文档库 最新最全的文档下载
当前位置:文档库 › 斜拉桥施工控制方案

斜拉桥施工控制方案

斜拉桥施工控制方案
斜拉桥施工控制方案

目录

悬索桥施工控制方案 (1)

1、引言 (1)

1.1大跨径悬索桥施工控制分析 (1)

1.1.1 大跨度悬索桥施工控制的特点 (1)

1.1.2 大跨度悬索桥施工控制的计算理论、方法和实施步骤 (2)

1.1.3 大跨度悬索桥施工控制的内容 (3)

2、工程概况与项目特点 (5)

2.1工程概况 (5)

2.2项目特点 (5)

3、施工监控的目的与目标 (6)

4、施工监控内容与方案 (9)

4.1施工控制参数 (10)

4.1.1施工控制参数的选取 (10)

4.1.2监控计算内容 (13)

4.1.3监控测试内容与方案 (19)

4.1.4监控测量的内容与方案 (23)

4.2影响参数的确定 (23)

4.2.1基准丝股架设线形影响参数 (24)

4.2.2成缆线形的影响参数 (24)

4.2.3成桥线形的影响参数 (25)

4.2.4桥塔状态的影响参数 (25)

4.2.5影响参数的确定方法 (26)

4.3施工程序概述及异常情况的对策 (28)

4.3.1桥塔立柱施工阶段 (28)

4.3.2安装施工猫道 (28)

4.3.3鞍座预偏就位 (29)

4.3.4主缆丝股架设 (29)

4.3.5紧缆、索夹安装 (29)

4.3.6猫道改挂 (29)

4.3.7梁段安装、顶推鞍座 (29)

4.3.8桥面铺装、主缆防护等二期恒载 (30)

4.3.9成桥恒载状态 (30)

5、监控技术方案的保证措施 (30)

6、监控工作安全保证措施 (31)

参考文献 (33)

悬索桥施工控制方案

1、引言

目前,悬索桥已经步入千米级特大跨径桥梁行列。迄今为止,世界上最大跨径的悬索桥为日本明石海峡大桥,建成于1998年,主跨1991m。而世界排名前十位的大跨径悬索桥,我国占了5座,分别为西堠门大桥,主跨1650m,建成于2009年;润扬长江大桥,主跨1490m,建成于2005年;江阴长江大桥,主跨1395m,建成于1999年;香港青马大桥,主跨1377m,建成于1997年;以及正在建设的南京长江四桥,主跨1418m,预计2013年底建成通车。这充分体现了随着国民

经济的快速发展,我国的桥梁建设事业也以前所未有的速度向前发展。从上世纪九十年代起,我国进入了大规模修建桥梁的时期,我国桥梁工作者的辛勤努力工作,使得我们同发达国家的差距逐步缩小,我们正经历从桥梁大国到桥梁强国的

转变。

在悬索桥的施工过程中进行主缆垂度、加劲梁标高、索塔倾斜度、索鞍位移等的施工监测与控制,使结构各施工阶段的实际状态最大限度地接近设计理想状态,确保成桥后的内力状态和几何线型符合设计要求,是悬索桥成功施工的关键

技术之一。

1.1大跨径悬索桥施工控制分析

近年来,悬索桥在我国得到迅速地发展,已经和正在修建的特大跨径悬索桥

十余座。由于悬索桥在成桥状态主缆线形未知,在施工过程中主缆和吊索一般不

能像斜拉桥那样重复张拉,成桥时要使其线形和受力满足设计要求就有一定难

度,再加上实际施工中选材特性的离散性、施工质量的随机性,以及施工条件的不断变化,对全桥的受力和变形的控制难度更大了。为了保证悬索桥在施工过程

中的安全,并使成桥时结构线形和受力状态最大限度地逼近设计状态,建立悬索桥体系的施工控制体系就显得十分重要[1,2]。

1.1.1 大跨度悬索桥施工控制的特点

与其他桥梁相比,悬索桥在施工过程中的结构几何形状较难控制和管理,容易产生各种施工误差[3,4]。其原因有以下几点。

1)悬索桥是由刚度相差很大的构件(索、吊杆、梁)组成的高次超静定结构,

与其他形式的桥相比,具有显著可挠的特点。在整个施工过程中,悬索桥结构的几何形状变化较大。

2)悬索桥结构几何形状对温度变化非常敏感,温度变化将引起悬索桥结构

几何形状的较大改变。

3)施工各阶段中消除误差比较困难。在悬索桥的施工过程中,主缆一旦施

工完毕,无法调整其长度,而且吊杆的长度也无法像斜拉桥施工中对斜拉索的重

复张拉那样进行调整,仅可通过垫片微幅调整。

4)其他一些随机因素的影响。由于悬索桥施工方法和过程的特殊性,在施

工阶段,悬索桥结构容易出现结构的不稳定和结构构件应力的超限。施工控制时必须密切监控以下3个方面:首先,悬索桥在施工阶段时,加劲梁之间先上缘临时铰接、下缘张开,等到加劲梁全部吊装完毕,再将临时铰接变为刚接。在吊梁

的某些阶段,颤振失稳的临界风速可能大大低于成桥状态的临界风速。尤其在本桥施工控制中应该对这种临界风速密切关注。其次,悬索桥的吊梁与鞍座顶推不同时进行,在吊梁时,塔顶鞍座与塔顶在水平方向临时约束,随着吊梁的进行,

塔顶与鞍座一起发生位移,塔根承受一定的弯矩,可能使得塔根应力超限。为了避免该问题,吊梁到一定程度,就要释放塔根的弯矩一次。具体的作法是用千斤顶调整塔顶鞍座与塔顶之间的相互位置,使塔顶回到原来没有水平位移时的状

态。最后,实际施工中,为了减少在恶劣气候条件下现场焊接的工作量,总是期

望能一次安装较长的节段(为了增加加劲梁结构的抗风稳定性,常把几个加劲梁

先焊成一刚性相连段,即这几块加劲梁段的施工是一边吊装一边刚接成一个较长

的节段)。但如果一次安装的节段长度太大,则节段最外侧的吊索可能超载、加

劲梁的弯曲应力产生超限。

1.1.2 大跨度悬索桥施工控制的计算理论、方法和实施步骤

悬索桥的计算理论经历了弹性理论,挠度理论以及目前的有限位移理论。在弹性理论中,假定荷载使结构构件变形的影响可以忽略不计,主缆的几何形状仅由满跨均布的恒载决定,其线形为二次抛物线。在挠度理论中,忽略吊杆的倾斜与伸长,缆索节点的水平位移,加劲梁剪切变形等因素的非线性影响,把悬索桥的全部吊杆近似看成一种连续的“膜”,这样悬索桥的受力分析就成为一种仅受

分布荷载的索的分析。在有限位移理论中,根据假定的单元变形与节点位移之间、

单元内力与外力之间关系的不同,又可分为线性化有限位移理论、非线性化有限位移理论以及大位移理论[5,6]。

用有限元方法计算悬索桥的原理为:事先假定主缆、吊索等构件的无应力尺寸及鞍座等的预偏量,通过模拟施工过程,分期施加荷载,逐步形成和转换体系,得到成桥状态的有关结构几何形状参数,并与设计成桥状态几何形状控制参数进行比较,在不满足精度要求的条件下,修改假定值,重复上述计算直至满足精度要求为止。其计算的流程一般为:首先进行施工全过程大循环迭代,确定主缆,

吊杆等部件的下料长度和空缆在自重作用下的初始位置;其次进行施工过程正向计算,计算出在施工阶段控制点标高、位移量、内力和应力结构状态。

悬索桥施工控制应包括以下4个主要方面:(1)形成一个精确的理想状态;(2)配备一套完善的实时跟踪分析系统;(3)设立一套精确的量测系统;(4)建立误差分析与反馈控制系统。

其中,第一部分是施工控制的基础,建立理想状态时,任何可能的误差都将导致成桥时结构受力或线形不可恢复的改变。第二部分是解析实际施工中结构所处状态的关键,与第三部分分配也可以得到并累计误差信息,提供给第四部分分析,由此提出控制或纠偏方案。第三、四部分除管理目标与斜拉桥(或其它桥型)施工控制不同外,分析理论与实现手段是一致的。

1.1.3 大跨度悬索桥施工控制的内容

悬索桥的施工控制分析要考虑的因素很多。一般说来要考虑结构的实际截面尺寸和材料特性、施工中的结构实际受力体系、施工中的结构实际温度场、施工中结构承受施工荷载的变化以及主缆初始位置、索鞍位置调整、主梁吊装和固结次序的影响等。总之要密切联系索桥的实际状态。

悬索桥的施工控制与现在国内已趋成熟的斜拉桥施工控制有所不同。悬索桥在施工过程中一旦主缆安装就位,主缆内力、挠度完全取决于结构体系(索鞍主梁连接情况)结构自重施工荷载和温度的变化,不能象斜拉桥那样进行后期索力

和标高调整,因此,主缆无应力下料长度,主缆在自重作用下的初始安装位置(索鞍初始预偏量主缆初始垂度和线型)成为悬索桥施工控制技术的关键。另外,由

于吊杆与主梁主缆的连接方式与斜拉桥的拉索连接方式不同,主梁节段由跨缆起重机起吊到预定位置安装吊杆。吊杆本身一般不另外配置千斤顶调整其内力,跨

缆起重机移开后再要大幅度调整吊杆内力和长度是不现实的.因此不能指望由吊杆来大幅度调整主缆和桥面标高。可见吊杆无应力下料长度和主梁初始安装位置

也是悬索桥施工控制技术的重点。悬索桥在施工过程当中要随时观测主缆垂度桥

面标高和塔顶水平位移,计算并预告下一梁段的安装标高以及索鞍在塔顶上推移

的时间和推移量。以确保施工安全和成桥后交付使用时桥面标高主缆垂度索鞍位置各构件内力状态符合或最接近设计要求。由上述得到悬索桥施工控制体系

分析软件主要包括两大部分。其一是倒退循环分析,通过多次大循环的倒退和前进分析确定主缆备料长度和空缆在自重作用下的初始位置(包括垂度和曲线坐标);其二是实时跟踪分析,根据实际观测结果分析识别结构实际参数并计算各

施工阶段控制点标高、位移量、内力和应力的理论值。

悬索桥施工过程中需要进行主缆垂度、加劲梁标高、索塔倾斜度、索鞍位移等的施工监测与控制,使结构各施工阶段的实际状态最大限度地接近设计理想状态。

其中,施工控制第一阶段为主缆的安装过程。其主要任务是保证主缆在自重作用下的初始安装位置达到设计理想状态。而主缆的安装过程时先进行基准索股的安装,再以基准索股作为参照来进行其余索股的安装,因此,基准索股的安装是施工控制的第一阶段里的关键任务。在基准索股第一次安装后,连续观测其线形变化,对观测数据采用灰色理论[7]、卡尔曼滤波法等理论预测其发展变化,

预测出以后时段基准索股的线形,把它与设计理论状态进行比较后,对其线形进行适当调整。这一过程反复进行多次,直到基准索股的线形达到设计理想状态,

然后进行其余索股架设安装;主缆成形后,进行加劲梁的安装。

施工控制第二阶段即为加劲梁安装阶段,该阶段须随时观测主缆线形、桥面标高和塔顶位移,计算并预测下一时段的主缆线形、桥面标高、塔顶水平位移及主索鞍顶推阶段和顶推量,以确保施工安全和成桥时桥面标高、主缆垂度、索鞍位置、各构件内力大小最大限度地接近设计理想状态。

因此,施工前计算的重点应放在提高主缆、吊索、加劲梁段的无应力尺寸或长度及鞍座、索夹等预偏量的计算精度上;施工中控制的重点应放在消除悬索桥主塔、主缆的施工误差对加劲粱架设、合龙、线形控制的影响上。

2、工程概况与项目特点

2.1工程概况

XXX长江公路大桥位于安徽省东部,起自巢湖市和县姥桥镇省道206,接规划中的XXX至合肥高速公路,跨江后进入XXX市,终点止于XXX市当涂县牛路口(皖苏界),与规划中的XXX至溧水公路(江苏段)相接,路线全长约36.14公里。其中跨江主体工程长11公里,南岸接线长19.49公里,北岸接线长 5.65公里,项目总投资约70.8亿元。XXX长江公路大桥左汊悬索桥两跨主缆跨度

为1080m,矢跨比为1/9,背缆跨度为360m,中、边塔顶处主缆JD高程均为+178.3m,主缆理论散索点高程均为+30.0m,两根主缆横桥向中心间距为35m。吊索设置于两个主跨,标准间距16m,加劲梁为流线型扁平钢箱梁结构,全宽38.5m(含风嘴),结构布置图见图1。

图1XXX长江公路大桥总体布置图(单位:m)XXX长江公路大桥与长江上普遍采用双塔悬索桥不同,为最大限度地减少

建桥对繁忙航道的影响,并为桥下水域提供长远的发展空间,该桥创新设计了三塔两跨式悬索桥型。目前,国内外建成的悬索桥,多以双塔结构为主,而三塔两

跨式悬索桥型,其设计施工技术难度大,科技含量高。

2.2项目特点

三塔悬索桥是在两塔悬索桥主跨的中部支起一个主塔以减轻主缆和两端锚

碇受力的全新结构形式,中主塔在纵向只是一个通过鞍座支承主缆的竖向支点。

与两塔悬索桥相比,虽然都是以悬索为承重结构的桥梁,但因为多了一个中塔和一个主跨,结构受力特征显然不同,决定了上部结构施工控制具有不同要求和特点。

XXX长江公路大桥主桥采用三塔两跨悬索桥桥型方案,且其钢箱梁采用了

中塔固结设计,施工没有现成的经验可循,大桥在建设过程中将会遇到很多技术

难题。本桥具有以下特点,施工控制过程中应对本桥的这些特点加以重点的考虑

和研究:

(1)本桥为三塔悬索桥,在施工过程中与双塔悬索桥相比较柔,中间桥塔

的安全性在任何阶段都应作为重点监控内容。

(2)本桥桥塔较高,其三维几何状态受日照、温度变化的影响较大。实际

施工的塔顶标高和平面位置应通过多次监测并找出状态变化规律才能确定。

(3)本桥中塔为钢塔,桥塔偏位受日照、温度变化影响较大,主缆索股架

设在晚上架设后,白天可能会在桥塔偏位的作用下在索鞍上产生较大的不平衡

力,应验算不平衡力是否会引起主缆索股在鞍槽内滑移。

(4)本桥为多跨悬索桥,猫道也有其特殊性,猫道的架设线形控制及其对

桥塔的影响也应纳入重点监控范围。

(5)除了常规悬索桥主缆架设过程应研究温度变化、桥塔偏位、弹性模量、制造误差等对主缆线形的影响外,还应研究两个主缆主跨跨中相对高差对结构线

形和内力的影响。

(6)相邻钢箱梁间的转角关系在钢箱梁工厂组拼完后就固定下来,钢箱梁

在现场吊装完成后如果要对其进行调整将带来三个问题:局部出现不可消除的折角;线形出现波浪;焊缝宽度过大。因此施工监控应介入钢箱梁的制造线形的确定。

(7)本桥钢箱梁在中塔处塔梁固结,钢箱梁吊装及如何确保成桥线形与内

力一致是一个难度较高的技术课题。

(8)本桥为三塔悬索桥,应对钢箱梁吊装方案作详细而深入的研究,如梁

段吊装顺序问题、梁段吊装的不对称性问题,确定合理的索鞍顶推方案。

(9)悬索桥施工过程中具有强烈的几何非线性,温度、风速、施工和制造

误差等对线形影响非常敏感,应对构件的无应力尺寸(主缆、吊索、加劲梁)作

为主要的控制参数。

3、施工监控的目的与目标

悬索桥是一种结构合理的桥梁型式,它能使材料充分发挥各自的特长,这一

特点使悬索桥成为大跨度桥梁中最具竞争能力的桥型之一。对桥梁结构的施工过程进行合理的施工控制是使桥梁施工结果与设计要求尽可能接近的重要保障。与其它桥型相比,悬索桥相对较柔,施工过程中工况变化繁多,形状变化很大,结

构具有强烈的几何非线性,加之悬索桥不可能像斜拉桥那样在后期对误差进行调整,所以施工监控是很有必要的,应该重视悬索桥的监控。

一般说来,对于悬索桥,设计人员在图纸上设计出的是成桥理想状态,要想

将这种状态在现场科学地、安全地、经济地在工地上得以实现,就必须依靠严格的施工监控。大跨度悬索桥的成桥线型和内力是否与设计一致及是否合理,是与施工过程的合理安排与严格控制紧密相关的;根据实际的施工工序,按照已完成工程的结构状态和施工过程,收集现场的参数和数据,对桥跨结构进行实时理论分析和结构验算,分析施工误差状态,采用变形预警体系对施工状态进行安全度

评价和风险预警,根据分析验算结果调整控制参数,预测后续施工过程的结构形状,提出后续施工过程应采取的措施和调整后的设计参数,保证施工完成的结构与设计结构不论是内力或线形都满足设计的精度要求,最大可能地接近设计理想状态,确保成桥后的结构内力和线形符合设计要求,这是施工监控的目的。

XXX长江公路大桥是世界上跨径最大的三塔悬索桥。三塔悬索桥与世界上已

有的大跨径两塔悬索桥有很大的不同,虽然都是以悬索为主要承重结构的桥梁,

但由于三塔悬索桥较之两塔悬索桥多了一个主跨,其总体结构行为、满足诸如行车功能等使用要求对结构特征指标的要求等,与传统的两塔悬索桥均不相同,是全新的桥梁结构形式。因此,对于三塔悬索桥上部结构安装施工监控技术的也提

出了新的要求。

该桥属于异常复杂的超静定结构,其内力和线形随温度、桥塔偏位、恒载误差、施工误差相当敏感。施工阶段随桥梁结构体系和荷载工况不断变化,结构内力、线形和变形亦随之不断发生变化,每一阶段的误差如果不能消除,累计后将影响成桥后结构的受力及线形。由于各种因素的直接和间接的影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致。与其它桥型相比,

悬索桥在施工过程中的线形管理较难,更容易产生施工误差,其原因如下:悬索桥是由刚度相差很大的结构单元(塔、主缆、梁、吊索)组成的超静

定结构,与其它形式的桥梁相比,在荷载下具有强烈的几何非线性。

设计参数的取值不可能与实际结构所反映的一致。例如结构的自重、截面

尺寸、混凝土弹性模量、施工荷载等均是具有随机性的几何及物理参数,与设计值相比将或多或少的有所变化;

悬索桥结构的几何形状对温度比较敏感,外界的温度变化将引起悬索桥几

何形状和吊索拉力的改变。

主缆的架设长度对悬索桥结构的几何形状非常敏感,架设长度误差将引起

悬索桥几何形状的较大改变。

跨度变化对悬索桥结构的几何形状非常敏感,架设过程中的桥塔偏位将引

起悬索桥几何形状的较大改变。

环境因素诸如湿度、摩擦、风载的影响;

施工误差的影响;

结构计算模型简化和计算误差的影响;

测量、测试误差的影响。

上述大多数因素的影响在设计阶段一般没有也无法完全考虑和计及,只有在施工过程中根据结构的实际参数和通过监测得到的反应予以考虑。若不在施工过程中实施有效控制,就有可能由于误差的积累致使成桥后结构的整体受力状态及

线形严重偏离设计目标而影响结构的可靠性。国内外悬索桥施工过程中由于施工控制方案及调整控制措施不当,会出现常见的以下几类问题:

主缆锚跨索力不均匀;

吊索索力不均匀;

主缆线形、加劲梁误差较大;

加劲梁呈明显波浪起伏状,使行车舒适度下降,并会引起桥梁的使用寿命

缩减;

索鞍不能复位或者桥塔纵向偏位大;

为了确保设计图纸上的悬索桥能够安全而经济地在工地上得到实现,保证桥梁顺利修建,消除上述误差的影响,严格避免上述问题的出现,施工监控是很有必要的,必须采用合理的施工控制方法。通过对设计图纸和设计意图的深入理解,对全桥进行系统的理论分析,在充分了解其受力性能和施工工艺的基础上,获取全桥的理论设计数据,建立上部结构计算机施工监控仿真系统。通过现场监控测

斜拉桥、悬索桥施工安全控制要点(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 斜拉桥、悬索桥施工安全控制要 点(最新版)

斜拉桥、悬索桥施工安全控制要点(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.斜拉桥和悬索桥(吊桥)的索塔施工,属于高处或超高处作业,应根据结构、高度及施工工艺的不同情况,制定相应的专门的安全施工组织设计、安全作业指导书(操作细则)。 一般情况,混凝土、钢筋混凝土及预应力混凝土索塔,参照墩台施工及滑模施工的安全控制要点。 电气设备和线路的绝缘必须良好,各种电动机械必须接地,接地电阻不得大于4Ω。电气设备和线路检修时,应先切断电源。 施工现场要有防火措施并备有消防器材,要防止电焊火花溅落在易燃物料上; 2.索塔分节立模浇筑前,应搭好脚手架,扶梯、人行道及护栏。每层脚手架的缝隙处,应设置安全网。两层间距不得超过8m; 3.浇筑塔身混凝土,应按规定挂好减速漏斗及保险绳,漏斗上口应堵严,以防石子下落伤人; 4.塔底与桥墩为铰接时,施工中,必须将塔底临时固定。塔身建

斜拉桥桥面施工方案

桥面施工方案 一、工程概况: 桥面总宽度及组成:本桥采用上下行分离式桥面,桥面总宽度为26m,桥面组成:0.5米(护栏)+11.5米(行车道)+2.0米(中间分隔带)+11.5米(行车道)+ 0.5米(护栏)=26.0米。 大桥的上部构造为7×30m预应力混凝土连续组合箱梁、共56片。 二、总体施工进度和劳动力安排 桥面施工计划在2004年2月20日开工,计划在2004年4月30日桥面施工施工完毕。 人员机械配备:混凝土工15人,钢筋工18人,木工8人,勤杂人员2人,两台容量8m3混凝土运输车,EA-05混凝土泵一台,平面阵捣梁一台。 三、施工准备 1、对便道进行修整,达到运输车辆能够顺利通行。 2、对桥面进行清洗并对纵横向湿接缝梁体混凝土进行彻底凿毛,露出新鲜混凝土。 3、全面复测,组织测量人员对郑沟大桥中线及桥面标高等进行全面复测,如有误差进行调整,调整后再进行桥面铺装。 4、组织施工技术人员进行图纸审核,对现场工人及工班长进行桥面铺装施工技术交底。 四、施工要点 施工顺序:横向湿接缝施工纵向湿接缝施工箱梁顶板负

弯矩张拉孔道压浆和封锚桥面铺装层的施工解除临时支座 1、桥梁纵、横向湿接缝施工 a、本桥纵、横向湿接缝模板采用厂制定型钢模,钢模出厂后经验收各部尺寸合格后,模板表面打磨光滑并涂油。模板与梁体端头采用外支撑顶紧,并夹双面海绵胶带,保证模板不漏浆、不变形。横向湿接缝模板采用厂制定型钢模,采用吊挂式施工,模板安装时,其吊杆必须顶紧,上横杆安装牢固可靠。 b、接头钢筋采用绑扎搭接,并部分焊接,焊接接头长度单面焊不小于10倍的钢筋直径,双面焊不小于5倍的钢筋直径。 c、梁体端头混凝土面必须凿毛,凿除浮浆,露出混凝土石子。 d、梁体端头顶板负弯矩部分预应力扁波纹管的连接,采用比原直径稍大一点的波纹管套接,套接后用胶带纸密封。 e、混凝土浇注。混凝土采用C50号混凝土,其坍落度80~180mm,其浇注时操作人员必须是混凝土施工的熟练工人,掌握混凝土施工工艺,保证混凝土密实的前提下,振动棒绝对不能捣动波纹管。 f、浇注完成后,加强混凝土的养护,保证接缝混凝土的质量。施工完毕,墩顶清理干净。 2、桥面顶板负弯距张拉及压浆 桥面顶板负弯距张拉采用穿心式千斤顶单根张拉,张拉采取双控,以伸长量进行校核,张拉顺序为T1、T2号钢束对称单根张拉,其中T1的伸长量为10.9cm,T2的伸长量为6.2cm。张拉施工人员全为经验丰富张拉作业人员。张拉时报请监理工程师,经批准后进行张拉。张拉时作好张拉施

大跨度预应力混凝土斜拉桥施工监控方法及内容

大跨度预应力混凝土斜拉桥施工监控方法及内容 发表时间:2016-04-05T14:40:42.500Z 来源:《基层建设》2015年21期供稿作者:王兴球[导读] 中山市地方公路管理总站大桥合龙精度高,建成后大桥线形优美,成桥线形与设计目标线形吻合一致。 中山市地方公路管理总站 摘要:以大南沙特大斜拉桥为背景,根据斜拉桥的结构特点确定施工控制内容,通过对几何变形、索力、应力和温度的监测确保施工的顺利进行。 关键词:斜拉桥;施工工艺;索力;应力监测;施工控制 Abstract:Using Nansha Xiaolan River cable-stayed bridge as the background,according to the structural characteristics of cable-stayed bridge,based on the supervisory control of geometric deformation,cable force,stress and temperature to insure the construction process. Keywords:cable-stayed bridge;construction technology;cable force;stress monitoring;construction control 一、工程概况 大南沙特大桥主桥为(90+200+90)m三跨双塔双索面预应力混凝土梁斜拉桥,全长380m。为单向行驶右幅桥,斜拉索布置在主梁两侧成空间双索面。桥幅布置为:(1.2m索带)+(0.5m防撞护栏)+(14.5m车行道)+(0.5m防撞护栏)+(1.2m索带)=全桥总宽17.9m。主梁采用预应力混凝土肋板式结构,主梁纵向按全预应力砼结构设计,横梁按部分预应力砼A类构件设计,桥面板按钢筋砼构件设计。为确保该施工阶段的安全与质量,必须对其整个施工过程进行有效监测,才能获得理想的测试结果。 二、施工控制 监控过程是与施工一一对应的。在各施工阶段中,通过各项测试取得反结构态的各种参数,和理论设计值相比较,发现偏离,采取相应措施及时纠偏,防止误差积累,所以监控过程是以理论设计值为基准的维持动态平衡的过程。其测试内容包括:施工记录,线形测量,索力测量,温度场测量,应力应变测量和高程测量。下面文章将分别讲述各项测试内容。 三、几何变形监测 几何形态监测的目的主要是获取(识别)已形成的结构的实际几何形态,其内容包括标高、跨长、结构或拉索的安装位置、结构变形或位移等。它对施工控制、预报非常关键。 目前用于桥梁结构几何形态监测的主要仪器包括水准仪、经纬仪、全站仪等。通常采用测距精度和测角精度不低于规定值(如±(2mm+2ppm)和±2’’)的全站仪并结合固定高亮度发光体照准目标作为需要全过程动态跟踪监测的三维几何形态参数(如索塔位置、主索鞍位置、主缆索和加劲梁线形、索夹位置等;斜拉桥索塔位置、斜拉索锚固位置、加劲梁平面位置(线形)等;桥梁中轴线线形、连续刚构桥墩位、悬臂施工主梁的平面位置等)的监测手段;采用精密水准仪和全站仪测量等作为一般的标高、变形(位)等的监测手段。 为确保桥梁施工放样和几何控制的精度,施工现场一般都建立有高精度的施工平面和高程控制网。在上述控制网的基础上,根据结构几何形态参数监测工作的可实现性和现场操作便利性要求,在进行局部控制网优化处理后,便可形成一个形变监测控制网,并以此作为结构几何形态参数监测的控制基准。形变监测控制网的精度满足设计、规范以及施工控制本身的要求。可以对监控控制点进行加密其精度确保满足施工监控的要求。 中山大南沙特大桥主梁线形控制实施过程如下:在悬臂施工过程中,通过施工控制计算预测,对各悬臂梁段的施工同步发布立模标高预拱度指令,指示下一阶段主梁预抬高度、做好挂篮变形等的施工测量工作,同步应力测试工作;实时施工误差分折、参数调整等,在整个悬臂浇筑期间,监控组共发布节段立模标高控制指令多份。 经过现场分析,每经过一个节段,都要准确的对建成的模型进行分析和计算模型对照,利用模糊模型预测机制,得出下个节段的理论应该的预拱度。 这一计算工作在桥梁整个施工过程中需要实时调整这些调整既包括各个直接的实时测贵参教也包括根据实侧数据通过反位分析等而得的辨识参数,还要视实际施工情况对计算模型、计算方法及计算内容等做出调整。 四、索力监测 大跨度桥梁采用斜拉桥、悬索桥等缆索承重结构越来越广泛,特别是跨径在500m以上时基本上是斜拉桥、悬索桥一统天下。斜拉桥的斜拉索、悬索桥主缆索及吊索索力是设计的重要参数,也是施工监控实施中需要监测与调整的施工控制参数之一。索力量测效果将直接对结构的施工质量和施工状态产生影响。要在施工过程中比较准确地了解索力实际状态,选择适当的量测方法和仪器,并设法消除现场量测中各种误差因素的影响非常关键。可供现场索力量测的方法目前主要有以下几种:(1)压力表量测法(2)压力传感器量测法(3)磁通量法(4)光纤光栅法(5)振动频率量测法。 4.1.施工要点 在实施振动频率法量测索力时,由于实际索股的振动是复杂的,即便是采用人工激振的方法也不一定能激发出索股基频的自由振动,而随机环境的激振更使索股产生复合振动,同时索股的刚度、挠度、斜度、温度对测量频率也是有一定的影响,因此,需在随机信号测量与处理技术基础上,对环境随机激振的振动信号进行测量与处理分析,获得被测索股的频率参数,再进行索力的分析计算,并进行数据对比分析,获得不同长度索股的修正系数,然后再进行大量的索力量测。 4.2.索力调整 斜拉桥成桥恒载索力将直接决定其内力分布,索力的合理与否是衡量设计优劣的重要标准之一。通过斜拉桥索力优化,可以得到合理的成桥索力,称之为设计索力。然而,设计索力还必须通过施工来实施。一般情况下,斜拉索是在不同的施工阶段逐根进行张拉安装的。在每一个施工阶段中,如何确定当前拉索的张拉力,以确保施工完毕时所有斜拉索的索力都达到设计索力,就是确定斜拉索施工张拉力的任务。确定斜拉桥施工张拉力的方法有:(1)倒退分析法(2)正装迭代法。

浅谈斜拉桥施工控制方法与发展

浅谈斜拉桥施工控制方法与发展 发表时间:2016-06-29T10:53:37.043Z 来源:《基层建设》2016年5期作者:曾余清[导读] 另外通过适时的检测可以了解关键测点,断面的内力和变形,为桥梁的施工能顺利的进行保驾护航。 攀枝花学院土木与建筑工程学院攀枝花市 617000 摘要:施工监控的目的就是消除误差[5],使桥梁能够安全的合龙,使结构的受力在可以控制范围以内,在施工和运营中不发生过大的挠度和变形,避免对桥梁结构产生重大影响的错误。另外通过适时的检测可以了解关键测点,断面的内力和变形,为桥梁的施工能顺利的进行保驾护航。 关键词:斜拉桥;施工监控;方法;发展 一、斜拉桥合龙施工与控制的重要性和发展情况 斜拉桥超静定次数高,结构非线性特征明显,而且施工阶段的内力和线形对成桥以后的内力和线形的影响也很大,再加上合龙时候可能会伴有结构体系的转换,施工难度大,内力和线形的变化也比较复杂,难以控制。为了保证施工中机构的安全,稳定性,和消除那么多的不安全和不确定因素,达到安全合龙。斜拉桥的施工监测与控制已经成为了大跨度斜拉桥建造工作中很重要的一部分。 我国对桥梁合龙控制技术方面的研究起步较晚[5],20世纪50年才开始关注施工中的结构内力和线形的控制。1982年首次运用国外控制理论建成了上海柳港大桥,在建设中进行了梁挠度进行计算和控制,以及索塔偏位的监测控制。从此我国拉开了现代桥梁施工控制理论的研究序幕。上世纪八十年代后期初步形成了斜拉桥施工监测与控制的完整理论和系统。控制分析的方法是对桥梁的施工进行软件模拟,按照桥梁施工的实际施工步骤施加工况,或者按照设计的成桥状态步步倒拆,来分析结构的受力,并且通过现代的监测技术,对实测数据和理论研究数据对比分析,桥梁诸多参数的识别和估计,对桥梁的结构内力和线形按照理想状态进行了控制和调整,实现了施工和控制的良好配合。最后达到了内力和线型的控制目标。使得施工的时候有目标可参,施工监测与控制理论用于本桥取得的巨大成功,也为以后桥梁的施工控制的发展走出了最艰难的一部,里面的控制方法,计算方法以及监测方法都促进这桥梁更高,更大,跨域能力更强的方向发展,之后我们也出现了世界上跨度领先,技术领先的桥梁。这些桥梁的成功在于有更先进的施工方法和施工控制理论[3]。 近年来,随着施工技术的不断完善,施工监测和控制手段越来越多,斜拉桥施工控制的研究在我国取得了一定的进展,发展到现在形成了比较成熟的理论,按设计—施工控制理论计算—施工—监测—参数识别—预报的程序[2],对桥梁的施工全过程以及运营过程进行了监测控制。 在未来,斜拉桥控制技术在随着有限元软件技术的进步会逐渐的成熟,完善。随着计算水平的提高,高强度材料的研发,以后的桥梁肯定会朝着跨度大,自重轻的方向发展,同时给施工带来的难度会更大,所以对单索面斜拉桥的施工技术,施工监控技术的自动化,精确化研究就显得非常重要。 二、斜拉桥施工控制的方法和发展 根据桥梁的施工方法,桥梁施工难度,以及设计等级的不同,可以选择不同的控制手段。常见的施工控制方法,主要有:开环控制(确定性控制),(反馈控制)闭环控制,以及自适应控制[3]。 ⑴开环控制 在控制之前预先建好桥梁的有限元模型,然后根据模型计算出成桥阶段荷载作用下的理想内力和变形。并且根据施工步骤计算出结构的预拱度,最后就是施工单位按照既定的预拱度进行施工。这种控制比较简单,它不用考虑施工过程中桥梁的实际受力状态。这是早期桥梁施工控制的方法,这种方法也可以用在中小型桥梁的施工控制中[3]。 ⑵闭环控制 在很多大跨度桥梁的实际控制中,开环控制已经不能满足控制的精度的时候,是很难达到控制精度的。在复杂的桥梁结构施工时,结构状态误差的影响会随着施工的进行而越来越大[5],这些参数误差会慢慢叠加起来。可能会导致桥梁合龙以后的成桥状态与设计的几何线形和内力出现较大的偏差。 为了解决这样的误差,我们又想到了在施工中把测量的状态与理论的状态做比较,把上一阶段的结构状态作为下一阶段的初态的叠代。这样的控制把结构的实际状态经反馈计算来确定而形成了一个闭环反馈系统[3]。 ⑶自适应控制 自适应控制是现代控制中常用的方法,比较适合大跨度和复杂结构桥梁的控制,自适应控制系统在闭环控制的基础上分析了计算参数与实际参数之间有偏差,然后通过对参数的估计和修正,并且将识别以后的参数用于下一节段的实时结构分析、重复循环,经过若干个施工阶段以后就会使得参数的取值趋于合理,使得软件模拟计算更适应于实际情况[3]。 国内外施工控制的技术发展还不完善,还有待进一步的研究,以上主要的控制方法都有没考虑到或者存在不合理之处。随着软件技术和计算机技术,以及新型材料的发展,桥梁设计和施工的要求也越来越高,桥梁的线形也成为了衡量一座桥好坏的标准之一,桥梁控制的方法和重点也应该在创新中不断的发展和完善。比如监控测量仪器更精密,测量更准确。另外数据采集更接近实际。其次是监控测量的自动化程度的提高,也会给施工监控的精度带来新进步。未来为了适应桥梁的发展要求,自动化科学化的控制方法是工程施工控制的发展方向[6]。 结语:随着软件技术和计算机技术,以及新型材料的发展,监控测量仪器更精密,测量更准确,数据采集更接近实际,监控测量的自动化程度的提高,也会给施工监控的精度带来新进步。未来为了适应桥梁的发展要求,自动化科学化的控制方法是工程施工控制的发展方向 参考文献: [1]刘士林.斜拉桥 [M].北京:人民交通出版社,2002 [2]韦远思.浅论桥梁施工质量的控制[J].科技资讯,2010,(27). [3]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000

钢箱梁斜拉桥施工控制要点分析

钢箱梁斜拉桥施工控制要点分析 摘要:以永川长江大桥施工监控为实例,分析介绍钢箱梁斜拉桥施工控制要点。 关键词:斜拉桥钢箱梁施工控制 1.前言 斜拉桥以其简洁优美的外形及良好的跨越能力被广泛地采用。近些年来, 随着交通量的剧增, 桥面宽度及跨径均呈上升趋势, 传统的混凝土斜拉桥已难以满足实用要求, 大跨钢箱梁斜拉桥也因此应运而生了。但该类桥的施工控制与以往的混凝土斜拉桥的施工控制存在着较大差异, 故而施工控制必须因桥而异, 采取有针对性的措施。本文结合永川长江大桥施工控制实践, 通过分析大跨钢箱梁斜拉桥结构本身的固有特点,介绍了在此类桥的施工控制过程中应注意的几个问题。 2. 工程概况 永川长江大桥主桥全长1008m,起止桩号分别为K40+663.650~K41+678.800,为64+2×68+608+2×68+64m的7跨连续半漂浮体系的双塔混合梁斜拉桥,边跨设置2个辅

助墩和1个过渡墩(台),桥梁荷载等级为公路I级,中跨为钢箱梁,边跨为预应力混凝土梁,两种梁顶板宽都为35.5m。主桥桥型布置见图1-1 全桥桥型布置示意图 索塔:索塔基础采用24根直径2.5m的钻孔灌注桩;索塔承台为八边形,平面最大尺寸为42×23.25m、厚6.0m的整体式实体混凝土结构。索塔为花瓶形,索塔高196.7m(32号)/206.4m(33号),索塔共设计上、中、下三道横梁。 主梁:主梁采用混合梁,边跨为混凝土梁,采用PK 断面,整幅箱梁由两个倒梯形的边箱及连接两个边箱的横隔板构成,材料为C55 混凝土。箱梁总宽37.6m(含风嘴装饰板),中心梁高3.501m,标准断面顶、底板厚35cm,腹板厚50cm;中跨为钢箱梁,采用与混凝土断面相适应的边箱封闭式流线型扁平钢箱梁,材料为Q345-D。宽37.6m(含风嘴),高3.5m,标准节段长15.5m。每隔3.1m 设一道横隔板。中跨主梁采用等高度的封闭式流线型扁平钢箱梁,桥面设置双向2%的横坡,采用正交异性钢桥面板。 斜拉索:斜拉索采用平行钢丝斜拉索,双索面扇形布置,每一扇面由19对斜拉索组成,全桥共设76对斜拉索,最大索长332.086m,最大索重24.2t,张拉最大索力约4400kN。斜拉索锚固于上塔柱内,1号斜拉索锚固于锚块上,其余均采用钢锚梁形式锚固。技术标准: ⑴公路等级:双向六车道高速公路+两侧人行道;

斜拉桥工程施工程序施工技术方案

斜拉桥工程施工程序施工技术方案 索塔施工 2.1 简述 本桥主桥为塔梁固结体系,索塔采用曲线H 型索塔,塔柱曲线半径275.4m(外侧),箱形断面,索塔全高107m(从承台顶面算起);其中上段塔柱39.8m,中段塔柱48.6m,下段塔柱18.6m(含塔柱底座)。 上段塔柱塔柱断面为等截面,顺桥向尺寸6.5m,横桥向尺寸4.6m,空心矩形截面,顺桥向壁厚1.0m,横桥向壁厚0.9m。 中段塔柱断面为变截面空心矩形截面,顺桥向尺寸6.5~7.972m,横桥向尺寸4.6m,顺桥向壁厚1.2m,横桥向壁厚1.1m。 下段塔柱也为变截面空心矩形截面,顺桥向尺寸7.972~9.0m,横桥向尺寸5.5m,顺桥向壁厚1.2m,横桥向壁厚也为1.1m。 索塔横向设两道横梁,上横梁的顶板和底板均为半径12m 的弧形,采用空心截面,横梁宽度5.5m,横梁中心处高度15m,临近索塔处高度为30m,壁厚0.6m,由于结构造型的需要,横梁正中间开设半径 3.5m 的圆洞;下横梁梁为适应桥面横坡需要,采用变高度结构,横梁中部梁高4.5m,宽6.0m,顶底板厚为0.6m,腹板厚为1.5m。横梁为预应力混凝土A 类结构,共设置了34 束15-25 预应力钢束。预应力钢束锚固于塔柱外侧并采用深埋锚工艺,预应力管道采用塑料波纹管。下横梁兼作主梁0 号梁段,形成塔梁固结体系。 斜拉索通过钢锚梁锚固于上塔柱,为抵消斜拉索的不平衡水平分

力,在上塔柱斜拉索锚固区内配置了Φ32 的精轧螺纹粗钢筋。 索塔采用C50 混凝土,为便于施工、定位,索塔内设置劲性骨架,劲性骨架须按照图纸要求与钢牛腿壁板进行焊接连接,塔顶设置避雷针及导航灯,塔内设检修爬梯。 2.2 施工难点及重点 (1)施工测量及控制 塔高107m,测量控制难度大,需采用多种测量手段进行放样及施工控制测量,确保索塔施工精度要求。索塔施工测量及控制的重点和难点有:外形轮廓曲线控制、钢锚梁安装定位及精确控制;索塔结构应力和变形控制,包括多种工况以及日照温差、风荷载等因素影响下的索塔各部位的应力状态和变形控制。 (2)钢锚梁施工 斜拉索锚固区钢锚梁制作、安装精度要求高,单节钢锚梁重4.5t,钢锚梁安装定位难度大,定位精度将直接影响斜拉索安装质量结构受力和耐久性。 (3)高性能混凝土施工 索塔混凝土最大泵送高度约107m,砼强度等级、抗裂及耐久性要求高,泵送难度大。混凝土配合比设计及浇筑工艺是确保索塔混凝土质量的关键,尤其是上塔柱钢混结合段混凝土施工难度大。 2.3 总体施工工艺 (1)塔柱起步段采用搭设脚手管支架作施工平台,立模现浇,第一段高度2.2m,第2个节段高度4.5m;其余节段采用爬模施工,标

斜拉桥施工阶段监测监控的内容及方法

斜拉桥施工阶段监测监控的内容及方法 桥梁的建设是一项结构复杂,技术要求高的大型工程,随着科技的进步,桥梁的跨度、内部结构、施工的工艺愈来愈复杂和先进。出于保证桥梁工程质量的目的,在施工过程的各个阶段都要进行监控。而斜拉桥作为桥梁中的一项重要工程,对于施工的监测监控的要求就更加严格,内容也更加的具体。 一、施工监测监控的意义 对于斜拉桥施工阶段的监测和监控是一项非常复杂的工作,主要由两方面构成:一是施工中数据的采集,也就是监测;二是对数据的整理和分析,就是监控。监测功能主要是通过事先在高塔、梁和拉索这些工程部分上放置各种性能不同的传感器和测量仪器来完成数据的收集,其中包含工程的几何参量以及力学的参量。监控功能则是要通过电子计算机,对获得的数据行进分析整理,进而得出下一阶段的工程施工参数。工作人员在将两种结果进行整合分析,对于施工中出现的桥梁内力与外形的偏差进行矫正,保障工程的安全有效运行以及桥梁的外观美感。 二、施工监测监控的组织管理构成 施工阶段的监测与监控是一项集数据测量、数据计算、数据分析和决策于一体的综合性工作,在人员的组织上必须要完善合理,人员技术过硬,具有很强的工作经验和能力。通常情况下,施工的监测监控组织都是由多名高级技术人员组成的,一般会有一个工程质量监测顾问组,人数大约在5人左右,其中要有教授级的高级技术工作指导,此外依据桥梁项目的施工内容,还应该组建施工监测监控的项目组。此外,因为工程的工艺十分复杂、工程量庞大、人员众多,所以在组织施工监测监控组织的同时,还应该集合工程的高级技术人员就工程的管理、设计、施工和检测等工作进行协调指导。 三、施工阶段监测工作内容及方法 1、监测监控的实施目的 斜拉桥的施工有自己独特的结构特征,对于成桥线形有很高的要求,施工中每一个节点的坐标变化都会对桥梁的内力结构分配产生影响。如果出现桥线形偏离了设计值的问题,就会导致内力值与设计值不相符合。此外,斜拉桥的主梁、索塔以及拉索之间的刚度存在很大差距,会受到来自拉索垂度、天气、温度、施

浅析特大斜拉桥施工监控措施

龙源期刊网 https://www.wendangku.net/doc/6e11424838.html, 浅析特大斜拉桥施工监控措施 作者:黄晓初 来源:《中国新技术新产品》2013年第07期 摘要:当今社会,高强度材料和预应力技术高速发展,与之俱来的是,斜拉桥得到了广 泛应用。在桥梁的建设中,施工监控是桥梁安全性和施工效益的保障,尤其是对于一些特大斜拉桥,对施工监控工作提出了新的标准,本文分析特大斜拉桥施工监控的内容和计算方法,探讨特大斜拉桥施工监控的应用措施。 关键词:特大;斜拉桥;施工监控;措施 中图分类号:U44 文献标识码:A 斜拉桥外观优美,结构坚固,经济成本适中,已经成为了大跨径桥梁的首先类型之一,斜拉桥通常都是高次超静定结构,对施工精确度的要求很高,从选定施工方案开始,每一环节都必须严格依照施工方案进行准确计算。然而,由于受到预应力、拉索垂度、施工荷载、温度变化、混凝土变化等因素的干扰,很容易导致施工误差,而且这种误差,很可能会随着施工进展而继续扩大,影响桥梁的安全性,因此,在特大斜拉桥施工过程中,必须要严格做好施工监控工作,确保选择最完善的施工工艺,对每个环节都进行精确的检测,确保施工方向按照正确的轨道前进,保障桥梁的使用安全性。 一、监控内容 施工控制工作需要准确的检测结果作为依据,在斜拉桥整个施工过程中的每一个阶段,都必须要认真检测各项施工参数,计算出施工活动中出现的误差,然后在依据误差值,通过精确的计算来调整下个阶段的施工参数。对于特大斜拉桥施工建设而言,施工检测主要包括线形检测,索力检测,应力检测,温度检测几个环节。 (一)桥梁位移及变形 1.主梁标高和挠度 主梁标高的检测结果,是控制斜拉桥线形的重要依据,为了避免温度给检测结果带来的干扰,斜拉桥主梁标高的检测工作最好在清晨日出之前进行,以保障检测结果具有足够的精确性。主梁挠度的监测结果,也是控制斜拉桥线形的重要依据,在实际检测时,可以在各个施工块件上全部都设置三个对称的观测点,在测量主梁竖向挠度的同时,测量主梁的横向变形。 要对斜拉桥的主梁进行检测,还要保证在每个悬臂施工阶段,都在以下六个环节分别对主梁进行检测:第一,浇筑块件之前;第二,浇筑块件之后;第三,预应力张拉之前;第四,预

斜拉桥线性控制方案

京沪高速铁路津沪、京沪联络线特大桥 线形控制方案 一、现浇段与挂篮预压方案 1、预压目的 预压的目的一是消除支架(挂篮)及地基的非弹性变形,二是得到支架(挂篮)的弹性变形值作为施工预留拱度的依据,三是测出地基沉降,为采用同类型的桥梁施工提供经验数据。 2、支架(挂篮)的预压方法 在安装好底模钢模及侧模后,可对支架(挂篮)进行预压。预压采用袋装砂子预压,加载顺序为与混凝土浇筑顺序相同(先底板(挂篮由端部向根部进行,0#段浇筑从两端开始向墩顶进行)浇至底板(靠腹板处)倒角顶,后腹板、再顶板)。满载后持荷时间不小于24h,预压重量为梁 的120%。加载时按照最大重量的50%、80%、100%、120%及其余可能使用到的重量设计荷载分级加载(采用吨包装砂,按每袋砂子1000kg,起重机吊装),加载时注意加载重量的大小和加荷速率,使其与地基的强度增长 相适应,地基在前一级荷载作用下,观测地基沉降速度已稳定后,再施加下一级荷载,特别是在加载后期,更要严格控制加载速率,防止因整体或局部加载量过大、过快而使地基发生剪切破坏。地基最大沉降量不能超过10mm/d;水平位移不能大于4mm/d。在预压前对底模的标高观测一次,在每加载一级后预压的过程中平均每2小时观测一次,观测至沉降速度已降到0.5~1.0mm/d为止,将预压荷载按加载级别卸载后再对底模标高观测一次,预压过程中要进行精确的测量,要测出梁段荷载作用下支架将产生的弹性变形值及地基下沉值,将此弹性变形值、地基下沉值与施工控制中

提出的因其它因素需要设置的预拱度叠加,算出施工时应当采用的预拱度,按算出的预拱度调整底模标高。同时要注意在支架外侧2米处设置临时防护设施,防止地表水流入支架区,引起支架下沉。测出各测点加载前后的高程。加载用编织袋装砂子过磅后均匀堆码,用吊车分码吊至支架顶,由人工配合摆放。加载中由技术人员现场控制加载重量和加载位置,避免出现过大误差而影响观测结果。 3、现浇段测量方法 (1)模板支架安装稳固后,测量箱梁底标高、支架底托标高、顶托标高 和原地面标高,并在相应位置标识清楚。 (2)预压后,在上述测量标识位置,重新测量箱梁底标高、支架底托标高、顶托标高和原地面标高,算出预压值。 (3)每次测量3个断面 (4)不同的测量点位分别记录计算。 4、挂篮 选择便于观测的3个断面进行。 5、数据的记录与处理 见观测数据处理表(附表) 塑形变形(非弹性变形)为最后沉降量。 塑性变形=预压前底模高程—卸载后底模高程 弹性变形为:加载100%时累计沉降量-塑形变形。 6、数据的采用 根据以上实测的变形值,结合设计标高和梁底预拱度值,确定和调整 梁底标高。梁底立模标高=设计梁底标高+支架弹性变形值(以底模处计)+

斜拉桥大桥施工方案

第一章工程概况 1.1、工程项目简介 **长江公路大桥起始于江北岸合安高速公路**接线处,穿越**市区,在**市东门汽车轮渡处跨越长江天堑及南北岸部分区域,终点与318国道新改建路线相交,全长5.9km。该项目已由国家计委以计基础[2001]1186号文批准建设。 **长江公路大桥的主桥施工标段划分为A标(北)和B标(南)。A标段起止桩号为K20+118.5~K20+638.5全长520m,. 1.1.1 结构布置 **长江公路大桥主桥为50+215+510+215+50米五跨双塔双索面钢箱梁斜拉桥,全长1040m。 主桥采用全焊扁平流线形封闭钢箱梁,倒Y型双塔,空间双索面扇形钢绞线斜拉索。 钢箱梁采用主梁梁高3.0m(桥中心线处),梁上索距15m型式。 斜拉索每个索面16对斜拉索,在梁上锚固标准间距为15m,在塔上锚固间距为2.0~2.5m,与索塔的连接采用钢箱式锚固,与主梁的连接采用锚箱式锚固。斜拉索在塔上张拉。 索塔采用钢筋砼倒Y形形式,锚索区上塔柱为单箱双室整体多边形截面,塔体空心结构。索塔总高179.126m,桥面以上塔高与主跨比为0.2695。 主桥两座索塔均采用双壁钢围堰大直径钻孔状复合基础,双壁钢围堰外径32m,内径29m,壁厚1.5米。钢围堰高度A标为51.0m。承台为直径29m的圆形承台,高6.0m。承台顶面高程-3.25m。承台下为18根直径3.0m的大直径钻孔灌注桩,呈梅花形排列,桩间中心距为6.0m。封底采用水下C25号砼厚7.0m。 主桥边跨及辅助跨处各设一个辅助墩和一个过渡墩,其中辅助墩为双柱式实心结构,基础为8根直径3m的大直径钻孔灌注桩;过渡墩为分离式实体结构,基础为4根直径2m的钻孔灌注桩。 1.1.2 主要技术标准 桥梁等级:四车道高速公路特大桥 设计行车速度:100km/h 桥面宽度:31.2m,四车道桥面标准宽度26.0 m,中间设2.0m宽中央分隔带,两边各设0.5m防撞护栏。主桥斜拉桥两边增设锚索及检修宽度。 荷载标准:汽车——超20级,挂车——120 桥面最大纵坡:3.0% 桥面横坡:2% 设计洪水频率:1/300 地震烈度:基本烈度Ⅵ度,按Ⅶ设防 通航水位:最高通航水位16.930m,最低通航水位2.480m 通航净空:最小净高24m,主通航孔双向航宽不小于460m,边通航孔单向航宽不小于204m 1.2 桥址区自然条件 1.2.1地理位置

斜拉桥及悬索桥施工安全控制的要点示范文本

斜拉桥及悬索桥施工安全控制的要点示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

斜拉桥及悬索桥施工安全控制的要点示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 】1.斜拉桥和悬索桥(吊桥)的索塔施工,属于高处或 超高处作业,应根据结构、高度及施工工艺的不同情况, 制定相应的专门的安全施工组织设计、安全作业指导书 (操作细则)。 一般情况,混凝土、钢筋混凝土及预应力混凝土索 塔,参照墩台施工及滑模施工的安全控制要点。 电气设备和线路的绝缘必须良好,各种电动机械必须 接地,接地电阻不得大于4Ω。电气设备和线路检修时,应 先切断电源。 施工现场要有防火措施并备有消防器材,要防止电焊 火花溅落在易燃物料上;

2.索塔分节立模浇筑前,应搭好脚手架,扶梯、人行道及护栏。每层脚手架的缝隙处,应设置安全网。两层间距不得超过8m; 3.浇筑塔身混凝土,应按规定挂好减速漏斗及保险绳,漏斗上口应堵严,以防石子下落伤人; 4.塔底与桥墩为铰接时,施工中,必须将塔底临时固定。塔身建筑到一定高度后,必须设置风缆。斜缆索全部安装并张拉完成后,方可撤除风缆并恢复铰接; 5.斜拉桥的塔底与墩固结时,脚手架必须在墩上搭设。当索塔与悬臂段同时交错施工,并分层浇筑索塔时,脚手架不得妨碍索塔的摆动; 6.施工期间,应与当地气象站建立联系,密切注意天气变化,大风、雷雨时,应立即停止作为。 高处作业,其风力应根据作业高处的实际风力确定。如未设风力测定仪,可按当地天气预报数值推测作业高处

斜拉桥施工监控方案及施工控制措施[优秀工程方案]

斜拉桥施工监控方案及施工控制措施 一、项目概况 1.1、桥梁概况 项目区位置,起终点,桥梁形式、跨径、桥面布置.主要结构构件:主梁、主塔、拉索等的材料、形式、规格、约束状况等. 1.2、施工控制概况 (1)确保施工过程中的结构安全,施工过程中和竣工后结构的内力状况满足设计要求; (2)成桥的线型、索力逼近设计状态; (3)精度控制和误差调整的措施不对施工工期产生实质性的不利影响; (4)主梁合拢前两端标高误差、轴线偏差能够保证顺利合拢. (5)控制及监测精度达到施工控制技术要求的规定. 1.3、监控依据 《公路桥涵设计通用规范》(JTG D60-2015) 《公路斜拉桥设计细则》(JTG/T D65-01-2007) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路桥涵钢结构木结构设计规范》(JTJ025-86) 《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 《公路桥涵施工技术规范》( JTG/T F50-2011) 《公路工程质量检验评定标准》(JTGF801-2012) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 《工程测量规范》(GB50026-2007) 《公路桥涵地基与基础设计规范》JTG_D63-2007 1.4、目的和意义 由于各种因素的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差.若对偏差不加以及时有效的调整,就会影响成桥的内力和线形.施工控制的目的,就是根据实际的施工供需,以及现场获取的

参数和数据,对桥跨结构进行实时误差分析和结构验算;对每一施工阶段,根据分析验算结果给出结构应力及变形等施工控制参数,分析并调整施工误差状态,建立预警体系对施工状态进行安全评价和控制.这样,才能保证结构的受力和变形始终处于安全合理的范围内,成桥后的结构内力和线形符合设计要求. 二、监控方案与内容 2.1 施工监控的内容 2.1.1 施工监控参数的选取 (1)索塔轴线、应力;通过施工过程中塔顶偏位的几何测量和关键截面的应力监测确保索塔的线形及应力满足要求. (2)主梁线形、应力; 通过调整拼装位置、索力等手段来确保主梁高程、轴线等线形指标满足要求;主梁应力可以作为误差控制的辅助指标和结构施工过程安全监测的预警指标. (3)斜拉索索力; 通过建立完善的误差调整与参数识别体系并采用多种方式对索力进行监测来保证斜拉索索力误差满足要求. (4)主梁合拢前大气温度与合拢端标高变化的对应关系. 2.1.2 施工监控计算内容 (1)施工过程安全复核计算 (2)拉索、主梁无应力制造线形/长度的复核计算 (3)施工控制误差分析及参数识别 (4)施工控制实时计算 (5)重要临时结构的计算 2.1.3 施工监控现场实测参数 (1)实际材料的物理力学性能参数:混凝土、斜拉索、索塔或凝土的弹性模量及容重 (2)实际施工中的荷载参数: 1)恒载:a. 主梁自重 b.二期恒载(桥面铺装、人行道板,栏杆、路缘石、灯柱、过桥管线 等) 2)施工荷载 3)临时荷载

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

斜拉桥施工方案新

石家庄市仓安路斜拉桥施工组织设计 1、工程概况 1.1 斜拉桥概况 石家庄市仓安路斜拉桥位于石家庄市内,跨越京广电化铁路和铁路编组场。该桥主桥跨度55+125+55 m,为双塔双索面PC斜拉桥式,采用塔墩固结、主梁连续全飘浮体系。主梁采用双主肋断面,梁高1.7m,肋宽2m,桥面宽28.9m,梁上索距6.3m,全桥斜拉索4×9对,共72根。 见图T1-1仓安路跨线桥总体布置图、图T1-2斜拉桥布置图 斜拉桥主塔为“H”型,塔高55m,采用Φ1500钻孔桩基础,每个塔柱下部13根桩,桩长62m;主塔承台尺寸为1050cm×1375cm×450 cm;塔柱为5200×300cm 箱形断面,壁厚顺桥向90cm,横桥向60cm。主塔下横梁采用预应力钢筋混凝土,上横梁为钢管桁架。边墩立柱为200×200cm钢筋混凝土结构,下为Φ1200钻孔灌注桩,桩长为56m。 1.2主要工程数量 主要工程数量表表1-1

1.3工程特点 1.3.1地下管线繁多。斜拉桥主塔及边墩下分布自来水管道、雨水管道、电信电缆等各种管道,施工期间必须对地下管线进行勘探、搬迁或保护,增大了工作量。 1.3.2施工难度大。斜拉桥主跨跨越电气化京广铁路和铁路编组场,且主塔的位置靠近既有铁路的地道桥,为保证铁路正常的运营,需对铁路地道桥基础进行加固处理,施工难度很大。 1.3.3高空作业多,防电要求高。 1.3.4地面交通繁忙,施工干扰大。仓安路交通较为繁忙,来往车辆川流不息,施工期间必须精心组织,合理布置,并对交通进行合理疏导。 1.4施工方案的制定与审核 斜拉桥设计单位:上海市政工程设计研究院 施工方案制定单位:湖南路桥建设集团公司-中铁十七局集团有限公司联营体方案审核专家组:上海同济大学夏建国、洪国智(教授、斜拉桥专家)、石家 庄铁道学院王道斌、吴力宁(教授、斜拉桥专家)、石家庄 市项目办技术顾问张长生、刘容生(原市政设计研究院总工) 2、斜拉桥施工方案 斜拉桥桩基施工采用循环旋转钻孔,泥浆护壁,导管法灌注水下混凝土;主塔及边墩立柱采用翻模技术施工;下横梁采用军用梁及军用墩搭设支架现浇混凝土;上横梁则在工厂分节预制,运至工地拼装成整体,用塔吊提升至安装位置后,与塔柱上的予埋管件焊接;主梁的两边墩处的6.65m段和边跨在支架上浇筑;主梁0号段在托架上浇筑;1-7号(主跨)段采用短平台、复合型牵索挂蓝悬臂浇筑法施工,每段浇筑6.3m,待7号段和7′号段浇筑完成后,先在支架上进行边跨段的合龙,再悬浇8、9号段,最后利用挂蓝完成主跨合拢段的浇筑;斜拉索由塔吊、千斤顶等进行安装。

斜拉桥施工监控报告记录

斜拉桥施工监控报告记录

————————————————————————————————作者:————————————————————————————————日期:

斜拉桥施工监控报告 一、项目概况 1.1、桥梁概况 项目区位置,起终点,桥梁形式、跨径、桥面布置。主要结构构件:主梁、主塔、拉索等的材料、形式、规格、约束状况等。 1.2、施工控制概况 (1)确保施工过程中的结构安全,施工过程中和竣工后结构的内力状况满足设计要求; (2)成桥的线型、索力逼近设计状态; (3)精度控制和误差调整的措施不对施工工期产生实质性的不利影响; (4)主梁合拢前两端标高误差、轴线偏差能够保证顺利合拢。 (5)控制及监测精度达到施工控制技术要求的规定。 1.3、监控依据 《公路桥涵设计通用规范》(JTG D60-2015) 《公路斜拉桥设计细则》(JTG/T D65-01-2007) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路桥涵钢结构木结构设计规范》(JTJ025-86) 《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《公路工程质量检验评定标准》(JTGF801-2012) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 《工程测量规范》(GB50026-2007) 《公路桥涵地基与基础设计规范》JTG_D63-2007 1.4、目的和意义 由于各种因素的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差。若对偏差不加以及时有效的调整,就会影响成桥

相关文档
相关文档 最新文档