单项选择题(本大题有4小题,每小题4分,共16分) 1 设 f ( X )cos x (x sin x ),则在 x 0 处有( (A) f (0) 2 (B) f (0)1 (C) f (0)° c 设(x) 1 x , (x) 3 33 x ? 则当 x 1 时( 2. 1 X (A) g 与 M 是同阶无穷小,但不是等价无穷小; 是等价无穷小; (C) (X )是比(x)高阶的无穷小; (D) 无穷小? (A) 函数F (x )必在X 0处取得极大值; (B) 函数F (x)必在x 0处取得极小值; (C) 函数F(x)在xo 处没有极值,但点(o,F (o ))为曲线yF(x)的拐点; (D) 函数F”)在xO 处没有极值,点(:F (o ))也干是曲 线YF(x)的拐点。4设f (x)是连续函数,且 "X ) 22 X X 、僅產题(本夫龊右4小题' 2 8. 斥曰 二 ' 解答题(本大题有 5小题,每小题8分,共40分)exy sin(xy)1 9. 设函数y y (x)由方程确定,求y (x)以及y (0). 求I X 10. x(心 3?若F f(x) (X) 0 (2t x)f(t )dt ,其中f (x)在区间上(")二阶可导且 )? (D) MX)不可导. ) (B) (X)与(X) (X )是比(x)高阶的 2of(t)dt,则 f(x)( (D)? 4分,共16分) 5. lim (1 3x)办 x0\ / 6. 已知沪空是f(X)的一个原函数 X I r COS X 则 7. lim n —(cos 2 — n n cos3 ) n 2 x arcsin x i dx x 2 1 V1 A 2

大一第一学期期末高等数学(上)试题及答案

1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) .d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求

(第七题删掉了) 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+3 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422 11、(本小题5分) . 求? π +20 2sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226

14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) . d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分) 1、(本小题7分) ,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿 2、(本小题7分) . 823 2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题 ( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

大一上学期(第一学期)高数期末考试题及答案

高等数学I (大一第一学期期末考试题及答案) 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B )e (C )a e cot (D )a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C )e (D )1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ))(3a f '(B ))(2a f ' (C) )(a f '(D )) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为(-∞,0)和(1,+∞). 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-. 解:1 1 ln(1)120 00(1)1 ln(1)lim lim lim 2x x x x x x x e e x x e e e x x x +-→→→+--+-===-

合肥工业大学大一上学期高数期末考试题

咼数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 2 .lim (1 + 3x)sin x = 1. x -0 _______________________________________ . 已知cosx 是f(x)的一个原函数, 则 2. x x 兀 2兀 2 2兀 2 n — 1 lim — (cos 2 — + cos 2 ——+||| + cos 2 兀)= 3. “世 n n n n ______________ . 1 2 2 x arcsin x 1 , dx 二 2 — 1 书1 一 X 4. _ 运 ______________________ . 二、单项选择题(本大题有4小题,每小题4分,共16分) 设口(x) = —x , P (x)=3-3%'x ,则当 X T 1 时( ) 5. 1 x . (A) 〉(x)与-(x) 是同阶无穷小,但不是等价无穷小; (B )〉(x)与](x) 是等价无穷小; (C (X)是比-(x)高阶的无穷小; (D ) -(x) 是比〉(X)高阶的 无穷小. 6 设 f (x) = cos x( x + sin x ),则在 x = 0处有 ( A C ) ■ (D ) f(x) 不可导. x 7.若 F (x ) 二0( 2 —x ) f ( t ) dt ,其中f (x)在区间上(-1,1)二阶可导且 f (x) ,则( ). (A) 函数F(x)必在x=0处取得极大值; (B) 函数F (x)必在x = 0处取得极小值; (C) 函数 F(x)在x=0处没有极值,但点(0, F(0))为曲线y = F(x)的拐点; (D) 函数F (x)在x=0处没有极值,点(0 ,F(0) )也不是曲线y 二F(x)的拐点。 1 设f (x)是连续函数,且 f (x) = x + 2 j° f (t)dt ,贝U f (x)=( (A ) 2 解答题(本大题有5小题,每小题8分,共40分) 10. 设函数厂y (x) 由方程e x y - sin(x y)二1 确定,求y (x) 以及y (°). 1 - x 7 8. 2 —+2 (B ) 2 (C ) x 1 (D ) x 2. 9. 三

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

大一第一学期期末高数试卷复习

广东技术师范学院期末考试试卷A 卷 参考答案及评分标准 高等数学(上) 一、填空题(每小题3分,共30分) 1. 如果函数)(x f y =的定义域为]1,0[,则)(ln x f 的定义域为],1[e .(3分) 2.已知2)0('=f ,而且0)0(=f ,则=→x x f x )2(lim 0 4 .(3分) 3.已知22lim e x x kx x =??? ??+∞→,则=k 1 .(3分) 4.曲线x x y ln =在点)0,1(处的切线方程是 1-=x y .(3分) 5.函数653 )(2+--=x x x x f 的间断点个数为 2 .(3分) 6.如果???????>+=<=0,)1ln(0 ,0, sin )(x x x x k x x x x f 在0=x 处连续,则=k 1 .(3分) 7.函数x e x f 2)(=的带有拉格朗日型余项的n 阶麦克劳林展式为:(3分) )10()!1(2!2221)(112 <<++++++=++θθn x n n n x n e x n x x x f . 8.函数)0,,()(2≠++=p r q p r qx px x f 是常数,且,则)(x f 在区间],[b a 上 满 足拉格朗日中值公式的ξ=2b a +.(3分) 9.定积分()dx x x x 1011 sin ?-+的值为61.(3分) 10.设? +=C x F dx x f )()(,则?--dx e f e x x )(=C e F x +--)(.(3分) 二.计算题(要求有计算过程,每小题5分,共40分) 11.求极限113lim 21-+--→x x x x .(5分) 解:)13)(1()13)(13(lim 113lim 2121++--++-+--=-+--→→x x x x x x x x x x x x ---------(3分) 42)13)(1(2lim 1-=++-+-=→x x x x ----------------------------------(5分)

大一上学期高数期末考试题

大一上学期高数期末考试卷 一、单项选择题 本大题有 小题 每小题 分 共 分 )(0),sin (cos )( 处有则在设=+=x x x x x f ( )(0)2f '= ( )(0)1f '=( )(0)0f '= ( )()f x 不可导  )时( ,则当,设133)(11)(3→-=+-=x x x x x x βα ( )()()x x αβ与是同阶无穷小,但不是等价无穷小; ( )()()x x αβ与是等价无穷小; ( )()x α是比()x β高阶的无穷小; ( )()x β是比()x α高阶的无穷小 若 ()()()02x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ) ( )函数()F x 必在0x =处取得极大值; ( )函数()F x 必在0x =处取得极小值; ( )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; ( )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 ) ()( , )(2)( )(10=+=?x f dt t f x x f x f 则是连续函数,且设 ( )22x ( )222x +( )1x - ( )2x + 二、填空题(本大题有 小题,每小题 分,共 分) =+→x x x sin 20)31(lim

,)(cos 的一个原函数是已知x f x x =??x x x x f d cos )(则 lim (cos cos cos )→∞-+++=22221n n n n n n ππππ =-+? 21 21 2211arcsin -dx x x x 三、解答题(本大题有 小题,每小题 分,共 分) 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .d )1(177x x x x ?+-求 . 求,, 设?--?????≤<-≤=1 32)(1020)(dx x f x x x x xe x f x 设函数)(x f 连续, =?1 0()()g x f xt dt ,且→=0()lim x f x A x ,A 为常数 求'()g x 并讨论 '()g x 在=0x 处的连续性 求微分方程2ln xy y x x '+=满足=-1 (1)9y 的解 四、 解答题(本大题 分) 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点 M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的 倍与该点纵坐标之和,求此曲线方程 五、解答题(本大题 分) 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及 轴围成 平面图形

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

高数部分知识点总结

1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 则,对于00型和∞ ∞型的题目直接用洛必达法则,对于∞0、0∞、∞ 1型 的题目则是先转化为00 型或∞ ∞ 型,再使用洛比达法则;3.利用重要极限,包括1sin lim =→x x x 、e x x x =+→1 )1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分 ?+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答 案中少写这个C 会失一分。所以可以这样建立起二者之间的联系以加深印象:定积分?dx x f )(的结果可以写为F(x)+1,1指的就是那一分,

把它折弯后就是?+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。 第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于?-a a dx x f )(型定积分,若f(x)是奇函数则有 ?-a a dx x f )(=0;若f(x)为偶函数则有?-a a dx x f )(=2?a dx x f 0)(;对于 ? 2 )(π dx x f 型积分,f(x)一般含三角函数,此时用x t -= 2 π 的代换是常 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=?-a a 奇函数 、??=-a a a 02偶函数偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。

相关文档
相关文档 最新文档