文档库 最新最全的文档下载
当前位置:文档库 › 生物化学与生物物理进展

生物化学与生物物理进展

生物化学与生物物理进展
生物化学与生物物理进展

生物化学在工业及环境方面的应用

生物化学在工业及环境方面的应用 化工10904 杨庆序号18 学号200903052 生物化学是运用化学的理论和方法研究生命物质的边缘学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。从早期对生物总体组成的研究,进展到对各种组织和细胞成分的精确分析。目前正在运用诸如光谱分析、同位素标记、X射线衍射、电子显微镜一级其他物理学、化学技术,对重要的生物大分子(如蛋白质、核酸等)进行分析,以期说明这些生物大分子的多种多样的功能与它们特定的结构关系。 生物化学在发酵、食品、纺织、制药、皮革等行业都显示了威力。例如皮革的鞣制、脱毛,蚕丝的脱胶,棉布的浆纱都用酶法代替了老工艺。近代发酵工业、生物制品及制药工业包括抗生素、有机溶剂、有机酸、氨基酸、酶制剂、激素、血液制品及疫苗等均创造了相当巨大的经济价值,特别是固定化酶和固定化细胞技术的应用更促进了酶工业和发酵工业的发展。70年代以来,生物工程受到很大重视。利用基因工程技术生产贵重药物进展迅速,包括一些激素、干扰素和疫苗等。基因工程和细胞融合技术用于改进工业微生物菌株不仅能提高产量,还有可能创造新的抗菌素杂交品种。一些重要的工业用酶,如α-淀粉酶、纤维素酶、青霉素酰化酶等的基因克隆均已成功,正式投产后将会带来更大的经济效益。据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置

已达75 m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM (Archer Danie1s Mid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。 环境污染是指人类直接或间接地向环境排放超过其自净能力的物质或能量,从而使环境的质量降低,对人类的生存与发展、生态系统和财产造成不利影响的现象。具体包括:水污染、大气污染、噪声污染、放射性污染等。随着科学技术水平的发展和人民生活水平的提高,环境污染也在增加,特别是在发展中国家。环境污染问题越来越成为世界各个国家的共同课题之一。处理环境污染的方法日新月异,近年来生物化学的方法越来越得到人们的重视。 在生物化学技术发展的同时,污水化学处理技术也在不断发展,其主要特点是投资省、运行稳定、操作灵活、除磷效果好,但不能去除溶解性有机污染物,出水水质也难以达到二级处理的排放要求,运行费用往往偏高。 当代污水处理技术的最重要发展趋势就是生物处理与化学处理的结合,二者

基因组学探究的应用前景-生物化学研究进展

基因组学探究的应用前景-生物化学研究进展20世纪90年代初,以完成人类基因组全序列测定和注释为核心任务的人类基因组计划在美国的领导下兴起.自1999年中国加入人类基因组计划到现在的10年时间里,中国基因组学得到了快速的发展,建立了先进的基因组学技术平台,并出色完成了多项重大基因组科学研究项目,对我国生命科学各个领域的发展产生了重要影响下面是小编搜集整理的基因组学探究的应用前景-生物化学研究进展的论文范文,欢迎大家阅读参考。 摘要:当代所研讨的基因组学其实是一门研讨基因组的构造框架,功用及表达产物的一门学科,据研讨基因的构造不只是蛋白质颗粒,还有许多构造复杂功用的DNA,包括三个的亚范畴,还包括构造基因组学,功用基因组学和遗传基因组学分子基因组学。最近研讨,基因组学在分子微生物药物,真菌、细菌、病毒基因,养分基因方面都有所研讨,前景是非常黑暗的而且这也是一个非常具有生命生机的新兴学科。可以造福人类,促进人类文明开展。值得去讨论。 关键词:基因组使用基因构造前景 基因组学的使用前景与剖析 养分基因组学 养分基因组学是全新的一门学问。爲什麼这麼说呢。道理很复杂,缘由也很明白,那就是以前没有人研讨过。大家都晓得的,养分是很重要的一种物质关系到我们的身心安康,所以从基因组学来研讨养分的学科是很有必要的。从中不但可以很好地效劳于人类还能是人类生

活的更好,最初还有利于基因组学的开展。养分基因组学研讨次要是养分干涉模型。随着这些功用弱小开展,全体性生物检测技术并结合了先进计算机技术生物信息学的办法的不时改良和进步,不时推进养分基因组学的开展。 毒理基因组学研讨 大家都晓得生物生活在自然界中都需求一定的进攻手腕。有些植物爲了进攻本身退化出来毒理作用,可以经过此作用来杀害入侵者或许自卫。从基因组学的方向可以研讨毒理基因组学,不但可以研讨毒理基因本身还可以爲传统毒理学检测提供更多的实际根据,阐明有毒物质怎样制毒的缘由,从而使风险评价的不确定性大大降低,目前虽然毒理基因组学只能作爲风险评价的参考,但是作爲风险评价提供所需无力的实际根据和精确的预测将会依赖独立基因组学。 乳酸菌基因组学研讨 大家都晓得酵糖类时次要的代谢产物是乳酸。乳酸杆菌是一个十分重要的菌种,所以研讨它的生理习性是十分有利于人类的,基因组学不但可以从分子角度爲我们提供研讨办法,还可以从基因角度来诠释,从事研讨乳酸杆菌的迷信家表示这是一门很有意义的学科,目前各国都在研讨这门学科以及其所带来的影响。如今迷信家重要研讨的是细菌能表达产物来自基因组的表达,所以增强研讨乳酸菌的基因组可以更好的理解基因组的表达调控翻译转录,从而破解其奥妙。 微生物药物菌功用基因组学研讨 微生物是自然界中的一支奇特的生物,形体很小却作用和影响很

生物化学研究进展论文蛋白质提纯

生物化学研究进展 作业 题目蛋白质的提取、纯化 姓名 学号 班级 专业

题目:蛋白质的提取、纯化 姓名: 专业: 摘要:本文综述了蛋白质的提取原理及方法,蛋白质纯化的意义、基本原则及方法,蛋白质纯化的前景展望。 关键词:提取原理提取方法水溶液有机溶剂双水相萃纯化意义基本原则方法溶解度带电性质电荷数配体特异性前景 正文: 1 蛋白质样品的提取 1.1蛋白质样品的提取原理 提取蛋白质的基本原理主要有两方面:一是利用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离目的,如电泳、超速离心、超滤等。 1.2 蛋白质样品的提取方法 1.2.1 水溶液提取法稀盐和缓冲系统的水溶液是提取蛋白质最常用的溶剂。通常用量是原材料体积的1—5倍,提取时需要均匀地搅拌,以利于蛋白质的溶解。提取的温度要视有效成分性质而定,一般在低温(5℃以下)下操作。另外,蛋白质和酶是两性电解质,提取液的pH值应选择在偏离等电点两侧的pH值范围内。一般来说,在避免极端pH值的前提下,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液提取。此外,稀浓度可促进蛋白质盐溶,并且盐离子与蛋白质部分结合,能够保护蛋白质不易变性。因此可在提取液中加少量NaC1等中性盐,一般以0.15 mol/L浓度为宜。 1.2.2 有机溶剂提取法一些和脂质结合牢固或分子中非极性侧链较多的蛋白质和酶都不溶于水、稀盐溶液、稀酸或碱,可溶于乙醇、丙酮和丁醇等有机溶剂,具有一定的亲水性和较强的亲脂性,并且不会残留在产品中,容易蒸发除去,密度低,与沉淀物质的密度差大,便于离心分离。但不足的是用有机溶剂来提取蛋白质比用盐析法更容易引起蛋白质变性。 1.2.3 双水相萃取法双水相萃取法是依据物质在两相间的选择性分配,当物质进入双水相体系后,由于表面性质、电荷作用、各种力(疏水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同,进而分离目的蛋白。此方法可在室温下进行,双水相中的聚合物还可以提高蛋白质的稳定性,收率较高。对于细胞内的蛋白质,需要先对细胞进行有效破碎。目的蛋白常分布在上相并得到浓缩,细胞碎片等固体物分布在下相中。采用双水相系统浓缩目的蛋白,会受聚

生物化学重点及难点归纳总结

生物化学重点及难点归纳总结 武汉大学生命科学学院生化的内容很多,而且小的知识点也很多很杂,要求记忆的内容也很多.在某些知识点上即使反复阅读课本,听过课后还是难于理解.二则由于内容多,便难于突出重点,因此在反复阅读课本后找出并总结重点难点便非常重要,区分出需要熟练掌握和只需了解的内容. 第一章: 氨基酸和蛋白质 重点:1.氨基酸的种类和侧链,缩写符号(单字母和三字母的),能够熟练默写,并能记忆在生化反应中比较重要的氨基酸的性质和原理 2.区分极性与非极性氨基酸,侧链解离带电荷氨基酸,R基的亲水性和疏水性,会通过利用pK值求pI值,及其缓冲范围. 3.氨基酸和蛋白质的分离方法(实质上还是利用蛋白质的特性将其分离开来,溶解性,带电荷,荷质比,疏水性和亲水性,分子大小(也即分子质量),抗原-抗体特异性结合. 4.蛋白质的一级结构,连接方式,生物学意义,肽链的水解. 第二章: 蛋白质的空间结构和功能 重点: 1.研究蛋白质的空间结构的方法(X射线晶体衍射,核磁共振光谱) 2.构筑蛋白质结构的基本要素(肽基,主链构象,拉氏图预测可能的构造,螺旋,转角,片层结构,环形构象,无序结构) 3.纤维状蛋白:角蛋白,丝心蛋白,胶原蛋白,与之相关的生化反应,特殊性质,,及其功能的原理. 4.球状蛋白和三级结构(特征及其原理,基元及结构域,三级结构揭示进化上的相互关系.蛋白质的折叠及其原理,推动蛋白质特定构象的的形成与稳定的作用力,疏水作用,氢键,静电相互作用,二硫键. 5.寡聚体蛋白及四级结构(测定蛋白质的亚基组成.,寡聚体蛋白存在的意义及其作用 原理) 6.蛋白质的构象与功能的关系(以血红蛋白和肌红蛋白作为例子进行说明,氧合曲线,协同效应,玻尔效应) 第三章: 酶 重点:1.酶的定义及性质,辅助因子.活性部位 2.酶的比活力,米氏方程,Vmax,Km,转换数,Kcat/Km确定催化效率,双底物酶促反应动力学.对酶催化效率有影响的因素,及其作用机理. 3.酶的抑制作用,竞争性抑制剂,非竞争性抑制剂,反竞争性抑制剂,不可逆抑制剂,及其应用. 4.酶的作用机制:转换态,结合能,邻近效应,酸碱催化,共价催化及其原理,会举例.溶菌酶的作用机制,丝氨酸蛋白酶类及天冬氨酸蛋白酶类的结构特点及作用机制. 5.酶活性调节,酶原激活,同工酶,别构酶,多功能酶和多酶复合物. 及其与代谢调节的关系及原理.

生物化学论文

生物化学 摘要:生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是新陈代谢和自我繁殖。构成这种特殊运动形式物质基础是蛋白质、核酸,糖类、脂类、维生素、激素、萜类,卜啉生物分子等。正是这些生物分子之间的相互协调作用才形成了丰富多彩的生命现象。生物化学就是研究生物体的物质组成和生命过程中的生物分子化学变化的一门科学。在此,化学与生物的界限已经很模糊了。随着生命科学的飞速发展,生物化学研究的内容在深度和广度上也在迅速地拓展,并已渗透到生物学科内外许多相关学科,产生了生物有机化学、酶工程、蛋白质工程、代谢工程、蛋白质组学、结构生物学、化学生物学等新领域和新知识。但其基本内容主要涉及蛋白质、糖类、脂类、核酸和数以万计生物分子的结构与功能、代谢与调控等内容。 关键词:生物化学Biochemie 生物大分子人类基因组酶促反应DNA 生物化学因研究的物质不同,可分为蛋白质化学、核酸化学、脂化学、糖化学、酶学等分支;研究各种天然物质的化学称为生物有机化学;研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。 生物化学的发展大体可分为三个阶段: 第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。其中菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肚键连接的。1926年萨姆纳制得了脲酶结晶,并证明它是蛋白质。 此后四、五年间诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。与此同时,人们又认识到另一类数量少而作用重大的物质——激素。它和维生素不同,不依赖外界供给,而由动物自身产生并在自身中发挥作用。肾上腺素、胰岛素及肾上腺皮质所含的甾体激素都在这一阶段发现。此外,中国生物化学家吴宪在1931年提出了蛋白质变性的概念。1 第二阶段约在20世纪30~50年代,主要特点是研究生物体内物质的变化,即代谢途径,所以称动态生化阶段。其间突出成就是确定了糖酵解、三羧酸循环以及脂肪分解等重要的分解代谢途径。对呼吸、光合作用以及腺苷三磷酸(ATF)在能量转换中的关键位置有了较深入的认识。当然,这种阶段的划分是相对的。对生物合成途径的认识要晚得多,在50~60年代才阐明了氨基酸、嘌岭、嗜啶及脂肪酸等的生物合成途径。 第三阶段是从20世纪50年代开始,主要特点是研究生物大分子的结构与功能。生物化学在这一阶段的发展,以及物理学、技术科学、微生物学、遗传学、

生物化学工程的研究进展

生物化学工程的研究进展 摘要:生物化学工程是一门由化学、工程学和生物学等学科相互渗透、密切结合而形成的新兴边缘学科,近十余年来,随着对生物反应器、生物传感器、分离纯化设备等的研究,生物反应和分离纯化的动力学模型的建立,以及计算机控制技术,过程的系统分析和技术经济评价等的运用,生物化学工程这门新兴学科也得到了突飞猛进的发展。 关键词:生物化学;生化工程;研究进展 生物化学工程一般称为生化工程,生物化学工程是生物化学反应的工程应用,主要包括代谢工程、发酵工程和生物化学传感器等,生物化学工程和生物医学工程是最初的生物工程学概念,基因重组、发酵工程、细胞工程、生化工程等在21世纪整合而形成了系统生物工程。 生物化学工程的研究内容有很多,主要包括:生化反应器,分离提纯技术与设备,生物传感器、测量与控制,生化过程分析评价与设计放大等内容。下面将主要介绍分离提纯技术与生物传感器的研究进展。 1.分离提纯技术 生物化学反应一般会在稀水中进行,所以浓度会很低,同时又有很多杂质,产出的物质有可能发生反应,甚至连温度也有可能对反应产生影响所以,如何提取和分离出我们所需要的产品就成了我们研究的重点,生物产品的分离技术,除了传统的沉淀法、吸附法、萃取法

和离子交换等方法以外,近年来,又发展了许多新的分离方法,如层析技术和膜分离技术(包括微孔过滤、超滤与反渗析技术),随着生物化学的发展,会有更加高效和具有针对性的方法出现。 2.生物传感器 生物体内的反应是十分复杂的,随着生物体内各种代谢反应的进行,生物体内的各项指标是一直在变化的,如何检测这些指标,使其达到最适于人体的程度,就需要各种生物传感器的帮助,生物传感器是根据酶和微生物细胞对其基质具有专一性而用于分析某一化学物质的工具。是由固定化的生物材料与适当的换能器件密切接触而构成。此换能器件可将生化信一号转换成定量的电或光的信号,其特点是检测速率快、灵敏度高、专一性强和使用简便。0年代,酶电极第一个实现了生物传感器的构型.对它的研究经70年代飞跃后现已进入实用阶段,可以用来测控多种有机物,目前利用复合酶膜制成的多功能酶电极检测鱼肉鲜度或酶的活性已实用化。 随着科技的迅猛发展,各种检测手段不断发展,生化工程会越来越实用,研究不断深入,领域不断拓宽,人类日益增长的需要也会得以满足。 参考文献: [1]朱龙华生物化学工程研究进展 [2]陈红征李菊梅杨洁生物化学工程研究进展及其发展趋势

生物化学课程论文

一前言 免疫球蛋白或称抗体,是以高特异性和亲和力结合抗原的血清糖蛋白,是血清中最丰富的蛋白质之一。具有高度的特异性和庞大的多样性。1968年命名为Imunog lobulin,简称Ig,人类有五种化学上和物理上不同类别的抗体,分别为IgG,IgA,IgM,IgD,IgE。普遍存在于哺乳动物的血液、组织液、淋巴液及外分泌液中。免疫球蛋白在动物体内具有重要的免疫和生理调节作用,是动物体内免疫系统最为关键的组成物质之一。

二本论 2.1免疫球蛋白的基本结构 2.1.1 抗体单位 所有的抗体都有相同的基本的4条多肽链单位:两条轻链(L链)和两条重链(H链)。一条通过二硫键二硫键和非共价相互作用与一条重链结合。同样地,两条重链通过通过共价二硫键以及通过非共价键的亲水的和疏水的相互作用结合在一起。每种免疫球蛋白的L链都含有可变区(V区)和恒定区(C区)。V区包含抗原结合部位而C区决定抗原的命运。 2.1.2亲和力 亲和力是一个抗体结合部位与一个抗原决定簇结合的牢固性。结合常数越高,抗体自抗原分离可能越小。显然,当抗原是一个毒素或病毒,并且必须通过与抗体快速和牢固的结合来中和时,抗体群体的亲和力是关键的。在抗原注入后不久形成的抗体通常对该抗原具有较低亲和力,而后来产生的抗体则有显著的亲和力。 2.1.3 抗体效价和亲合力 一个抗体的效价是它能与之反应的抗原决定簇的最大数量,当对一个抗原有两个或更多的结合部位时,能显著地增加抗体对细菌或病毒上的抗原结合的牢固性。这种结合效应就是亲合力,是多决定簇抗原和针对它产生的抗体之间结合的牢固程度。 2.2抗体类别 免疫球蛋白(Ig)是参与人体体液免疫的生力军,通常有IgG、IgM、IgA、IgD、IgE等五类[1]此外,根据抗原特异性的不同,同一种Ig又可分为若干亚类。不同的抗原具有不同的生物学活性,并通过不同途径进入机体。机体为了抗御这些抗原,不同类型的抗体有分工。免疫球蛋白的多样性非常复杂,除了免疫球蛋白重链和轻链由于恒定区不同而形成不同类型或亚类免疫球蛋白外,重链和轻链可变区的氨基酸组成多样化是决定抗体多样性的重要因素[2]。 2.3免疫生理功能 科学研究证明,免疫球蛋白对许多病原微生物和毒素具有抑制作用。如志贺痢疾菌,弗氏痢疾菌-1,弗氏痢疾茵-6,尔内氏痢疾菌,沙门氏菌,埃希氏大肠杆菌,脆壁类菌体,链球菌,肺炎双球菌,金黄葡萄菌,白喉毒素,破伤风毒素,链球菌溶血素,葡萄球菌溶血素,脑病毒,流感病毒等[3]。 人体免疫活性细胞存在着全部Ig的合成信息,由遗传控制基因编码产生各种Ig,以维持机体的正常免疫[4]。每种免疫球蛋白还具有各自所特有的基本特性与免疫功能。 IgG类免疫球蛋白是血液中最丰富的免疫球蛋白,对血液带有的大多数传染性介质具有较强的免疫力,并且是唯一一种通过胎盘对发育中的胎儿从而对初生婴儿提供被动体液免疫的抗体。有四种不同的IgG亚类,各亚类的重链顺序上略有不同,功能活性上有相应的差异。 IgA主要存在外分泌物中,具有一定的抗感染免疫作用,局部抗菌,抗病毒。是防御

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

关于化学生物学研究前沿进展的综述

关于化学生物学研究前沿进展的综述 姓名:陶宗学号:16010601001 导师:王海华教授 摘要 作为化学领域的一门新兴二级学科,化学生物学已经成为具有举足轻重作用的交叉研究领域,是推动未来生命和化学学科发展的重要动力。本文对近几年来我国化学生物学领域取得的突出进展加以归纳和介绍: (1)基于小分子化合物及探针的研究。利用有机化学手段,通过设计合成一系列多样化的小分子化合物,以这些探针为工具深入开展了细胞生理、病理活动的调控机制、细胞关键信号转导通路及重要靶标、抑制剂和标记物的发现、基于金属催化剂的活细胞生物分子激活等方面的研究;(2)以化学生物学技术为手段,着重发展了针对蛋白质、核酸和糖等生物大分子的合成、特异标记与操纵方法,用以揭示这些生物大分子所参与的生命活动的调控机制;(3)采用信号传导过程研究与靶标发现相结合,以实现“从功能基因到药物”的药物研发模式,发展了药物靶标功能确证与化合物筛选的联合研究策略;(4)以化学分析为手段,发展了在分子水平、细胞水平或活体动物水平上,获取生物学信息的新方法和新技术。这些研究成果极大地推动了我国化学生物学的进步。 关键词:化学生物学; 小分子探针; 生物大分子标记; 信号转导; 药物靶标 近年来,化学生物学已经成为具有举足轻重作用的一门新兴交叉学科,是推动未来生命科学和生物医药发展的关键研究领域。通过充分发挥化学和生物学、医学交叉的优势,化学生物学的研究具有重要的科学意义和应用前景,能够深入揭示生物学新规律,促进新药、新靶标和新的药物作用机制的发现,造福于人类的健康事业,推动社会经济发展。 在化学生物学的发展过程中,相继出现了如组合化学、高通量筛选技术、分子进化等一系列新技术和新方法,为化学与生物学、医学交叉领域的研究注入了新的内涵和驱动力。近年来,化学生物学家以小分子探针为主要工具,对细胞生命现象,尤其是细胞信号转导过程中的重要分子事件和机理进行了深入的研究。与此同时,化学生物学在与包括生物化学、分子生物学、结构生物学、细胞生物学等领域的交叉合作越发深入,研究优势越发明显,这也推动了化学、医学、药学、材料科学和生物学科相关前沿的探索研究。以下对近两年来我国化学生物学领域取得的突出进展进行大致的归纳和介绍。 1 基于小分子化合物及探针的研究

生物化学论文

糖尿病及其治疗 姓名:学号: 引言:随着人们生活水平的提高和物质生活的丰富,加之肥胖、体力活动减少、饮食结构不合理、病毒感染等原因,近年来,我国糖尿病的发病率已明显呈上升趋势。 关键词:糖尿病高血糖胰岛素治疗 一糖尿病的概念 糖尿病是一种代谢内分泌疾病,是由于人体内胰岛素缺乏或相对缺乏所致的一种慢性内分秘代谢性疾病,以糖代谢紊乱为突出表现,未治疗状态下高血糖为主要特征,并伴有蛋白质和脂肪代谢异常。我国早在2000多年前就有该病的记载,早在《黄帝内经》中对糖尿病已有详细的记载,对糖尿病病因病机、临床表现、治则和预后都作出了论述,到汉代在《金匮要略》中把糖尿病作为一个独立疾病来对待,唐代《外台秘要》中最先记载了糖尿病尿甜的表现。而西方国家直到1672年才有土耳其人Areteus较系统的描述了糖尿病的临床表现,他发现了糖尿病患者“尿甜如蜜”,并详细记载了糖尿病患者从开始发病到病情恶化,直至昏迷死亡的临床过程。 二糖尿病的种类 糖尿病(Diabetes)分1型糖尿病和2型糖尿病。在糖尿病患者中,2型糖尿病所占的比例约为95%。 1型糖尿病 其中1型糖尿病多发生于青少年,因胰岛素分泌缺乏,依赖外源性胰岛素补充以维持生命。 2型糖尿病 2型糖尿病多见于中、老年人,其胰岛素的分泌量并不低,甚至还偏高,临床表现为机体对胰岛素不够敏感,即胰岛素抵抗(Insulin Resistance,IR)。 三糖尿病的起因 糖尿病有明显的遗传倾向并存在显著遗传异质性。除少数患者是由于单基因突变所致外,大部分1型糖尿病(胰岛素依赖性糖尿病,insulin-dependent diabetes mellitus,IDDM)及2型糖尿病(非胰岛素依赖性,non-insulin-dependent diabetes mellitus,NIDDM)患者是多基因及环境因子共同参与及相互作用引起的多因子病(也称为复杂病)。 四糖尿病的危害 三多一少(多饮、多食、多尿及体重减轻)是初诊糖尿病者的经典症状。

生物化学论文

酵母蔗糖酶的分离纯化 (浙江工业大学药学院药学1002+工商管理浙江杭州310014) 摘要:本实验采取菌体自溶的方法来破碎细胞壁后经菌体分离提取蔗糖酶液,再在适宜条件下进行热提取,醇提取的方法进行初步提纯。然后采用例子交换柱的对初提取液进行纯化,讨论该方法相较于其他的有哪些优缺点,及实验中的重要步骤。用DNS方法对每步提取后的溶液进行酶活力测定,对比其活力大小。然后利用凯式定氮发及Folin-酚法对每步提取液的蛋白质量,比活力进行测定,对比两种方法各有哪些方面的优势及劣势,并确定最简单有效地蛋白质测定方法。掌握蛋白质标准曲线制定的关键方法。最后,采用SDS凝胶电泳测定蛋白质的分子量。并与其他测点蛋白质分子量测定法分析比较,分析利弊,并提出改进的方法。结合以上每步实验,总结实验过程中提取纯化时的关键步骤及相关问题讨论。实验确定蔗糖酶的最适PH值等于5,最适温度为35度,(待修改) 关键词:蔗糖酶提取纯化酶活力蛋白质含量 1.文献综述 蔗糖酶蔗糖酶(Sucrose,EC 3.2,l_26) 又称转化酶(Invertase)。1828年Dumas等首先指出酵母菌发酵蔗糖时必须有这种酶的存在。蔗糖在蔗糖酶的作用下,水解为葡萄糖和果糖,所以甜度增加。按水解蔗糖的方式,切开蔗糖的B—D一呋哺果还原力增加,又由于生成蔗糖酶可分为从果糖末端EC 3 2.1,2o3 和从葡萄糖末端切开蔗糖的—D一葡萄糖。苷酶( — uc呻 d丑se EC 3.2.1,20)。前者存在于酵母中,后者存在于霉菌中,工业上多从酵母中提取。 蔗糖酶的提取及性质研究经过提取,提纯,酶活力测定,比活力,蛋白质含量及相对分子量测定,不同的实验方法对结果又较大的影响。 1.1 蔗糖酶的提取 现阶段主要存在甲苯自溶法、冻融法、SDS抽提法三种方法。不同的提取方法的提纯环境的要求不同,且提纯效果有一定的差异。不同提取方法的比较如下:表1 不同蔗糖酶提取方法比较 蔗糖酶提取方法提取液酶活性实验优点实验缺陷 甲苯自溶法偏低试剂简单、价格低 廉其耗时长、重复性差、酶活性低 冻融法一般,是甲苯自溶 的534倍。可以确定提取蔗 糖酶的最佳条件 耗时长,操作繁 杂。

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

生物化学应用

生物化学应用简述 而在本世纪,与生物化学有关的最重要的领域主要有以下几个方面:(1) 生物大分子结构与功能的关系; (2) 生物膜的结构与功能; (3) 机体自身调控的分子机理; (4) 生化技术的创新与发明; (5) 功能基因组、蛋白质组、代谢组等; (6) 分子育种与分子农业(工厂化农业); (7) 生物净化; (8) 生物电子学; (9) 生化药物; (10)生物能源的开发等。 二、生物化学在不同领域的应用 生物化学就是在医学、农业、某些工业与国防部门的生产实践的推动下成长起来的,反过来,它又促进了这些部门生产实践的发展。 医学生化 对一些常见病与严重危害人类健康的疾病的生化问题进行研究,有助于进行预防、诊断 与治疗。如血清中肌酸激酶同工酶的电泳图谱用于诊断冠心病、转氨酶用于肝病诊断、淀粉酶用于胰腺炎诊断等。在治疗方面,磺胺药物的发现开辟了利用抗代谢物作为化疗药物的新 领域,如5-氟尿嘧啶用于治疗肿瘤。青霉素的发现开创了抗生素化疗药物的新时代,再加上各种疫苗的普遍应用,使很多严重危害人类健康的传染病得到控制或基本被消灭。生物化学的 理论与方法与临床实践的结合,产生了医学生化的许多领域,如:研究生理功能失调与代谢紊 乱的病理生物化学,以酶的活性、激素的作用与代谢途径为中心的生化药理学,与器官移植与疫苗研制有关的免疫生化等。 农业生化 农林牧副渔各业都涉及大量的生化问题。如防治植物病虫害使用的各种化学与生物杀虫 剂以及病原体的鉴定;筛选与培育农作物良种所进行的生化分析;家鱼人工繁殖时使用的多 肽激素;喂养家畜的发酵饲料等。随着生化研究的进一步发展,不仅可望采用基因工程的技术 获得新的动、植物良种与实现粮食作物的固氮;而且有可能在掌握了光合作用机理的基础上,使整个农业生产的面貌发生根本的改变。 工业生化 生物化学在发酵、食品、纺织、制药、皮革等行业都显示了威力。例如皮革的鞣制、脱 毛,蚕丝的脱胶,棉布的浆纱都用酶法代替了老工艺。近代发酵工业、生物制品及制药工业包 括抗生素、有机溶剂、有机酸、氨基酸、酶制剂、激素、血液制品及疫苗等均创造了相当 巨大的经济价值,特别就是固定化酶与固定化细胞技术的应用更促进了酶工业与发酵工业的 发展。70年代以来,生物工程受到很大重视。利用基因工程技术生产贵重药物进展迅速,包括一些激素、干扰素与疫苗等。基因工程与细胞融合技术用于改进工业微生物菌株不 仅能提高产量,还有可能创造新的抗菌素杂交品种。一些重要的工业用酶,如α-淀粉酶、纤维素酶、青霉素酰化酶等的基因克隆均已成功,正式投产后将会带来更大的经济效益。 国防方面的应用 防生物战、防化学战与防原子战中提出的课题很多与生物化学有关。如射线对于机体的损伤及其防护;神经性毒气对胆碱酯酶的抑制及解毒等。 三、生物化学在实际生活中的作用 1.生物制药 生物药物就是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理与

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

浅谈生物化学发展现状及措施

浅谈生物化学发展现状及措施 生物化学就是研究生物体的化学组成、物质结构和生命活动状态过程中发生的各种化学变化的基础生命学科,简单地来说就是研究生物体的化学变化。现如今,生物化工的应用已涉及到人民生活的方方面面。基于此,本文对生物化学发展和现状进行探析,同时总结了相应的建议措施建议,希望对生物化学的发展有益。 标签:生物化学;发展;建议 1 生物化学的发展历程 1.1 生物化学的研究现状 与其他学科相比,生物化学是一门出现时间较晚的基础学科,它出现在人们的视野里的时间非常短。虽然它的出现时间很短但是却创造出了很多价值对人们的生活非常有帮助。近些年来,经过生物化学科学家们的不懈努力,我国的生物化学已经取得了非常重要的研究成果,使人们能够更加清楚地知道生物大分子的分解代谢、生物的合成途径以及它们之间的相互关系。科学家们还合成了很多种具有生物化学活性蛋白质及基因。人们根据生物化学成功研制出来了克隆技术、人类基因组计划,这些都在不断地推动科技向前发展。 1.2 生物化学的发展历程 人类把生物化学史分为三个部分,从叙述生物化学到动态生物化学最后是机能生物化学,这三部分的生物化学代表生物化学史上的三个不同的阶段,生物化学是从18世纪开始被人们发现的。一开始,舍勒研究生物体的各种化学组成成分,然后发现了生物与化学之间的联系,这为人们之后研究生物化学奠定了基础。在接下来的时间里有各门类的科学家去研究生物化学,他们分别合成了尿素、多肽;发现了核酸;引进生物催化剂的概念;进而又发现了必需氨基酸、必需脂肪酸、各种维生素及生物生命活动不可缺少的微量元素;之后又確定了蛋白质和DNA在遗传中所起到的作用;到今天的基因工程和克隆。生物化学在最近的一百年里飞速发展,给我们的生活带来了翻天覆地的变化。 1.3 现阶段生物化学的研究热点 虽然生物化学出现的时间很短,但是已经取得了很大的进步,生物化学现阶段的研究虽然距离我们预计的目标很遥远,但是生物化学的发展空间是不可估计的。生物化学主要突出对生物大分子物质的合成、结构和功能,生物工程,生物膜结构,物质代谢调控的研究,并且已经取得了一些进步。通过研究生命大分子的物质组成我们知道生命的基本物质是核酸和蛋白质;通过研究生物膜结构,我们懂得了,膜结构是生物体的基本结构之一,细胞间进行物质交换和传递都需要膜结构;通过对生物工程的研究,人类揭开了生命的秘密。现阶段的研究已经取

运动生物化学 论文

运动生物化学专题作业 糖质代谢与运动 专业:体育教育 日期:2015年6月13日

摘要 在人体内糖的主要形式是葡萄糖及糖原。葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖与糖原都能在体内氧化提供能量。 食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液 运输到各组织细胞进行合成代谢很分解代谢。机体内糖的代谢途径主要有葡萄 糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及 其他己糖代谢等。 关键词:葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生、糖代谢异常相关疾病 研究方法:文献资料法 目录 1糖质概述 2糖的分解代谢 3糖原合成和糖异生作用 4糖代谢对人体运动能力的影响

糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程。利用ATP提 供的能量,从基底面被泵出小肠上皮细胞外,进入血液,从而降低小肠上皮细胞内Na+浓度,维持刷状缘两侧Na+的浓度梯度,使葡萄糖能不断地被转运。糖的无氧酵解 当机体处于相对缺氧情况(如剧烈运动)时,葡萄糖或糖原分解生成乳酸,并产生能量的过程称之为糖的无氧酵解。这个代谢过程常见于运动时的骨骼肌,因与酵母的生醇发酵非常相似,故又称为糖酵解。根据反应特点,可将 整个过程分为四个阶段:第一阶段的主要特点是葡萄糖的磷酸化。第二阶段,磷酸乙糖裂解为磷酸丙糖。第三阶段,磷酸丙糖氧化为丙酮酸。第四阶段, 丙酮酸还原为乳酸。葡萄糖的无氧酵解也进行着能量的转换,1分子葡萄糖 在缺氧的条件下转变为2分子乳酸,同时伴随着能量的产生,产生2分子ATP;糖原开始1分子葡萄糖单位糖酵解成乳酸,产生3分子ATP。 糖无氧酵解的意义极大,在无氧或缺氧的条件下,作为糖分解供能的主 要途径。 (1)骨骼肌在剧烈运动是相对缺氧,此时可利用糖的无氧酵解补充能量。(2)登山或旅行中,从平原登上高原的初期。氧气变得比较稀薄,此时也需要糖的无氧酵解来提供能量。 糖的有氧氧化

(完整版)生物化学知识点重点整理

一、蛋白质化学 蛋白质的特征性元素(N),主要元素:C、H、O、N、S,根据含氮量换算蛋白质含量:样品蛋白质含量=样品含氮量*6.25 (各种蛋白质的含氮量接近,平均值为16%), 组成蛋白质的氨基酸的数量(20种),酸性氨基酸/带负电荷的R基氨基酸:天冬氨酸(D)、谷氨酸(E); 碱性氨基酸/带正电荷的R基氨基酸:赖氨酸(K)、组氨酸(H)、精氨酸(R) 非极性脂肪族R基氨基酸:甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)、甲硫氨酸(M); 极性不带电荷R基氨基酸:丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)、谷氨酰胺(Q); 芳香族R基氨基酸:苯丙氨酸(F)、络氨酸(Y)、色氨酸(W) 肽的基本特点 一级结构的定义:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。维持稳定的化学键:肽键(主)、二硫键(可能存在), 二级结构的种类:α螺旋、β折叠、β转角、无规卷曲、超二级结构, 四级结构的特点:肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构 蛋白质的一级结构与功能的关系:1、蛋白质的一级结构决定其构象 2、一级结构相似则其功能也相似3、改变蛋白质的一级结构可以直接影响其功能因基因突变造成蛋白质结构或合成量异常而导致的疾病称分子病,如镰状细胞贫血(溶血性贫血),疯牛病是二级结构改变 等电点(pI)的定义:在某一pH值条件下,蛋白质的净电荷为零,则该pH值为蛋白质的等电点(pI)。 蛋白质在不同pH条件下的带电情况(取决于该蛋白质所带酸碱基团的解离状态):若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。(碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶), 蛋白质稳定胶体溶液的条件:(颗粒表面电荷同性电荷、水化膜), 蛋白质变性:指由于稳定蛋白质构象的化学键被破坏,造成其四级结构、三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变。实质:空间结构被破坏。变性导致蛋白质理化性质改变,生物活性丧失。变性只破坏稳定蛋白质构象的化学键,即只破坏其构象,不破坏其氨基酸序列。变性本质:破坏二硫键 沉降速度与分子量及分子形状有关沉降系数:沉降速度与离心加速度的比值为一常数,称沉降系数 沉淀的蛋白质不一定变性变性的蛋白质易于沉淀 二、核酸化学 核酸的特征性元素:P,组成元素:C、H、O、N、P,核苷酸的组成成分:一分子磷酸、一分子戊糖、一分子碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T、尿嘧啶U),

相关文档