文档库 最新最全的文档下载
当前位置:文档库 › pads元器件thermal pad和antipad设计

pads元器件thermal pad和antipad设计

PCB元器件的布局及导线的布设原则

PCB元器件的布局及导线的布设原则 PCB设计的一般原则要使电子电路获得最佳性能,元器件的布局及导线的布设是很重要的。为了设计质量好、造价低的PCB,应遵循以下一般原则: 1、元器件的布局布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后。再确定特殊组件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。在确定特殊组件的位置时要遵守以下原则: (1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出组件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 (3) 重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏组件应远离发热组件。 (4)对于电位器、可调电感线圈、可变电容器、微动开关等可调组件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 (5)应留出印制扳定位孔及固定支架所占用的位置。根据电路的功能单元。对电路的全部元器件进行布局时,要符合以下原则: 1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 2)以每个功能电路的核心组件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上。尽量减少和缩短各元器件之间的引线和连接。 3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观。而且装焊容易。易于批量生产。 4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时。应考虑电路板所受的机械强度。 2、布线 布线的原则如下; (1)输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。 (2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为0.05mm、宽度为1~15mm 时。通过2A的电流,温度不会高于3℃,因此。导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线。尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。 (3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和

画PCB时元器件的布局

画PCB时元器件的布局 元器件布局 1.根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。按工艺设计规范的要求进行尺寸标注。 2.根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。根据某些元件的特殊要求,设置禁止布线区。 3.综合考虑PCB性能和加工的效率选择加工流程。 加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)——双面贴装——元件面贴插混装、焊接面贴装。 4.布局操作的基本原则 A.遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局。 B.布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件。 C.布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。 D.相同结构电路部分,尽可能采用“对称式”标准布局; E.按照均匀分布、重心平衡、版面美观的标准优化布局;7 Q/DKBA-Y004-1999 F.器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。 G.如有特殊布局要求,应双方沟通后确定。 5.同类型插装元器件在X或Y方向上应朝一个方向放置。同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。 6.发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。 7.元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。 8.需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。当安装孔需要接地时,应采用分布接地小孔的方式与地平面连接。 9.焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。 10. BGA与相邻元件的距离>5mm。其它贴片元件相互间的距离>0.7mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;有压接件的PCB,压接的

PCB电路板设计中元器件布局应遵守哪些原则

PCB电路板设计中元器件布局应遵守哪些原则 要使电子电路获得最佳性能,元器电路板是电子产品中电路元件和器件的支撑件。即使电路原理图设计正确,印制电路板设计不当,也会对电子产品的可靠性产生不利影响。在设计印制电路板的时候,应注意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰设计的要求件的布局及导线的布设是很重要的。为了设计质量好、造价低的PCB,应遵循以下的一般性原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: 1*尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 2*某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。 3*重量超过15g的元器件,应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 4*对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 5*应留出印制板定位孔及固定支架所占用的位置。 对电路的元器件进行PCB布局时,要符合抗干扰设计的要求: 1*按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

PCB板布局布线基本规则

一、元件布局基本规则 1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 2.定位孔、标准孔等非安装孔周围 1."27mm内不得贴装元、器件,螺钉等安装孔周围 3."5mm(对于M 2."5)、4mm(对于M3)内不得贴装元器件; 3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4.元器件的外侧距板边的距离为5mm; 5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。 特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔; 9.其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;

10、"板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或 0."2mm); 11、"贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、"贴片单边对齐,字符方向一致,封装方向一致; 13、"有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、"电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插: 焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 如何提高抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰: (1)微控制器时钟频率特别高,总线周期特别快的系统。

元件布局基本规则

组件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的组件应采用就近集中原则,同时数字电路和模拟电路分开 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件。 3. 卧装电阻、电感(插件)、电解电容等组件的下方避免布过孔,以免波峰焊后过孔与组件壳体短路。 4. 元器件的外侧距板边的距离为5mm。 5. 贴装组件焊盘的外侧与相邻插装组件的外侧距离大于2mm。 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其他方孔外侧距板边的尺寸大于3mm。 7. 发热组件不能紧邻导线和热敏组件;高热器件要均衡分布 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔。 9. 其它元器件的布置 所有IC 组件单边对齐,有极性组件极性标示明确,同一印制板上极性标示不得多于两个方向 出现两个方向时,两个方向互相垂直。 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于 8mil(或0.2mm)。 11、贴片焊盘上不能有通孔,以免焊膏流失造成组件虚焊。重要信号线不准从插座脚间穿过。 12、贴片单边对齐,字符方向一致,封装方向一致。 13、有极性的器件在以同一板上的极性标示方向尽量保持一致 组件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁

印制电路板上的元器件布局和布线原则

1.印制电路板上的元器件布局 首先,要考虑PcB尺寸大小。PcB尺寸过大时,印制线路长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且临近线条易受干扰。在确定PcB尺寸后,再确定 特殊元件的位置。最后,A TMEL代理根据电路的功能单元,对电路的全部元件进行布局。 (1)确定特殊元件的位置 ①尽可能缩短高频元件直接的连线,设法减少它们的分布参数和相互间的电磁干 扰。易受干扰的元件不能相互离得太近,输入和输出元件应尽量远离。 ②某些元件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引起意外短路。带强电的元件应尽量布置在调试时手不易触及的地方。 ⑤质量超过158的元件,应当用支架加以固定,然后焊接。那些又大又重、发热量多 的元件,不宜装在印制板上,而应装在整机的机箱底板上,且考虑散热问题。热敏元件应远离发热元件。 ④对于电位器、可调电感线圈、可变电容器及微动开头等可调元件的布局要考虑整 机的结构要求。若是机内调节,应放在印制板上便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。 ⑤应留出印制板的定位孔和固定支架所占用的位置。 (2)根据电路的功能单元对电路的全部元件进行布局 ①按照电路的流程,安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能地保持一致的方向。 ⑧以每个功能电路的核心元件为中心,围绕它来进行布局。 地排列在PcB上,尽量减少和缩短各元件之间的引线和连接。 ③在高频条件下工作的电路,要考虑元件之间的分布参数。 件平行排列。这样,不但美观,而且焊接容易,易于批量生产。 般电路应尽可能使元 ④位于电路板边缘的元件,离电路板边缘一般不小于2mm。电路板的最佳形状为 矩形,长宽比为3:2或4,3。电路板面尺寸大于200 mm×150 mm时,应考虑电路板所 受的机械强度。 2.印制电路板布线的一般原则· (1)电路中的电流环路应保持最小。 (2)使用较大的地平面以减小地线阻抗。 (3)电源线和地线应相互接近。 (4)在多层电路板中,应把电源面和地平面分开。 (5)在先进的工程设计中,A TMEL代理商优化印制电路板的最好的方法是使用镜像平面。 像平面能够消除由电源或地平面产生的于扰而对电子电路所造成的影响。 总之,应使板上各部分电路之间不发生干扰,能正常工作;对外辐射发射和传导发射应尽可能低;应使外来干扰对板上电路不发生影响。wxq$#

元件布局基本规则.

元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件。 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路。 4. 元器件的外侧距板边的距离为5mm。 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm。 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm。 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔。 9. 其它元器件的布置 所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向 出现两个方向时,两个方向互相垂直。 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm)。 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过。 12、贴片单边对齐,字符方向一致,封装方向一致。 13、有极性的器件在以同一板上的极性标示方向尽量保持一致 元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil 3、正常过孔不低于30mil 4、双列直插:焊盘60mil,孔径40mil 1/4W电阻: 51*55mil(0805表贴);直插时焊盘62mil,孔径42mil 无极电容: 51*55mil(0805表贴);直插时焊盘50mil,孔径28mil 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 1.要有合理的走向:如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。对于是直流,小信号,低电压PCB设计的要求可以低些。所以“合理”是相对的。 2.选择好接地点:小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连等等...。现实中,因受各种限制很难完全办到,但应尽力遵循。这个问题在实际中是相当灵活的。每个人都有自己的一套解决方案。如能针对具体的电路板来解释就容易理解。 3.合理布置电源滤波/退耦电容:一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽

元器件布局与装配方式

元器件布局与装配方式 元器件布局与装配方式,本文将详细为您讲解相关知识,对于电子爱好者是很有帮助的。在设计装配方式之前,要求将整机的电路基本定型,同时还要根据整机的体积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。 具体做这一步工作时,可以先确定好印刷电路板的尺寸,然后将元器件配齐,根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位置。可以先从体积较大的器件开始,如电源变压器、磁棒、全桥、集成电路、三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积较大的元器件布局好之后,小型及微型的电子元器件就可以根据间隙面积灵活布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式三种。 ①直立式。这种安装方式见图1。电阻、电容、二极管等都是竖直安装在印刷电路板上的。这种方式的特点是:在一定的单位面积内可以容纳较多的电子元件,同时元件的排列也比较紧凑。缺点是:元件的引线过长,所占高度大,且由于元件的体积尺寸不一致,其高度不在一个平面上,欠美观,元器件引脚弯曲,且密度较大,元器件之间容易引脚碰触,可靠性欠佳,且不太适合频率较高的电路采用。 ②俯卧式。这种安装方式见图2。二极管、电容、电阻等元件均是俯卧式安装在印刷电路板上的。这样可以明显地降低元件的排列高度,可实现薄形化,同时元器件的引线也最短,适合于较高工作频率的电路采用,也是目前采用得最广泛的一种安装方式。 因2 ③混合式。为了适应各种不同条件的要求或某些位置受面积所限,在一块印刷电路板上,有的元器件采用直立式安装,也有的元器件则采用俯卧式安装。这受到电路结构各式以及机壳内空间尺寸的制约,同时也与所用元器件本身的尺寸和结构形式有关,可以灵活处理。见图3。

pcb布线心得(流程详解、元件布局布线与EMC)

pcb布线心得(流程详解、元件布局布线与EMC) pcb布线技巧,轻松搞定布线、布局,主要包括:一、元件布局基本规则; 二、元件布线规则;为增加系统的抗电磁干扰能力采取措施;3、降低噪声与电磁干扰的一些经验等. 一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集*则,同时数字电路和模拟电路分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);

一次元件布置原则与技巧

一次元件布置原则与技巧 一.一次元件布置确认内容 元件布置注意要点:满足元件自身性能和操作维护及接线方便。 布件人员接到技术图纸后应仔细阅读技术要求和工艺要求,深化理解设计思路。根据技术图纸、电装说明确定箱柜的安装方式、进出线方式、连接电缆截面。 1.根据材料表,原理图整体核对有无缺少元件,电气系统回路有无问题,如有问题及时通知技术部设计人员,进行协商解决确认。 2.确定箱、柜的安装位置:是靠墙安装、还是离墙安装,是独立安装、还是并柜安装,是悬挂式、还是嵌入式,可以确定进出电缆连接的方式和空间及铜排的加工方式,柜间母线系统和导线有无联系,在靠墙安装时元器件都应具备单面拆装条件。 3.确定箱柜体进、出线方式和连接形式: ---进出线方式分为:上进上出、上进下出、下进上出、下进下出。 ---进出线连接形式分为:母线连接和电缆连接。 ---确定进、出线方式和连接形式后,可以确定箱柜内上、下部的元件安装高度和预留用户接线空间。4.根据进、出线连接电缆截面确定是否需要加装过渡铜排和接线端子: ---技术图纸有标注进出线电缆截面的根据元器件接线端子形式确定空间,元件接线端子为卡笼式,电缆能直接压接,预留空间可以适当减少;元器件接线端子为螺钉式,一般用户采用DT电缆接线片连接。根据连接DT电缆接线片的宽度和电器元件接线点的接线能力确定是否需要做过渡铜排,以保证用户电缆在满足载流量的前提下连接方便可靠。 ---塑壳开关在连接电缆时需要制作过渡铜排的: ?西门子塑壳开关:3VL17同3VL27系列开关连接电缆截面超过95mm2(包括95mm2),3VL37连接电缆截面超过70 mm2(包括70 mm2),3VL47系列以上型号开关,都需要加装л接铜排。 ?施耐德塑壳开关:NS160、NS250系列开关连接电缆截面超过95mm2(包括95mm2),NS400系列以上型号开关,都需要加装л接铜排。 ? ABB塑壳开关:S1、S2系列开关连接电缆截面超过50mm2(包括50mm2),S3系列开关连接电缆截面超过70 mm2(包括70 mm2),S4系列以上开关,都需要做л接铜排。 ----微断开关进出线连接状况:

一次元件布置原则

一.一次元件布置确认内容 元件布置注意要点:满足元件自身性能和操作维护及接线方便。 布件人员接到技术图纸后应仔细阅读技术要求和工艺要求,深化理解设计思路。根据技术图纸、电装说明确定箱柜的安装方式、进出线方式、连接电缆截面。 1.根据材料表,原理图整体核对有无缺少元件,电气系统回路有无问题,如有问题及时通知技术部设计人员,进行协商解决确认。 2.确定箱、柜的安装位置:是靠墙安装、还是离墙安装,是独立安装、还是并柜安装,是悬挂式、还是嵌入式,可以确定进出电缆连接的方式和空间及铜排的加工方式,柜间母线系统和导线有无联系,在靠墙安装时元器件都应具备单面拆装条件。 3.确定箱柜体进、出线方式和连接形式: ---进出线方式分为:上进上出、上进下出、下进上出、下进下出。 ---进出线连接形式分为:母线连接和电缆连接。 ---确定进、出线方式和连接形式后,可以确定箱柜内上、下部的元件安装高度和预留用户接线空间。 4.根据进、出线连接电缆截面确定是否需要加装过渡铜排和接线端子: ---技术图纸有标注进出线电缆截面的根据元器件接线端子形式确定空间,元件接线端子为卡笼式,电缆能直接压接,预留空间可以适当减少;元器件接线端子为螺钉式,一般用户采用DT电缆接线片连接。根据连接DT电缆接线片的宽度和电器元件接线点的接线能力确定是否需要做过渡铜排,以保证用户电缆在满足载流量的前提下连接方便可靠。 ---塑壳开关在连接电缆时需要制作过渡铜排的: ?西门子塑壳开关:3VL17同3VL27系列开关连接电缆截面超过95mm2(包括95mm2),3VL37连接电缆截面超过70 mm2(包括70 mm2),3VL47系列以上型号开关,都需要加装л接铜排。 ?施耐德塑壳开关:NS160、NS250系列开关连接电缆截面超过95mm2(包括95mm2),NS400系列以上型号开关,都需要加装л接铜排。 ? ABB塑壳开关:S1、S2系列开关连接电缆截面超过50mm2(包括50mm2),S3系列开关连接电缆截面超过70 mm2(包括70 mm2),S4系列以上开关,都需要做л接铜排。 ----微断开关进出线连接状况: ?对于梅兰日兰C65系列微断开关进、出线截面单根超过35 mm2,西门子5SX2系列开关进、出线截面超过25 mm2,ABB公司S250、S260、S270、GS250系列开关进、出线电缆截面超过 25 mm2在以但又小于50 mm2(不包括50 mm2)电缆情况下采用配带IT接线片满足连接要求, 连接大于50 mm2电缆需要增加接线端子或过渡铜排满足连接。 ---图纸无标注电缆截面的根据开关容量在现行公司选线表中查找出相对应的YJV电缆截面,依据电缆选用的DT电缆接线片宽度和元器件接点确定是否加装л接铜排。 ---根据图纸确定连接主开关上口是否有分支过渡电缆连接,连接导线截面在6mm2及以下可以采用电缆直接连接,超过6mm2的电缆采用铜排过渡或接线端子过渡方式连接。 ---分支开关出线截面超过两根以上10mm2导线(包括两根)需要做过渡铜排。 ---星角启动回路连接电缆超过10mm2以上(包括10mm2)应将出线引到接线端子或出线过渡铜排上。 ---根据过渡铜排的长度和宽度确定是否需要增加支撑,一般长度不超过130mm的铜排可以不加固定点(如绝缘子)支撑。 二.元件布置考虑因素 根据电气原理图、元件布置图进行最终确定元器件的排布位置,考虑元器件自身因素等: 1.元器件的飞弧距离、电气间隙、爬电距离须符合样本要求和工艺要求(在元器件的的飞弧距离内禁止安装元器件)。 2.手动操作元件的操作高度和操作空间具备符合操作方便,操作空间不防碍原则(断路器、刀熔开

电子元器件的布局

电子元器件的布局 6.1.1 元器件的布局原则 电子设备、组件中元器件的布局,应遵循以下原则: (1)元器件布局应保证电性能指标的实现。 (2)元器件布局要有利于布线。 (3) 元器件布局要有利于结构安装。 (4)元器件布局应有利于散热和耐冲击振动。 6.1.2布局时的排列方法和要求 1. 元器件布局时排列方法和要求: ⑴按电路图顺序成直线排列是较好的排列方式 按电路图中各级电路的顺序,将各级电路排列成直线是常见也是较好的排列方式。 电路元器件成直线排列的优点是: ①电路的输入级和输出级距离较远,减少了输入与输出之间的寄生反馈(寄生耦合); ②各级电路的地电流主要在本级范围内流动,减少了级 间的地电流窜扰; ③便于各级电路的屏蔽和隔离。 当电路受到安装空间限制,不能作直线布置时,可采用角尺形(L形)或两排平行布置。 ⑵注意各级电路、元器件、导线之间的相互影响

各级电路之间应留有适当的距离,并根据元器件尺寸合理安排,要注意前一级输出与后一级输入的衔接,尽量将小型元器件直接跨接在电路之间,较重较大的元器件可以从电路中拉出来另行安装,并用导线连入电路。 具有磁场的铁芯器件、热敏元件,高压元件,应正确放置,最好远离其他元件,以免元器件之间产生干扰。 对高频电路为了减少分布参数的影响,相近元器件最好不要平行排列,其引线也不要平行,可互相交错排列(如一个直立,另一个卧倒)。 ⑶排列元器件时,应注意其接地方法和接地点 如果用金属底座安装元器件,最好在底下表面敷设几根粗铜线作地线,地线应热浸锡后焊在底座中央(注意每根粗铜线必须与底座焊牢)。要接地元器件接地时,应选取最短的路径就近焊在粗铜地线上。如果大型元器件安装在其他金属构件上,应单独敷设地线,不能利用金属构件做地线。 在金属底座和金属构件上安装元器件时,应留有足够的安装空间,以便装拆。 如采用印制电路板安装元器件,各接地元器件要就近布置在地线附近,可根据情况采用一点接地和就近接地。 ⑷在元器件布局时应满足电路元器件的特殊要求

PCB板布局原则

PCB板布局原则 1.元件排列规则 1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。 2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。 3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。 4).带高电压的元件应尽量布置在调试时手不易触及的地方。 5).位于板边缘的元件,离板边缘至少有2个板厚的距离 6).元件在整个板面上应分布均匀、疏密一致。 2.按照信号走向布局原则 1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。 2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。 3.防止电磁干扰 1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。 2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。 3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。 4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。 5).在高频工作的电路,要考虑元件之间的分布参数的影响。 4. 抑制热干扰 1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。 2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。 3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。 4 ).双面放置元件时,底层一般不放置发热元件。 5.可调元件的布局 对于电位器、可变电容器、可调电感线圈或微动开关等可调元件的布局应考虑整机的结构要求,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应;若是机内调节,则应放置在印制电路板于调节的地方。

PCB布局原则

PCB布局原则 整体布局主要有如下的一些要求: 流向原则 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向,输入在左边,输出在右边;或者以每个功能电路的核心元件为中心,围绕它来进行布局。 最近相邻原则 布局的最重要的原则之一是保证布线的布通率,移动器件时要注意网线的连接,把有网线关系的器件放在一起,而且能大致达成互连最短,要注意如果两个器件有多个网线的连接时要通过旋转来使网线的交叉最少。 均布原则 放置器件时要考虑以后的焊接,不要太密集,元件分布要尽可能均匀,例如大的器件再流焊时热容量比较大,过于集中容易使局部温度低而造成虚焊。 抗干扰原则 这涉及的知识点就比较丰富了,如数字器件和模拟器件要分开,尽量远离;尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰,易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离;去耦电容尽量靠近器件的VCC,贴片器件的退耦电容最好在布在板子另一面的器件肚子位置等,这一原则涉及到的很多方面都是依靠经验来进行的,读者可以参阅后面关于可靠性设计一章。 热效应原则 1:发热元器件应尽可能远离其它元器件,一般放置在边角,机箱内通风位置,发热器件一般都要用散热片,所以要考虑留出合适的空间安装散热片,此外发热器件的发热部位与印制电路板的距离一般不小于2mm。 2:对温度敏感的元器件要远离发热元器件。 易维修原则 大型器件的四周要留出一定的维修空间(留出SMD返修设备加热头能够进行操作的尺寸),需要经常更换的元件应置于便于更换的位置,如保险管等。 易调节原则 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求,若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。。

布局操作的基本原则

布局操作的基本原则 1、遵照“先大后小,先难后易”的布置原则,即重要的单元电路、 核心元器件应当优先布局. 2、布局中应参考原理框图,根据单板的主信号流向规律安排主要 元器件. 3、布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短; 高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟 信号与数字信号分开;高频信号与低频信号分开;高频元器件 的间隔要充分. 4、相同结构电路部分,尽可能采用“对称式”标准布局; 5、按照均匀分布、重心平衡、版面美观的标准优化布局; 6、器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应 不少于25mil。 7、同类型插装元器件在X或Y方向上应朝一个方向放置。同一种 类型的有极性分立元件也要力争在X或Y方向上保持一致,便 于生产和检验。 8、发热元件要一般应均匀分布,以利于单板和整机的散热,除温 度检测元件以外的温度敏感器件应远离发热量大的元器件。9、元器件的排列要便于调试和维修,亦即小元件周围不能放置大 元件、需调试的元、器件周围要有足够的空间。 10、BGA与相邻元件的距离>5mm。其它贴片元件相互间的距

离>0.7mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大 于2mm;有压接件的PCB,压接的接插件周围5mm内不能有插装 元、器件,在焊接面其周围5mm内也不能有贴装元、器件。11、IC去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源 和地之间形成的回路最短。 12、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。 13、用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。 串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过 500mil。匹配电阻、电容的布局一定要分清信号的源端与终端, 对于多负载的终端匹配一定要在信号的最远端匹配。 14、布局完成后打印出装配图供原理图设计者检查器件封装的正确 性,并且确认单板、背板和接插件的信号对应关系,经确认无 误后方可开始布线。 15、布线优先次序:关键信号线优先:电源、摸拟小信号、高速信 号、时钟信号和同步信号等关键信号优先布线.密度优先原则:从单板上连接关系最复杂的器件着手布线。从单板上连线最密 集的区域开始布线。 进行PCB设计时应该遵循的规则: 地线回路规则;走线的开环检查规则;阻抗匹配检查规则;走线闭环检查规则;走线的分枝长度控制规则;走线长度控制规则;倒角规则;器件布局分区/分层规则;3W规则;走线的谐振规则;走线终

元器件的装配方式与布局

元器件的装配方式与布局 在设计装配方式之前,要求将整机的电路基本定型,同时还要根据整机的体积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。 具体做这一步工作时,可以先确定好印刷电路板的尺寸,然后将元器件配齐,根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位置。可以先从体积较大的器件开始,如电源变压器、磁棒、全桥、集成电路、三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积较大的元器件布局好之后,小型及微型的电子元器件就可以根据间隙面积灵活布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式三种。 ①直立式。 这种安装方式见图1。电阻、电容、二极管等都是竖直安装在印刷电路板上的。这种方式的特点是:在一定的单位面积内可以容纳较多的电子元件,同时元件的排列也比较紧凑。缺点是:元件的引线过长,所占高度大,且由于元件的体积尺寸不一致,其高度不在一个平面上,欠美观,元器件引脚弯曲,且密度较大,元器件之间容易引脚碰触,可靠性欠佳,且不太适合频率较高的电路采用。 ②俯卧式。

这种安装方式见图2。二极管、电容、电阻等元件均是俯卧式安装在印刷电路板上的。这样可以明显地降低元件的排列高度,可实现薄形化,同时元器件的引线也最短,适合于较高工作频率的电路采用,也是目前采用得最广泛的一种安装方式。 ③混合式。 为了适应各种不同条件的要求或某些位置受面积所限,在一块印刷电路板上,有的元器件采用直立式安装,也有的元器件则采用俯卧式安装。这受到电路结构各式以及机壳内空间尺寸的制约,同时也与所用元器件本身的尺寸和结构形式有关,可以灵活处理。见图3。 元器件配置布局应考虑的因素: 对于印刷电路板的布局排列并没有统一固定的模式,每个设计者都可以根据具体情况和习惯方法进行工作,但是一些基本原则是应遵循的。 ①印刷电路板最经济的形状是矩形或正方形。一般应避免设计成异形,以尽可能地降低成本。

PCB布局原则(华为)

PCB布局原则(华为) 1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。按工艺设计规范的要求进行尺 寸标注。 2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。根据某些元件的特殊要求,设置禁止布线区。 3. 综合考虑PCB性能和加工的效率选择加工流程。 加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)——双面贴装——元件面贴插混装、焊接面 贴装。 4. 布局操作的基本原则 A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局. B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件. C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分 开;高频信号与低频信号分开;高频元器件的间隔要充分. D. 相同结构电路部分,尽可能采用“对称式”标准布局; E. 按照均匀分布、重心平衡、版面美观的标准优化布局;7 Q/DKBA-Y004-1999 F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。 G. 如有特殊布局要求,应双方沟通后确定。 5. 同类型插装元器件在X或Y方向上应朝一个方向放置。同一种类型的有极性分立元件也要力争在X或Y 方向上保持一致,便于生产和检验。 6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。 7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。 8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。 9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN 间距大于等于1.27mm)元器件轴向与传送

PCB线路板元件布局的原则

PCB线路板元件布局的原则 1.元件排列规则 1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。 3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。 4).带高电压的元件应尽量布置在调试时手不易触及的地方。 5).位于板边缘的元件,离板边缘至少有2个板厚的距离 6).元件在整个板面上应分布均匀、疏密一致。 2.按照信号走向布局原则 1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。 2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。 3.防止电磁干扰 1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。 2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。 3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。 4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。 5).在高频工作的电路,要考虑元件之间的分布参数的影响。 4. 抑制热干扰 1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。 2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。 3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。 4).双面放置元件时,底层一般不放置发热元件。 5.可调元件的布局 对于电位器、可变电容器、可调电感线圈或微动开关等可调元件的布局应考虑整机的结构要求,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应;若是机内调节,则应放置在印制电路板于调节的地方。 关于PCB元器件布局检查规则 PCB布板过程中,对系统布局完毕以后,要对PCB图进行审查,看系统的布局是否合理,是否能够达到最优的效果。通常可以从以下若干方面进行考察: 1. 系统布局是否保证布线的合理或者最优,是否能保证布线的可靠进行,是否能保证电路工作的可靠性。在布局的时候需要对信号的走向以及电源和地线网络有整体的了解和规划。 2. 印制板尺寸是否与加工图纸尺寸相符,能否符合PCB制造工艺要求、有无行为标记。

PCB印刷线路元件布局结构基本原则要求和注意事项

PCB 设计流程 一般PCB 基本设计流程如下:前期准备->PCB 结构设计->PCB 布局->布线->布线优化和丝印->网络和DRC 检查和结构检查->制版。 第一:前期准备。这包括准备元件库和原理图。“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。在进行PCB 设计之前,首先要准备好原理图SCH 的元件库和PCB 的元件库。 元件库可以用peotel 自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。原则上先做PCB 的元件库,再做SCH 的元件库。PCB 的元件库要求较高,它直接影响板子的安装;SCH 的元件库要求相对比较松,只要注意定义好管脚属性和与PCB 元件的对应关系就行。PS:注意标准库中的隐藏管脚。之后就是原理图 的设计,做好后就准备开始做PCB 设计了。 第二: PCB 结构设计。这一步根据已经确定的电路板尺寸和各项机械定位,在PCB 设计环 境下绘制PCB 板面,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。 并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。 第三: PCB 布局。布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好 的话,就可以在原理图上生成网络表(Design->Create Netlist),之后在PCB图上导入网络 表(Design->Load Nets )。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。然后就可以对器件布局了。一般布局按如下原则进行: ①.按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源); ②.完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时, 调整各功能块间的相对位置使功能块间的连线最简洁; ③.对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施; ④.I/O 驱动器件尽量靠近印刷板的边、靠近引出接插件; ⑤.时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件; ⑥.在每个集成电路的电源输入脚和地之间,需加一个去耦电容(一般采用高频性能好的独石电容);电路板空间较密时,也可在几个集成电路周围加一个钽电容。 ⑦.继电器线圈处要加放电二极管(1N4148即可); ⑧.布局要求要均衡,疏密有序,不能头重脚轻或一头沉一一需要特别注意,在放置元器 件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置,以 保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的 前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能 摆得错落有致”。 这个步骤关系到板子整体形象和下一步布线的难易程度,所以一点要花大力气去考虑。布局时,对不太肯定的地方可以先作初步布线,充分考虑。 第四:布线。布线是整个PCB 设计中最重要的工序。这将直接影响着PCB 板的性能好坏。在PCB 的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB 设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入

相关文档