文档库 最新最全的文档下载
当前位置:文档库 › 超几何分布的数学期望和方差的定义求法

超几何分布的数学期望和方差的定义求法

超几何分布的数学期望和方差的定义求法
超几何分布的数学期望和方差的定义求法

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n 次伯努利试验中,试验k 次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k 次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n 次伯努利实验,n 的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n 次成功,m 的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ; , 。 概率为p 的事件A ,以X 记A 首次发生所进行的试验次数,则X 的分布列: , 具有这种分布列的随机变量X ,称为服从参数p 的几何分布,记为X ~Geo (p )。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。

(1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k

则S q p =-=11122 () 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++ x x x x k '()'()'()'23 6 12322221+++++-q q k q k =+++++()'q q q kq k 2323

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

二项分布、数学期望与方差专题复习word有详解重点中学用

第十讲二项分布及应用随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立. 2. 互斥事件概率的加法公式:如果事件A与事件B互斥,则P(A+B)=P(A)+P(B). 3.对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B). 4.条件概率的加法公式:若B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A) 5.独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,即若用A i(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k·(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n次独立重复试验.(2)随机变量是否为在这n次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X的分布列为P(ξ=x i)=p i,i=1,2,…,n. (1)均值:称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望. n (2)方差:D(X)=∑ (x i-E(X))2p i为随机变量X的方差,其算术平方根D?X?为随机变量X的标准差.i=1 (3)均值与方差的性质:(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X).(a,b为常数) 8.两点分布与二项分布的均值、方差 变量X服从两点分布:E(X)=p,D(X)=p(1-p);X~B(n,p): E(X)=np ,D(X)=np(1-p)典例精析 例1.【2015高考四川,理17】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

期望 方差公式的证明全集

期望与方差的相关公式的证明 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑ ∞ =1 <∞时, 则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑ ∞ =1 =∞,则数学期望不存在。 [] 1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的

几何分布的期望与方差

几何分布的期望与方差 康永清 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ=1,(2)D p p ξ=-12 ,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k 则S q p =-=11122() 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++=+++++x x x x x x x x k k '()'()'()'()' 2323 =-=----=-( )'()()()()x x x x x x 111112 2 上式中令x q =,则得 1231112122 +++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。 可见关键是求E ξ2 。 E p qp q p k q p k ξ22222123=+++++- =+++++-p q q k q k ()12322221 对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有

二项分布概念及图表和查表方法

二项分布概念及图表 二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。 目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。

医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。 考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 二项分布公式 P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。

二项分布概念及图表和查表方法

目录 1 定义 ?统计学定义 ?医学定义 2 概念 3 性质 4 图形特点 5 应用条件 6 应用实例 定义 统计学定义 在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当 时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。 医学定义 在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

考虑只有两种可能结果的随机试验,当成功的概率()是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行次伯努利试验,取得成功次数为的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X) 二项分布公式 表示随机试验的结果。 二项分布公式 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k),其中C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里的是上标,表示的是方幂。 那么就说这个属于二项分布。其中P称为成功概率。记作ξ~B(n,p) 期望:Eξ=np; 方差:Dξ=npq; 其中q=1-p 证明:由二项式分布的定义知,随机变量X是n重伯努利实验中事件A发生的次数,且在每次试验中A发生的概率为p。因此,可以将二项式分布分解成n个相互独立且以p为参数的(0-1)分布随机变量之和。 设随机变量X(k)(k=1,2,3...n)服从(0-1)分布,则X=X(1)+X(2)+X(3)....X(n). 因X(k)相互独立,所以期望:

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

二项分布期望和方差的推导过程

二项分布期望和方差推导 若随机变量),(~p n B X ,则np X E =)(,)1()(p np X D -= 二项分布数学期望的证明: 注意到11--=k n k n nC kC (证明:11)]! 1()1[()!1()!1()!()!1()!1()!(!!--=---?--?=-?--?=-??=k n k n nC k n k n n k n k n n k n k n k kC ) 所以n n p p C X E )1(0)(00-?=111)1(1--?+n n p p C Λ+-?+-222) 1(2n n p p C Λ+-?+-k n k k n p p C k )1( 111)1()1(p p C n n n n -?-+--0)1(p p C n n n n -?+ 1101)1(---?=n n p p C n Λ+-?+--2211)1(n n p p C n Λ+-+---k n k k n p p nC ) 1(11 1121)1(p p C n n n n -?+---011 )1(p p C n n n n -?+-- 101)1([---=n n p C np Λ+-+--2111)1(n n p p C Λ+-+----k n k k n p p C )1(1111221)1(p p C n n n -+---])1(0111p p C n n n -+--- np p p np n =+-=-1])1[(,故np p p C i X E n i i n i i n ∑=-=-?=0)1()(; 二项分布方差的证明:)1()(p np X D -= 证明:i n i i p X E x X D ?-= ∑-12)]([)(i n i i i p X E X E x x ∑-?+-=122)]()(2[∑-??+?-?=n i i i i i i p X E p X E x p x 122])()(2[ ∑∑∑-=-?+?-?=n i n i i n i i i i i p X E p X E x p x 11 212 )()(2)()(22X E X E -= 故任何离散随机变量的方差均满足式子:)()()(22X E X E X D -= 当随机变量),(~p n B X 时,=)(X D 20 2)()1(np p p C i i n i n i i n --?-=∑ i n i n i i n p p C i i -=-?-=∑)1()1(0 220)1(p n p p C i i n i n i i n --?+-=∑(注意np p p C i X E n i i n i i n ∑=-=-?=0)1()() i n i n i i n p p iC i -=-?-=∑)1()1(222p n np -+i n i n i i n p p nC i -=---?-=∑)1()1(21122p n np -+ i n i n i i n p p C i n -=---?-?=∑)1()1(21122p n np -+i n i n i i n p p C n n --=---?-?=∑)1()1(22 2222p n np -+ i n i n i i n p p C n n -=---?-=∑)1()1(22222p n np -+i n i n i i n p p C p n n --=---?-=∑)1()1(22 22222p n np -+ (指数之后凑组合数下标2-n ,利用展开式i i n n i i n n b a C b a ---=--∑=+22022) () i n i n i i n p p C p n n ---=--?-=∑22 022 )1()1(22p n np -+

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

二项分布的数学期望和方差

4EX np ∴== 100.40.6 2.4DX npq ==??= 222() 2.4418.4EX DX EX =+=+= 12. 解:8n =,0.2p = 根据二项分布的数学期望和方差的公式 1.6EX np == (1) 1.28DX npq np p ==-= 求解得 8n =,0.2p = 13. 解: ~(1,)B p ξ 2(1)9D p p ξ∴=-= 解方程2209 p p -+=,得23p =或13p = ξ∴的概率函数为 {}1(1)(0,1)k k p k p p k ξ-==-= 将13p =或23 p =代入,得ξ的概率函数为 {}121()()33 k k p k ξ-== 或 {}112()()(0,1)33k k p k k ξ-=== 14. 解:设ξ的概率密度为 1,()0, a x b f x b a ?≤≤?=-???其他 =3E ξ,1=3D ξ ∴得方程组2+=32()1 =12 3a b b a ????-???,解得24a b =??=?

1,24()=20x f x ?≤≤?∴???其他 ξ为连续型随机变量 {}=2=0p ξ∴ {}3312111<<3=()==22 p f x dx dx ξ?? 15. 解:设ξ表示直到取到废品为止所要取的产品个数,则ξ的概率函数 {}-1 ==0.050.95(=1,2,)k p k k ξ???? 当{}-1 ==(1)(=1,2,)k p k p p k ξ-???时,由幂级数 -12=1 1= (1)n n nx x ∞-∑ 2-13 =11=(1)n n x n x x ∞+-∑ 可计算 -1=11=(1)=k k E kp p p ξ∞-∑ 2-122=1 1=(1)()= k k p D k p p E p ξξ∞---∑ 本题中=0.05p 1==200.05 E ξ∴, 210.05==19.490.05 D ξ- 16. 解:8 22[()]DX EX E x =- 222[()]428EX DX E x ∴=+=+= 17. 解:由题意X 的分布律为 {}=(0)!k p X k e k λλλ-=>

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲 二项分布及应用 随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2. 互斥事件概率的加法公式:如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). 3.对立事件的概率:若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 4.条件概率的加法公式:若B 、C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 5.独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=Ck n p k ·(1-p ) n -k (k =0,1,2,…, n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验.(2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X 的分布列为P (ξ=x i )=p i ,i =1,2,…,n . (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望. (2)方差:D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,其算术平方根D X 为随机变量X 的标 准差. (3)均值与方差的性质:(1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 8.两点分布与二项分布的均值、方差 变量X 服从两点分布: E (X )=p , D (X )=p (1-p ); X ~B (n ,p ): E (X )=np ,D (X )=np (1-p ) 典例精析 例1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n次伯努利试验中, 试验k次才得到第一次成功的机率。详细的说,是:前 k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,…』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: 概率为p的事件A,以X记A首次发生所进行的试验次数,则 X的分布列: P(X二灯二加(打二(1-P尸% 口23…"?? 具有这种分布列的随机变量X,称为服从参数 p的几何分布,记为 X~Geo(p)。几何分布的期望 II )比原来的修订本新增加随机变量的几何分布,但书中 (1)E = -,(2)D二匕当,而未加以证明。本文给出证明,并用于解题。p P (1)由P「二k) =q k'p,知 高中数学教科书新版第三册(选修 只给出了结论:

< 2 k 1 2 k 1 E 二 p 2pq 3q p M p ,(1 2q 3q kq _ ) p 下面用倍差法(也称为错位相减法)求上式括号内的值。记 2 k 1 S k -1 2q 3q kq qSk =q 2q 2 (k -1)q k , kq k 两式相减,得 2 k 1 k (1 一 q)S k =1 q q 恥川q - kq 1 _q k kq k (1 -q)2 k 由 0 : p :: 1,知 0 : q : 1,则 lim q = 0,故 1 2p 3q 2 卡q k j 二 lim S k k _SC 从而E J p _ a 1 S — (|q|:::1)(见教科书91页阅读材料),推导如下: 1 -q 记 S = 1 2q 3q 2 侶 - ^kq k 亠 qS = q 2q 2 亠亠(k - 1)q k ° 相减, 2 k 1 1 (1 -q)S =1 q q q 1 -q 1 (1 -q)2 也可用无穷等比数列各项和公式

二项分布方差公式推导复习过程

二项分布方差公式推 导

精品文档 收集于网络,如有侵权请联系管理员删除 二项分布方差公式推导 若ξ~B(n,p),q=1-p ,求证D ξ=npq ∵E ξ=np , kC n k p k q n-k =n p 11 k n C --p k-1q n-k , kk C n k p k q n-k =np[(k-1)11 k n C --p k-1q n-k +11k n C --p k-1q n-k ] =np[(n -1)p 22k n C --p k-2q n-k +11k n C --p k-1q n-k ] 而D ξ=22()E E ξξ-, ∴D ξ=(1×1×C n 1p 1q n-1+2×2 C n 2p 2q n-2+…+k ×k C n k p k q n-k +…+n ×n C n n p n q 0)2() np - =np(1×C n-10p 0q n-1+2C n-11p 1q n-2+3C n-12p 2q n-2+…+k C n-1k-1p k-1q n-k +…+n C n-1n-1p n-1q 0)-2np E ξ+n 2p 2(p +q)n =np{[0×C n-10p 0q n-1+1C n-11p 1q n-2+2C n-12p 2q n-2+…+(k-1) C n-1k-1p k-1q n-k +…+(n-1)C n-1n-1p n-1q 0]+(C n-10p 0q n-1+C n-11p 1q n-2+ C n-12p 2q n-2+…+C n-1k-1p k-1q n-k +…+C n-1n-1p n-1q 0)}2() np - =np[E η+(p +q)n-1] 2() np - =np[(n -1)p +1] 2() np - =np(1-p) =npq .

二项分布方差公式推导

二项分布方差公式推导 若ξ~B(n,p),q=1-p ,求证D ξ=npq ∵E ξ=np , kC n k p k q n-k =n p 11 k n C --p k-1q n-k , kk C n k p k q n-k =np[(k-1)11 k n C --p k-1q n-k +11k n C --p k-1q n-k ] =np[(n -1)p 22k n C --p k-2q n-k +11k n C --p k-1q n-k ] 而D ξ=22()E E ξξ-, ∴D ξ=(1×1×C n 1p 1q n-1+2×2 C n 2p 2q n-2+…+k ×k C n k p k q n-k +…+n ×n C n n p n q 0)2() np - =np(1×C n-10p 0q n-1+2C n-11p 1q n-2+3C n-12p 2q n-2+…+ k C n-1k-1p k-1q n-k +…+n C n-1n-1p n-1q 0)-2np E ξ+n 2p 2(p +q)n =np{[0×C n-10p 0q n-1+1C n-11p 1q n-2+2C n-12p 2q n-2+…+ (k-1) C n-1k-1p k-1q n-k +…+(n-1)C n-1n-1p n-1q 0]+(C n-10p 0q n-1+ C n-11p 1q n-2+C n-12p 2q n-2+…+C n-1k-1p k-1q n-k +…+ C n-1n-1p n-1q 0)}2()np - =np[E η+(p +q)n-1] 2() np - =np[(n -1)p +1] 2() np - =np(1-p) =npq .

相关文档
相关文档 最新文档