文档库 最新最全的文档下载
当前位置:文档库 › 不同铵态氮与硝态氮配比在烤烟上的应用效果研究

不同铵态氮与硝态氮配比在烤烟上的应用效果研究

不同铵态氮与硝态氮配比在烤烟上的应用效果研究
不同铵态氮与硝态氮配比在烤烟上的应用效果研究

龙源期刊网 https://www.wendangku.net/doc/6816182903.html,

不同铵态氮与硝态氮配比在烤烟上的应用效果研究

作者:陈松詹刚娄方能

来源:《现代农业科技》2018年第04期

摘要以烤烟品种云烟87为研究材料,在水城县野钟乡响石村大寨组开展不同铵态氮与硝态氮配比试验。结果表明,3个氮素形态配比中,在一定范围内随着硝态氮比列的提高,烟株的生育期、农艺性状、经济性状均有不同程度提升。其中以50%硝态氮+50%铵态氮处理综合表现最优。

关键词烤烟;铵态氮;硝态氮;配比;性状;产量

中图分类号 S572 文献标识码 A 文章编号 1007-5739(2018)04-0012-02

一直以来,在氮肥品种的选择上,要重点考虑施用不同形态氮肥对烟株生长发育的影响[1]。由于铵离子抑制烟草对其他养分离子如钙、镁、钾等离子的吸收,再加上铵态氮影响土

壤pH值,如果将铵态氮替代硝态氮,则会使土壤pH值下降,从而损伤烟草的根[2]。一般认为,与铵态氮相比,硝态氮更有利于烤烟生长。硝酸根离子有易移动、易吸收、协调营养成分等优点,且能促进植株对钾的吸收[3]。Carl等[4]研究发现,当硝态氮与铵态氮分别占氮肥用

量的70%和30%配合施用时,最有利于烟草根系的生长。还有研究表明,硝态氮有利于烟草

生长,促进烟株对钾的吸收,而铵态氮则抑制烟草生长。罗国安等[5]在试验中将烟株氮素吸

收量用分段函数拟合,结果表明,氮素吸收曲线在旺长前期为指数函数,在旺长后期为对数函数。本文研究4种不同铵态氮与硝态氮配比下烤烟农艺性状、产质量、主要化学成分的表现[6]。

1 材料与方法

1.1 试验地概况

选择地势相对平坦、肥力中等、前茬为玉米的地块。起垄前每个试点采用五点取样法取3个土样用于化验检测。

1.2 试验设计

以烤烟品种云烟87为研究材料,采用大田对比试验研究不同硝态氮和铵态氮配比,2个

形态氮肥的配比设4个处理,分别为CK:35%硝态氮+65%铵态氮,常规施肥,现有肥料;处理A:40%硝态氮+60%铵态氮,需要厂家提供肥料;处理B:45%硝态氮+55%铵态氮,需要

土壤硝态氮及铵态氮的取样测定

土壤硝态氮和铵态氮的取样测定 1.田间取样与保存 根据小区面积,随机选2~3个样点,采样地点应避开边行以及头尾。在行间取样,以30cm为一层,取样深度可以是0-90cm或0-210cm或更深,分层取样,等层混合。新鲜土样须田间将土壤样品立即放入冰盒,没有冰盒者应将土样放置阴凉处,避免阳光直接照射,并尽快带回室内处理。 2.土样的处理 在田间采样后,立即将土样放置在冰盒中,低温保存。返回实验室后,如果样品数量较多,则放置于冰箱中4℃保存。也可以直接进行土样处理:土壤过3-5cm筛,测定土壤的水分含量,同时作浸提。 3.土样的浸提 称取混匀好的新鲜土壤样品24.00g,放入振荡瓶,加100 ml 1mol/L 优级纯KCl浸提液,充分混匀后放入振荡机振荡1个小时,用定性滤纸过滤(注意:国内好多滤纸含有铵态氮,需选择那些无铵滤纸)到小烧杯或胶卷盒中,留滤液约20ml备用,每批样做3个空白。若样品不能及时测定,应放入贮藏瓶中冷冻保存。 同时称取20-30 g鲜土放入铝盒中105℃下烘干测定土壤水分。剩余土样自然风干后保存。 4.土壤硝态氮、铵态氮测定 测定前先解冻贮藏瓶盒中的滤液,并保持滤液均匀(注意:解冻后的样品有时有KCl 析出,必须等KCl溶解后,液体完全均匀后再测定),上流动分析测定溶液中的铵态氮和硝态氮含量(专门的试验人员负责)。所用标准溶液必须是用1mol/L KCl浸提液配制。 有时样品浓度超出了机器的测定范围,需对样品进行稀释(注意:应以最低稀释倍数把样品测定出来,且不可放大稀释倍数,这样会引起很大误差)。 流动分析测定的是溶液中的铵态氮和硝态氮浓度,单位是mg/L,必须根据土壤样品含水量和土壤干重换算成mg N/kg。如果要换算成kg N/ha,可以通过下列公式:土壤硝态氮或铵态氮(kg N/ha)=土壤硝态氮或铵态氮(mg N/kg)* 采样层次(30cm 或20cm)* 土壤容重/ 10

硝态氮与铵态氮的一些区别

硝态氮与铵态氮的一些区别 复合肥 硝态氮肥:氮肥中氮素的形态是硝酸根(NO3-)。如硝酸钠、硝酸钾、硝酸钙。特点:1、易溶于水,溶解度大,为速效氮肥。2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。3、受热易分解放出氧气,是体积聚增,易燃易爆,运中不安全的。4、不易被土壤胶体吸附水田不易用的。 铵态氮肥:氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。特点:1、易溶于水,肥效快,作物直接吸收。2、容易吸收不易在土壤中流失。3、在碱性土壤中容易挥发。4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。 硝、铵态氮肥:氮肥中含有铵离子和硝酸离子两种形态的氮。如硝酸铵、硝酸铵钙、硫硝酸铵。 尿素:施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。然后NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。另外尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快;当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。 硝态氮不宜用于水田是因为硝态氮极易溶于水,造成流失很大(特别是放水后)。特别是湖塘改田,流失很严重。所以硝态氮更适用于干旱地。而且冬天温度低时硝态氮也能发挥作用。 铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮责不会。 铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。水稻施用铵态氮的效果比硝态氮好。因为水稻幼苗根中缺少硝酸还原酶,对硝态氮不能很好利用。除水稻本身原因外,水田中施用硝态氮易于流失,而且在淹水条件下的反硝化作用也是氮素损失的原因。烟草和蔬菜是喜硝态氮的作物。硝态氮肥极易溶解,在土壤中活动性大,能迅速提供作物氮素营养,同时,又易于流失,肥效较短。这种特性符合烟草的要求,叶片要生长快,在适当时候又能落黄“成熟”。而且硝态氮有利于烟草体内形成柠檬酸、苹果酸等有机酸,烤出的烟叶品质好,燃烧性好。蔬菜施用硝态氮产量高,如硝态氮低于肥料全氮的50%,产量明显下降。

铵态氮和硝态氮测定方法!!! - 副本

铵态氮测量方法(2mol?L-1KCl浸提—靛酚蓝比色法) 1)方法原理 2mol?L-1KCl溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。在含氮0.05~0.5mol?L-1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。 2)试剂 (1)2mol?L-1KCl溶液称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1L。 (2)苯酚溶液称取苯酚(C6H5OH,化学纯)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。 (3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4?7H2O,化学纯)7.06g、磷酸钠(Na3PO4?12H2O,化学纯)31.8g和52.5g?L-1次氯酸钠(NaOCl,化学纯,即含10%有效氯的漂白粉溶液)5mL溶于水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。 (4)掩蔽剂将400g?L-1的酒石酸钾钠(KNaC4H4O6?4H2O,化学纯)与100g?L-1的EDTA二钠盐溶液等体积混合。每100mL 混合液中加入10 mol?L-1氢氧化钠0.5mL。

(5)2.5μg?mL –1铵态氮(NH4+—N)标准溶液称取干燥的硫酸铵[(NH4)2SO4,分析纯0.4717g溶于水中,洗入容量瓶后定容至1L,制备成含铵态氮(N)100μg?mL –1的贮存溶液;使用前将其加水稀释40倍,即配制成含铵态氮(N)2.5μg?mL –1的标准溶液备用。 3)仪器与设备:往复式振荡机、分光光度计。 4)分析步骤 (1)浸提称取相当于10.00g干土的新鲜土样(若是风干土,过10号筛)准确到0.01g,置于150mL三角瓶中,加入氯化钾溶液100mL,塞紧塞子,在振荡机上振荡1h。取出静置,待土壤—氯化钾悬浊液澄清后,吸取一定量上层清液进行分析。如果不能在24h内进行,用滤纸过滤悬浊液,将滤液储存在冰箱中备用。 (2)比色吸取土壤浸出液5mL(含NH4+—N2μg~25μg)放入50mL容量瓶中,用氯化钾溶液补充至10mL,然后加入苯酚溶液5mL和次氯酸钠碱性溶液5mL,摇匀。在20℃左右的室温下放置1h后(注1),加掩蔽剂1mL以溶解可能产生的沉淀物,然后用水定容至刻度。用1cm比色槽在625nm波长处(或红色滤光片)进行比色,读取吸光度。 (3)工作曲线分别吸取0.00、2.00、4.00、6.00、8.00、10.00mL NH4+—N标准液于50mL容量瓶中,各加10mL氯化钠溶液,

植物对铵态氮和硝态氮的吸收能力

植物对铵、硝态氮的相对吸收能力 氮素对植物生长发育、产量形成与品质好坏有极为重要的作用。从营养意义来讲,作物在生长发育过程中主要吸收两种矿质氮源,即铵态氮和硝态氮。一般认为NO3-的吸收是逆电化学势梯度进行的主动过程,而NH4+是与H+进行交换吸收的。NH4+与NO3-吸收到作物体后,除硝态氮需先还原成NH4+ (NH3)以外,其余同化过程完全相同。据研究,作物对NH4+、NO3-的吸收量因作物特性、种类和环境条件而变化。 铵、硝态氮的营养生理性质 铵、硝态氮都是植物和微生物的良好氮源,可以被它们直接吸收和利用。这两种形态的氮素约占植物吸收阴阳离子的80%。 植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵态氮以NH3的形态通过快速扩散穿过细胞膜,氨系统内的NH4+的去质子化形成的NH3对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响,硝态氮在植物体内的积累都发生在植物的营养生长阶段,随着植物的不断生长,体内的硝态氮含量会消耗净尽,至少会大幅下降。这是一切植物的共性。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。 植物吸收铵、硝态氮的能力 植物对铵、硝态氮吸收情况除与植物种类有关外,外界环境条件有着重要的影响。其中溶液中的浓度直接影响吸收的多少,温度影响着代谢过程的强弱,而土壤pH影响着两者进入的比例:在其他条件一致时,pH低,有利于硝态氮的吸收;pH高,有利于铵态氮的吸收。 一般情况下,同时施用铵态氮和硝态氮肥,往往能获得作物较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度:浓度低时,不同比例对植物生长影响不大,浓度高时,硝态氮作为主要氮源显示出优越性。 影响两种氮素形态效果的主要因子是作物种类,同一作物的不同品种、气候条件、土壤和氮肥用量。现以小麦对这两种形态氮肥的反应为例:施氮量为120kg/hm2,均作播前种肥一次施入。在大田试验条件下,单独供给硝态氮和供给硝态氮加铵态氮(硝态氮∶铵态氮=2∶1)时,小麦生长发育良好;而单独供给铵态氮时,小麦生物产量与籽粒产量均有所下降;供给铵态氮加硝态氮(铵态氮∶硝态氮=2∶1)时,小麦生物产量与籽粒产量介于单独供给铵态氮与单独供给硝态氮之间。 植物吸收铵、硝态氮的偏好 虽然铵、硝态氮都是植物根系吸收的主要无机氮,但不同作物对其有不同偏好性。适应酸性土壤生长的嫌钙植物和适应低氧化还原势土壤条件下生长的植物(如水稻)嗜好铵态氮,有些植物如马铃薯,适于低pH,供应铵态氮,可使介质pH降低,对植株,特别对根系生长有明显优点。某些植物施用铵态氮肥能否获得较高的生长速率和产量,主要取决于根部温度以及影响根部碳水化合物供应的因素,如光照强度等。pH低时,施用铵态氮肥不利,但pH 大于7时,施用铵态氮会使介质中游离氨浓度增加,也有不利影响。在高等植物中,营养生长尤其是生殖生长速率较高,与铵态氮对体内激素平衡的关系密切。相反,喜钙植物和适于高pH石灰性土壤生长的植物,优先利用硝态氮,大多数旱地作物,如玉米,对硝态氮偏好;在等氮量供应情况下,硝态氮的增产效果更突出。蔬菜是一类很容易累积硝酸盐的作物,又是对硝酸盐非常偏爱的作物。在田间,由于尿素态氮或铵态氮会很快转化为硝态氮,施用这两类形态的氮素,对蔬菜并没有什么不良后果,但水培试验中,只要营养液中加入硝态氮,

土壤硝态氮和铵态氮的测定方法

一、原理: 过滤后的样品经过一个开放的镀铜镉还原器通道后,硝酸根被还原成亚硝酸根,亚硝酸根通过磺胺处理后,与N-(1-萘基)-乙二胺二盐酸盐偶联,形成深红色的偶氮染料,然后在550nm或者520nm比色分析。 二、样品处理 土壤鲜样采取四分法处理,根据实验用量进行过筛(比目大小视样品含水量而定)。过筛后的土样,取出5g土样放入离心管,加入25ml 氯化钾提取液(2moL/L),震荡2小时后进行离心(8000 g ,15min),静置后过滤,取上清液测定。若不能及时测定,放入4℃冰箱保存。 三、试剂配制: 试剂用水:蒸馏水或去离子水。 (1)显色试剂:(棕色玻璃瓶,避光保存) 150ml水,加入25ml浓磷酸▲,冷却至室温后,加入10g磺胺,再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。用水定容至250ml。加入浓缩探针清洗液(表面活性剂)。 (2)氯化铵-EDTA缓冲液(ammonium chloride-EDTA):把85g氯化铵和0.1g 乙二胺四乙酸二钠盐(EDTA-Na2)溶解 于水,定容至1L。用浓氨水▲调节PH至。 (3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)}取100ml的氯化铵-EDTA缓冲液,稀释至1L。调节PH至。(4)2%硫酸铜: 10g 五水硫酸铜()溶于水,定容至500ml。 (5)5mol/L盐酸: 小心慢慢加入浓盐酸▲于水中,冷却后定容至100ml。 (6)硝酸盐存储溶液(1g/L):(溶液6个月内有效) 7.218g硝酸钾溶于水,定容至1L,加入1ml氯仿▲(防腐剂)。(7)比色管清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效)取50ml比色管清洗液,加水定容至1L。 (8)进样针清洗液:(定容时缓慢,防止出现泡沫,室温保存,两个月内有效。) 取进样针清洗液,加水定容至1L。 四、测定方法: 土壤硝态氮测定采用SmartChem全自动间断化学分析仪。

铵态氮硝态氮测量方法

铵态氮和硝态氮测定方法 铵态氮测量方法(2mol ?L -1KCl 浸提—靛酚蓝比色法) 1)方法原理 2mol ?L -1KCl 溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。在含氮0.05~0.5mol ?L -1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。 2)试剂 (1)2mol ?L -1KCl 溶液称取149.1g KCl ,化学纯)溶于水中,稀释至1L 。 (2)苯酚溶液称取苯酚(C6H5OH ,化学纯)10g 和硝基铁氰化钠 [Na2Fe(CN)5NO 2H 2O]100mg稀释至1L 。此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。 (3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g 、磷酸氢二钠(Na 2HPO 4?7H 2O ,化学纯)7.06g 、磷酸钠(Na 3PO 4?12H 2O ,化学纯)31.8g 和52.5g ?L -1次氯酸钠(NaOCl,化学纯,即含10%有效氯的漂白粉溶液)5mL 溶于水中,稀释至1L ,贮于棕色瓶中,在4℃冰箱中保存。 (4)掩蔽剂将400g ?L -1的酒石酸钾钠(KNaC 4H 4O 6?4H 2O ,化学纯)与100g ?L -1的EDTA 二钠盐溶液等体积混合。每100mL 混合液中加入10 mol?L -1氢氧化钠0.5mL 。 (5)2.5μg ?mL – 1铵态氮(NH4+—N )标准溶液称取干燥的硫酸铵[(NH4)2SO 4,分析纯0.4717g 溶于水中,洗入容量瓶后定容至1L ,制备成含铵态氮(N )100μg ?mL – 1的贮存溶液;使用前将其加水稀释40倍,即配制成含铵态氮(N )2.5μg ?mL –1的标准溶液备用。 3)仪器与设备:往复式振荡机、分光光度计。 4)分析步骤 (1)浸提称取相当于10.00g 干土的新鲜土样(若是风干土,过10号筛)准确到0.01g ,置于150mL 三角瓶中,加入氯化钾溶液100mL ,塞紧塞子,在振荡机上振荡1h 。取出静置,待土壤—氯化钾悬浊液澄清后,吸取一定量上层清液进行分析。如果不能在24h 内进行,用滤纸过滤悬浊液,将滤液储存在冰箱中备用。 (2)比色吸取土壤浸出液5mL(含NH4+—N2μg ~25μg) 放入50mL 容量瓶中,用氯化钾溶液补充至10mL ,然后加入苯酚溶液5mL 和次氯酸钠碱性溶液5mL ,摇匀。在20℃左右的室温下放置1h 后(注1),加掩蔽剂1mL 以溶解可能产生的沉淀物,然后用水定容至刻度。用1cm 比色槽在625nm 波长处(或红色滤光片)进行比色,读取吸光度。 (3)工作曲线分别吸取0.00、2.00、4.00、6.00、8.00、10.00mL NH4+—N 标准液于50mL 容量瓶中,各加10mL 氯化钠溶液, 同(2)步骤进行比色测定。 5)结果计算 土壤中NH4+—(N )含量(mg ?kg-1)= 式中:ρ——显色液铵态氮的质量浓度(μg ?mL –1) ;V ——显色液的体积(mL);ts ——分取倍数; m ——样品质量(g )。 6)注释 注1. 显色后在20℃左右放置1h ,再加入掩蔽剂. 过早加入会使显色反应很慢,蓝色偏弱;加入过晚,则生成的氢氧化物沉淀可能老化而不易溶解.

土壤硝态氮铵态氮的测定

(二)土壤硝态氮的测定 1、酚二磺酸比色法 1)方法原理 土壤用饱和CaSO4 2H2O溶液浸提,在微碱性条件下蒸发至干,土壤浸提液中的NO3-—N在无水的条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。 C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O 2,4-酚二磺酸 6-硝基酚-2,4-二磺酸 此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。酚二磺酸法的灵敏度很高,可测出溶液中0.1mg?L-1 NO3-—N,测定范围为0.1~2mg?L-1。 2)主要仪器 分光光度计、水浴锅、瓷蒸发皿。 3)试剂 (1)酚二磺酸试剂: 称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL三角瓶中,以150mL纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。使用时须注意其强烈的腐蚀性。如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配成。试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。 (2)10μg?mL-1 NO3-—N标准溶液: 准确称取KNO3(二级)0.7221g溶于水,定容1L,此为100μg?mL-1 NO3-—N 溶液,将此液准确稀释10倍,即为10μg?mL-1 NO3-—N标准溶液。 (3)CaSO4?2H2O(分析纯、粉状)、 (4)CaCO3(分析纯、粉状)、 (5)1:1 NH4OH、 (6)活性碳(不含NO3-),用以除去有机质的颜色。 (7)Ag2SO4(分析纯、粉状)、Ca(OH)2(分析纯、粉状)和MgCO3(分析纯、粉状),用以消除Cl-1的干扰。 4)操作步骤 (1)浸提: 称取新鲜土样(注1)50g(风干土样25g)放在500mL三角瓶中,加入CaSO4?2H2O 0.5g(注2)[凝聚剂的作用,使滤液不混浊而澄清]和250.00mL蒸馏水,盖塞后,用振荡机振荡10min。放置5 min后,将悬液的上部清液用干滤纸过滤,澄清的滤液收集地干燥洁净的三角瓶中。如果滤液因有机质而呈现颜色,可加活性碳除之(注3、4)。还有NO2-干扰和Cl干扰: (1)同时做空白。 (2)测定 吸取清液 25~50mL(含NO3-—N 20~150μg)于瓷蒸发皿中,加CaCO3约0.05g (注5)[调节pH,防止NO3-—N在酸性和中性条件下蒸干分解而损失],在水浴上蒸干(注6),到达干燥时不应继续加热。稍冷,迅速加入酚二磺酸试剂1---2 mL,将皿旋转,使试剂接触到所有的蒸干物。静止10min使其充分作用后,加水20 mL,用玻璃棒搅拌直到蒸干物完全溶解。冷却后缓缓加入1:1 NH4OH(注7)并不断搅拌混匀,至溶液呈微碱性(溶液显黄色不再加深)再多加2mL,以保

最新硝态氮、铵态氮区别资料

硝态氮与铵态氮的区别 一、硝态氮与铵态氮的特性 (一)硝态氮肥 氮肥中氮素的形态是硝酸根(NO3-)。如硝酸钠、硝酸钾、硝酸钙。 1、易溶于水,溶解度大,为速效氮肥。 2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。 3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。 4、不易被土壤胶体吸附。 硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。硝态氮更适用于干旱地。冬天温度低时硝态氮也能发挥作用。 (二)铵态氮肥 氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。 1、 2、易溶于水,肥效快,作物直接吸收。 2、容易吸收,不易在土壤中流失。 3、在碱性土壤中容易挥发。

4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。 铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。 (三)硝、铵态氮肥 氮肥中含有铵离子和硝酸离子两种形态的氮。如硝酸铵、硝酸铵钙、硫硝酸铵。 (四)酰胺态氮 氮肥中氮素的形态是酰胺态。例如尿素。 1、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。 2、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。 3、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。 4、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。 当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。

实验三 植物营养(铵态氮,硝态氮)

高级植物生理实验报告 植物营养 农学院 农药学 东保柱2013202054 2013年12月27日

实验1 植物组织铵态氮含量的测定(茚三酮比色法) 一、实验原理 植物吸收的氮主要是氨态氮和硝态氮,后者经过还原过程形成氨,前者经同化后形成谷氨酰胺和谷氨酸,然后形成其他氨基酸和蛋白质。测定氨态氮的方法有多种,本实验为改良的茚三酮比色法。 α-氨基酸与水合茚三酮溶液一起加热,经氧化脱氨变成相应的α-酮酸,酮酸进一步脱羧变成醛,水合茚三酮则被还原,在弱酸环境中,还原型茚三酮,氨和另一分子水合茚三酮反应,缩合生成蓝紫色物质。根据蓝紫色的深浅,在580nm 波长下测定吸光值。本实验中在茚三酮试剂中添加乙二醇并补加正丁醇和丙醇,可以克服茚三酮的不稳定性。 二、仪器设备 研钵、烧杯、漏斗、量筒、具塞试管、三角瓶、容量瓶、移液管、天平、沸水浴锅、可见分光光度计 三、试剂 1. 10%醋酸(100mL) 2. 1% 抗坏血酸(100mL) 3. 5μg/mL 亮氨酸或丙氨酸溶液(0.005g定容至1000mL) 4. pH 5.4醋酸缓冲液:8.8mL 0.2mol/L 醋酸(冰醋酸11.55mL稀释至1000mL)加41.2mL 0.2mol/L醋酸钠(醋酸钠1 6.4g或三水醋酸钠2 7.2g 配成1000mL)。 5. 水合茚三酮试剂:1.1g茚三酮放到烧杯中,加入15mL正丙醇,摇匀,溶解,后加入30ml正丁醇和60ml乙二醇,混匀,再加9mL pH5.4醋酸缓冲液,混匀。保存于棕色瓶中,冰箱保存,适用期限10天。 四、操作步骤 1. 标准曲线的绘制 以下表所示量从5μg/mL 亮氨酸或丙氨酸溶液中分别取溶液并在每个试管中加蒸馏水至2mL,对照加2mL 蒸馏水,后在各试管中加入3mL 水合茚三

土壤硝态氮和铵态氮的测定方法

土壤硝态氮和铵态氮的测定方法 土壤硝态氮测定方法 一、原理: 过滤后的样品经过一个开放的镀铜镉还原器通道后~硝酸根被还原成亚 硝酸根~亚硝酸根通过磺胺处理后~与N-(1-萘基)-乙二胺二盐酸盐偶 联~形成深红色的偶氮染料~然后在550nm或者520nm比色分析。二、样品 处理 土壤鲜样采取四分法处理~根据实验用量进行过筛,比目大小视样 品含水量而定,。过筛后的土样~取出5g土样放入离心管~加入25ml 氯化钾提取液,2moL/L,~震荡2小时后进行离心,8000 g ~15min,~ 静置后过滤~取上清液测定。若不能及时测定~放入4?冰箱保存。三、试剂配制: 试剂用水:蒸馏水或去离子水。 (1)显色试剂:,棕色玻璃瓶~避光保存, 150ml水~加入25ml浓磷酸?~冷却至室温后~加入10g磺胺~ 再加入0.5g N-(1-萘基)-乙二胺二盐酸盐溶解。用水定容至 加入2.0ml浓缩探针清洗液,表面活性剂,。 250ml。 (2)氯化铵-EDTA缓冲液,ammonium chloride-EDTA,: 把85g氯化铵和0.1g 乙二胺四乙酸二钠盐,EDTA-Na,溶解于2 水~定容至1L。用浓氨水?调节PH至8.5。 (3)硝化组件缓冲液:{用来清洗OTCR(镀铜镉还原器通道)} 取100ml的氯化铵-EDTA缓冲液~稀释至1L。调节PH至8.5。 (4)2%硫酸铜: 10g 五水硫酸铜,CuSO.5HO,溶于水~定容至500ml。 42

(5)5mol/L盐酸: 小心慢慢加入50.69ml浓盐酸?于水中~冷却后定容至100ml。 ,6,硝酸盐存储溶液(1g/L):,溶液6个月内有效, 7.218g硝酸钾溶于水~定容至1L~加入1ml氯仿?,防腐剂,。 (7)比色管清洗液:,定容时缓慢~防止出现泡沫~室温保存,两个月 内有效,取50ml比色管清洗液~加水定容至1L。 (8)进样针清洗液:,定容时缓慢~防止出现泡沫~室温保存~两个 月内有效。, 取0.5ml进样针清洗液~加水定容至1L。 四、测定方法: 土壤硝态氮测定采用SmartChem全自动间断化学分析仪。 土壤铵态氮测定方法 一、样品处理 土壤鲜样采取四分法处理~根据实验用量进行过筛,比目大小视样品含水量而定,。过筛后的土样~取出5g放入离心管~加入25ml KCL提取液,2moL/L,~震荡2小时后进行离心,8000 g ~15min,~静置后过滤~取上清液测定。若不能及时测定~放入4?冰箱保存(最长保存期限28天)。二、试剂配制: 试剂用水:蒸馏水或去离子水。空气中存在氨~易被吸收~故试剂用水不宜久放。 (1)苯酚钠溶液:,棕色玻璃瓶~避光保存~可稳定两周, 称取8g氢氧化钠?~溶于水~待冷却到室温后~加入20.75g 苯酚?~定容至250ml。 (2)次氯酸钠溶液:(每日新鲜配制, 取25ml的安替福民,次氯酸钠溶液,?~定容至50ml。

科学认识硝态氮肥和铵态氮肥

科学认识硝态氮肥和铵态氮肥 根据氮肥中氮素化合物的形态将氮肥分为铵态氮肥、硝态氮肥、酰胺态氮肥和氰氨态氮肥。随着人们对硝态氮肥施用效果的肯定,近两年,肥料市场上掀起了一股硝基复合(混)肥的热潮,许多肥料厂家及商家对硝态氮肥发展前景十分看好。 事实,无论是铵态氮还是硝态氮都可以作为植物生长和高产的良好氮源,究竟哪种肥料施用效果好,有发展前景,需要根据作物、土壤、肥料的性状来确定,更需要深入解读植物吸收铵态、硝态两种形态氮素营养的生理性质。 A: 植物中氮素的主要来源 植物可以利用的氮素形态主要是铵态氮、硝态氮,也能少量吸收一些简单的有机含氮化合物如氨基酸、酰胺(如尿素)等。空气中含有近79%的氮气,只有某些微生物(包括与高等植物共生的固氮微生物)才能利用,大多数植物没有这一本领。而植物吸收的氮素主要来自它们生存的介质——土壤。土壤本身存在的氮素并不多,而且土壤中的氮素并不能被植物全部利用,植物能利用的仅是其中一小部分,即土壤中存在的铵态、硝态氮,而一些有机氮素,如简单的氨基酸、酰胺等也能被作物吸收利用,但其数量很少,又会被微生物转化成其他形态,难以在土壤长期存留;植物对其吸收也远不如无机氮容易,这些有机氮只能使植物存活,而不能使其丰产。 B: 形态不同,会产生不同的效应 植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵在植物体内的积累对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。 植物为什么不按其需要有计划地吸收,而要奢侈地吸收硝态氮,并“贮备”于液泡中呢?研究表明,硝态氮在营养器官生长时期大量累积是一切植物的共性,随着植物不断生长,体内的硝态氮含量越来越少。据了解,植物在营养生长阶段大量地吸收营养物质,一方面是为了满足当前生长的需要,另一方面是为了供给后期生长的需要。硝态氮在植物体中累积是植物的“贮备”措施,也是适应逆境的表现。营养生长期累积的硝态氮多,即使后期土壤供应养分不足,植物仍能很好地生长和发育;累积的硝态氮越多,后期生长发育越良好。另外,NO3-在液泡内还是重要的渗透调节物质,在植物体内碳水化合物合成减少,液泡内有机物含量下降时,NO3-可替代它们起渗透调节作用,这种调节需要的能量也低。 虽然铵、硝态氮都是植物根系吸收的主要无机氮,但由于形态不同,也会对植物产生不同效应。

硝态氮铵态氮区别

硝态氮铵态氮区别公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

硝态氮与铵态氮的区别 一、硝态氮与铵态氮的特性 (一)硝态氮肥 氮肥中氮素的形态是硝酸根(NO3-)。如硝酸钠、硝酸钾、硝酸钙。 1、易溶于水,溶解度大,为速效氮肥。 2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。 3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。 4、不易被土壤胶体吸附。 硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。硝态氮更适用于干旱地。冬天温度低时硝态氮也能发挥作用。 (二)铵态氮肥 氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。 1、易溶于水,肥效快,作物直接吸收。 2、容易吸收,不易在土壤中流失。 3、在碱性土壤中容易挥发。 4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。

铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。 (三)硝、铵态氮肥 氮肥中含有铵离子和硝酸离子两种形态的氮。如硝酸铵、硝酸铵钙、硫硝酸铵。 (四)酰胺态氮 氮肥中氮素的形态是酰胺态。例如尿素。 1、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。 2、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。 3、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。 4、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。 当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。 5、尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。 二、铵态氮、硝态氮区别

几种蔬菜对硝态氮_铵态氮的相对吸收能力_田霄鸿

植物营养与肥料学报2000,6(2):194~201 Plant N utrition and Fer tilizer Science 几种蔬菜对硝态氮、铵态氮的相对吸收能力 田霄鸿,李生秀 (西北农业大学资源与环境科学系,陕西杨陵712100) 摘要:采用溶液培养方法探讨了莴笋、菠菜、小白菜和大青菜4种蔬菜作物对硝、铵态氮的相对 吸收能力以及这两种氮源对它们生长发育的影响。结果表明,单独供给NO-3-N,4种作物均生 长发育良好;供给N O-3-N+N H+4-N(NO-3∶NH+4=1∶1),生长量均有所下降,而单独供给N H+4-N 时,生长量则大幅度下降。莴笋单独供给NO-3-N时,其吸氮量显著高于供给N O-3-N+NH+4-N 的处理,大青菜、菠菜供给NO-3N+NH+4-N与单独供给N O-3-N相比吸氮量大体相当;小白菜 同时供应NO-3-N+NH+4-N时吸氮量最高,供给NO-3-N时次之,供给N H+4-N时显著降低。供 给NH+4-N时4种作物吸氮量均比其它氮源显著降低。4种作物对N O-3-N与NH+4-N的吸收 具有明显的偏向性。供给等氮量铵、硝态氮(NO-3-N+NH+4-N处理)时,菠菜、小白菜吸收的 NO-3-N显著多于NH+4-N,表现出喜硝性,莴笋则与此相反,表现出喜铵性;而大青菜对两种形 态氮素的吸收量相差不多,表现出兼性吸收的特点。但上述偏向性具有阶段特点,即喜硝作物 可能在某一阶段表现出喜铵性状。 关键词:溶液培养;蔬菜作物;氮素形态;铵、硝态氮吸收比例 中图分类号:Q945.12;S63 文献标识码:A 文章编号:1008-505X(2000)02-0194-08 氮素对植物生长发育、产量形成与品质好坏有极为重要的作用。从营养意义来讲,作物在生长发育过程中主要吸收两种矿质氮源,即NH+4-N和NO-3-N[1~3]。一般认为NO-3的吸收是逆电化学势梯度进行的主动过程,而NH+4是与H+进行交换吸收的[4]。NH+4与NO-3吸收到作物体后,除NO-3-N需先还原成NH+4(NH3)以外,其余同化过程完全相同[5,6]。据研究[5,7~13],作物对NH+4、NO-3的吸收量因作物特性、种类和环境条件而变化[14,15]。NH+4-N呈还原态,易被土壤胶体吸附和固定;NO-3-N呈氧化态,存在于土壤溶液中,易到达根系表面或被淋失。肥料中,这两种氮素形态与不同陪补离子相偶联,后者对作物生长也有直接或间接的影响。一般情况下,作物从介质中吸收NH+4使介质酸化,而吸收NO-3使介质碱化,介质pH的变化反过来会影响其它养分的有效性。因此NO-3与NH+4对作物的营养效能不同[4]。不同种类植物因对两种氮源偏好程度不同,而有喜铵作物和喜硝作物之分。但植物对NH+4-N、NO-3-N的偏好与生育年龄有关[16,17]。有人认为大多数植物NH+4与NO-3配合施用较单独施用效果好,其最佳比例随植物种类和生育期不同而不同[18]。对于大多数蔬菜(如白菜、芹菜、菠菜等)以NO-3为好[19]。目前蔬菜作物的无土栽培生产发展很快,但对于各种蔬菜作物在不同生育期对NH+4-N、NO-3-N的相对吸收量或吸收比例的报道甚少[13]。本研究采用溶液培养方法,旨在探讨4种蔬菜作物在苗期对NH+4-N、NO-3-N的相对吸收能力,以及吸收NH+4-N、NO-3-N的特点,为这些作物选用合适的氮 收稿日期:1999-01-11 基金项目:国家自然科学基金(39970429)和西北农业大学青年基金课题资助。 作者简介:田霄鸿(1967—),男,甘肃天水人,博士,副教授,主要从事作物氮素营养和旱地农田水肥管理等研究。

土壤硝态氮的测定

土壤硝态氮的测定 A 紫外分光光度法 1、方法提要 -,在紫外分光光度计波长210nmNO处有较高吸土壤浸出液中的3-2---和有机、、HCOOH光度,而浸出液中的其它物质,除NO、CO233-、质等外,吸光度均很小。将浸出液加酸中和酸化,即可消除OH2---一般含量极少,也很容易消除。因此,用的干扰。、HCOCONO233校正因数法消除有机质的干扰后,即可用紫外分光光度法直接测定-的含量。NO3待测液酸化后,分别在210nm和275nm处测定吸光度。A是210-和以有机质为主的杂质的吸光度;ANO只是有机质的吸光度,因2753-在275nm处已无吸收。但有机质在275nm为NO处的吸光度比在3210nm处的吸光度要小R倍,故将A校正为有机质在210nm处应有275-在210nm处的吸光度(A)。中减去,即得的吸光度后,从ANO △32102、适用范围 本方法适用于各类土壤硝态氮含量的测定。 3、主要仪器设备 3.1紫外—可见分光光度计; 3.2石英比色皿; 3.3往复式或旋转式振荡机,满足180r/min±20r/min的振荡频率或达到相同效果;

3.4塑料瓶:200mL。 4、试剂 4.1HSO 水中。90mL浓硫酸缓缓加入10mL:取9):(1溶液42. -1]:称取2.2g·L氯化钙4.2氯化钙浸提剂 [c(CaCl)=0.01mol2(CaCl·6HO,化学纯)溶于水中,稀释至 1L。22-1]:准确称取L0.7217g经4.3 硝态氮标准贮备液[ρ(N)=100mg·105~110℃烘2h的硝酸钾(KNO,优级纯)溶于水,定容至1L,存放于3冰箱中。 -1]:测定当天吸到10.00mL硝ρ硝态氮标准溶液 [(N)=10mg·L4.4态氮标准贮备液于100mL容量瓶中用水定容。 5、操作步骤 称取10.00g土壤样品放入200mL塑料瓶中,加入50mL氯 化钙浸提剂,盖严瓶盖,摇匀,在振荡机上于20℃~25℃振 荡30min(180r/min±20r/min),干过滤。 吸取25.00mL待测液于50mL三角瓶中,加1.00mL1:9 HSO 溶42液酸化,摇匀。用滴管将此液装入1cm光径的石英比色槽中,分别在210nm和275nm处测读吸光值(A和A),以酸化的浸提剂调节仪器275210-的吸光值(A)零点。以NO通过标 准曲线求得测定液中硝态氮含量。△3空白测定除不加试样外,其余均同样品测定。 -的吸光值(A)可由下式求得:NO△3A= A- A×R

硝态氮、铵态氮区别之令狐文艳创作

硝态氮与铵态氮的区别 一、 令狐文艳 二、硝态氮与铵态氮的特性 (一)硝态氮肥 氮肥中氮素的形态是硝酸根(NO3-)。如硝酸钠、硝酸钾、硝酸钙。 1、易溶于水,溶解度大,为速效氮肥。 2、吸湿性强,易结块,吸水后呈液态,造成使用上的困难。 3、受热易分解放出氧气,是体积聚增,易燃易爆,运输不安全。 4、不易被土壤胶体吸附。 硝态氮极易溶于水,用于水田会造成很大流失(特别是放水后)。硝态氮更适用于干旱地。冬天温度低时硝态氮也能发挥作用。(二)铵态氮肥 氮肥中氮素的形态是氨( NH3)或铵离子(NH4+)。例如液态氨、氨水、硫酸铵、氯化铵、碳酸氢铵等。 1、易溶于水,肥效快,作物直接吸收。 2、容易吸收,不易在土壤中流失。 3、在碱性土壤中容易挥发。

4、在通气好的土壤中可以转化成硝态氮,易造成氮的淋失和流失。 铵态氮在大棚蔬菜里是禁止使用的,铵态氮挥发时会对作物造成伤害的,硝态氮则不会。(三)硝、铵态氮肥 氮肥中含有铵离子和硝酸离子两种形态的氮。如硝酸铵、硝酸铵钙、硫硝酸铵。 (四)酰胺态氮 氮肥中氮素的形态是酰胺态。例如尿素。 2、施入土壤中一小部分以分子态溶于土壤溶液中,通过氢键作用被土壤吸附,其他大部分在脲酶的作用下水解成碳酸铵,进而生成炭酸氢和氢氧化铵。 3、NH4+能被植物吸收和土壤胶体吸附,NCO3-也能被植物吸收,因此尿素施入土壤后不残留任何有害成分。 4、尿素中含有的缩二脲也能在脲酶的作用下分解成氨和碳酸,无有害物质残留。 5、尿素在土壤中转化受土壤PH值、温度和水分的影响,在土壤呈中性反应,水分适当时土壤温度越高,转化越快。 当土壤温度10℃时尿素完全转化成铵态氮需7——10天,当20℃需4——5天,当30℃需2——3天即可。 5、尿素水解后生成铵态氮,表施会引起氨的挥发,尤其是碱性或碱性土壤上更为严重,因此在施用尿素时应深施覆土,水田要深施到还原层。 二、铵态氮、硝态氮区别

浅谈植物对铵、硝态氮的相对吸收能力

氮素对植物生长发育、产量形成与品质好坏有极为重要的作用。从营养意义来讲,作物在生长发育过程中主要吸收两种矿质氮源,即铵态氮和硝态氮。一般 认为NO 3-的吸收是逆电化学势梯度进行的主动过程,而NH 4 +是与H+进行交换吸收 的。NH 4+与NO 3 -吸收到作物体后,除硝态氮需先还原成NH 4 + (NH 3 )以外,其余 同化过程完全相同。据研究,作物对NH 4+、NO 3 -的吸收量因作物特性、种类和环 境条件而变化。 铵、硝态氮的营养生理性质 铵、硝态氮都是植物和微生物的良好氮源,可以被它们直接吸收和利用。这两种形态的氮素约占植物吸收阴阳离子的80%。 植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵态氮以NH3的形态通过快速扩散穿过细胞膜,氨系统内的NH4+的去质子化形成的NH3对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响,硝态氮在植物体内的积累都发生在植物的营养生长阶段,随着植物的不断生长,体内的硝态氮含量会消耗净尽,至少会大幅下降。这是一切植物的共性。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。 植物吸收铵、硝态氮的能力 植物对铵、硝态氮吸收情况除与植物种类有关外,外界环境条件有着重要的影响。其中溶液中的浓度直接影响吸收的多少,温度影响着代谢过程的强弱,而土壤pH影响着两者进入的比例:在其他条件一致时,pH低,有利于硝态氮的吸收;pH高,有利于铵态氮的吸收。 一般情况下,同时施用铵态氮和硝态氮肥,往往能获得作物较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度:浓度低时,不同比例对植物生长影响不大,浓度高时,硝态氮作为主要氮源显示出优越性。 影响两种氮素形态效果的主要因子是作物种类,同一作物的不同品种、气候条件、土壤和氮肥用量。现以小麦对这两种形态氮肥的反应为例:施氮量为120kg/hm2,均作播前种肥一次施入。在大田试验条件下,单独供给硝态氮和供给硝态氮加铵态氮(硝态氮∶铵态氮=2∶1)时,小麦生长发育良好;而单独供给铵态氮时,小麦生物产量与籽粒产量均有所下降;供给铵态氮加硝态氮(铵态氮∶硝态氮=2∶1)时,小麦生物产量与籽粒产量介于单独供给铵态氮与单独供给硝态氮之间。 植物吸收铵、硝态氮的偏好 虽然铵、硝态氮都是植物根系吸收的主要无机氮,但不同作物对其有不同偏好性。适应酸性土壤生长的嫌钙植物和适应低氧化还原势土壤条件下生长的植物(如水稻)嗜好铵态氮,有些植物如马铃薯,适于低pH,供应铵态氮,可使介

铵态氮和硝态氮实验操作方法

铵态氮---靛酚蓝比色法 一、方法原理 土壤浸出液中的NH4+在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定,在NH4+-N浓度为0.05mg/L-0.5 mg/L范围内,其深浅与NH4+-N含量成正比。反应体系PH应为10.5-11.7之间。硝普钠{硝基铁氰化钠,或称亚硝酰基五氰合铁(ⅲ)酸钠,Na2Fe(CN)5NO.2H2O}是反应的催化剂,能加速显色,增强蓝色及其稳定性。在20℃左右室温时一般须放置1h后比色,完全显色约需2h-3h。生成的蓝色很稳定,24h内吸收值无显著变化。比色时在625nm处测量吸收值。待测液中如有干扰的金属离子,可用EDTA等螯合剂掩蔽。 二、主要仪器 分光光度计 三、试剂 (1)酚溶液:10g苯酚和100mg硝普钠(Na2Fe(CN)5NO.2H2O)溶于1L蒸馏水中。此溶剂不稳定,须贮存于暗色瓶中,存放于4℃冰箱中,同时需温热至室温。注意硝普钠有剧毒!(2)次氯酸钠碱性溶液:10gNaOH,7.06gNa2HPO4.7H2O,31.8gNa3PO4.12H2O和10ml 次氯酸钠{w(NaClO)=5.25%(即有效氯5%的漂白剂溶液)溶于1L水中。此试剂应与酚溶液同样保存}。 (3)掩蔽剂:酒石酸钾钠{p(KNaC4H4O6.4H2O)=400g/L}与EDTA二钠盐溶液N2Na{p(C10H14O8)=100g/L}等体积混合。每100ml混合液加入0.5mlNaOH(C(NaOH)=10mol/L)溶液,即得清亮的掩蔽剂溶液。 (4)NH4+-N标准溶液:0.4717g烘干的(NH4)2SO4(二级)溶于蒸馏水中,定容至1L。此p (NH4+-N)=100mg/L贮存液。测定当天将此溶液用蒸馏水准确稀释20倍(取5ml稀释至100ml),即为5mg/L NH4+-N标准溶液(p(N)= 5mg/L)。 (5)KCl溶液(2mol/L):称取149.1g分析纯KCl,加水定容至1L的容量瓶中。 四、操作步骤 (1)称取三份新鲜土壤5g,置于大口瓶中,加入25ml2mol/L的KCl溶液, (2)在振荡器上充分震荡30min (3)用中速定性滤纸过滤至小口瓶中;制作标曲 (4)取滤液5ml至50ml的容量瓶中 (5)加水至30ml左右 (6)加酚溶液5ml (7)加次氯酸钠5ml (8)定容 (9)显色1h (10)625nm处比色 五、结果计算 W(N)=(p×V×ts×10-3)×1000/m W(N)-土壤中NH4+-N的质量分数,mg/kg p-从工作曲线上查得显色液中氮的浓度,mg/L; V-显色液体积,50ml ts-分取倍数,25 / 5 10-3—将ml换算成L的系数 1000—换算成每kg土含量; m-土样质量,g(鲜土*含水系数)

相关文档
相关文档 最新文档