文档库 最新最全的文档下载
当前位置:文档库 › 分水岭算法

分水岭算法

void WaterThreshUpdate(const int **OriginalImage, char** SeedImage,
int **LabelImage, int row, int col)
////////////////////////////////////////////////////////////////////////////////////////////
///// 功能 : 用标记-分水岭算法对输入图像进行分割 ///////////
///// 参数说明 : OriginalImage --输入图像(灰度图,0~255) ///////////
///// SeedImage --标记图像(二值图,0-非标记,1-标记) ///////////
///// LabelImage --输出图像(1-第一个分割区域,2-第二个分割区域,...) ////
///// row --图像行数 ////
///// col --图像列数 ////
////////////////////////////////////////////////////////////////////////////////////////////
{
using namespace std;恒流;恒压;修正;自动

//标记区域标识号,从1开始
int Num=0;
int i,j;

//保存每个队列种子个数的数组
vector SeedCounts;
//临时种子队列
queue que;
//保存所有标记区域种子队列的数组
vector* > qu;

int* array;
queue *uu;
POINT temp;

for(i=0;ifor(j=0;jLabelImage[i][j]=0;


int m,n,k=0;
int up,down,right,left,upleft,upright,downleft,downright;

//预处理,提取区分每个标记区域,并初始化每个标记的种子队列
//种子是指标记区域边缘的点,他们可以在水位上升时向外淹没(或者说生长)
for(i=0;i{
for(j=0;j{
//如果找到一个标记区域
if(SeedImage[i][j]==1)
{
//区域的标识号加一
Num++;
//分配数组并初始化为零
array=new int[256];
ZeroMemory(array,256*sizeof(int));
//
SeedCounts.push_back(array);
//分配本标记的优先队列
uu=new queue[256];
//加入到队列数组中
qu.push_back(uu);
//当前点放入本标记区域的临时种子队列中
temp.x=i;
temp.y=j;
que.push(temp);
//当前点标记为已处理
LabelImage[i][j]=Num;
SeedImage[i][j]=127;

//让种子队列中的种子进行生长直到所有的种子都生长完毕
while(!que.empty())
{
up=down=right=left=0;
upleft=upright=downleft=downright=0;
//队列中取出一个种子

temp=que.front();
m=temp.x;
n=temp.y;
que.pop();

if(m>0)
{
//上方若为可生长点则加为新种子
if(SeedImage[m-1][n]==1)
{
temp.x=m-1;
temp.y=n;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n]=Num;
SeedImage[m-1][n]=127;
}else//否则上方为不可生长
{
up=1;
}
}
if(m>0&&n>0)
{
if(SeedImage[m-1][n-1]==1)//左上方若为可生长点则加为新种子
{
temp.x=m-1;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n-1]=Num;
SeedImage[m-1][n-1]=127;
}else//否则左上方为不可生长
{
upleft=1;
}
}

if(m{
if(SeedImage[m+1][n]==1)//下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n]=Num;
SeedImage[m+1][n]=127;
}else//否则下方为不可生长
{
down=1;
}
}
if(m<(row-1)&&n<(col-1))
{
if(SeedImage[m+1][n+1]==1)//下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n+1]=Num;
SeedImage[m+1][n+1]=127;
}else//否则下方为不可生长
{
downright=1;
}
}

if(n{
if(SeedImage[m][n+1]==1)//右方若为可生长点则加为新种子
{

temp.x=m;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m][n+1]=Num;
SeedImage[m][n+1]=127;
}else//否则右方为不可生长
{
right=1;
}
}
if(m>0&&n<(col-1))
{
if(SeedImage[m-1][n+1]==1)//右上方若为可生长点则加为新种子
{
temp.x=m-1;
temp.y=n+1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m-1][n+1]=Num;
SeedImage[m-1][n+1]=127;
}else//否则右上方为不可生长
{
upright=1;
}
}

if(n>0)
{
if(SeedImage[m][n-1]==1)//左方若为可生长点则加为新种子
{
temp.x=m;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m][n-1]=Num;
SeedImage[m][n-1]=127;
}else//否则左方为不可生长
{
left=1;
}
}
if(m<(row-1)&&n>0)
{
if(SeedImage[m+1][n-1]==1)//左下方若为可生长点则加为新种子
{
temp.x=m+1;
temp.y=n-1;
que.push(temp);
//新种子点标记为已淹没区域
LabelImage[m+1][n-1]=Num;
SeedImage[m+1][n-1]=127;
}else//否则左方为不可生长
{
downleft=1;
}
}

//上下左右只要有一点不可生长,那么本点为初始种子队列中的一个
if(up||down||right||left||
upleft||downleft||upright||downright)
{
temp.x=m;
temp.y=n;
qu[Num-1][OriginalImage[m][n]].push(temp);
SeedCounts[Num-1][OriginalImage[m][n]]++;
}

}//while结束
}
}
}


bool actives;//在某一水位处,所有标记的种子生长完的标志
int WaterLevel;

//淹没过程开始,水位从零开始上升
for(WaterLevel=0;WaterLevel<256;WaterLevel++)
{
actives=true;
while(actives)
{
actives=false;
//依次处理每个标记区域
for(i=0;i{
if(!qu[i][WaterLevel].empty())
{
actives=true;
while(SeedCounts[i][WaterLevel]>0)
{
SeedCounts[i][WaterLevel]--;
temp=qu[i][WaterLevel].front();
qu[i][WaterLevel].pop();
m = temp.x;
n = temp.y;//当前种子的坐标
if(m>0)
{
if(!LabelImage[m-1][n])//上方若未处理
{
temp.x=m-1;
temp.y=n;
LabelImage[m-1][n]=i+1;//上方点标记为已淹没区域

if(OriginalImage[m-1][n]<=WaterLevel)//上方若为可生长点则加入当前队列
{
qu[i][WaterLevel].push(temp);
}
else//否则加入OriginalImage[m-1][n]级队列
{
qu[i][OriginalImage[m-1][n]].push(temp);
SeedCounts[i][OriginalImage[m-1][n]]++;
}
}
}

if(m{
if(!LabelImage[m+1][n])//下方若未处理
{
temp.x=m+1;
temp.y=n;
LabelImage[m+1][n]=i+1;//下方点标记为已淹没区域

if(OriginalImage[m+1][n]<=WaterLevel)//下方若为可生长点则加入当前队列
{
qu[i][WaterLevel].push(temp);
}
else//否则加入OriginalImage[m+1][n]级队列
{
qu[i][OriginalImage[m+1][n]].push(temp);
SeedCounts[i][OriginalImage[m+1][n]]++;
}
}
}

if(n{
if(!LabelImage[m][n+1])//右边若未处理
{
temp.x=m;
temp.y=n+1;
LabelImage[m][n+1]=i+1;//右边点标记为已淹没区域

if(OriginalImage[m][n+1]<=WaterLevel)//右边若为

可生长点则加入当前队列
{
qu[i][WaterLevel].push(temp);
}
else//否则加入OriginalImage[m][n+1]级队列
{
qu[i][OriginalImage[m][n+1]].push(temp);
SeedCounts[i][OriginalImage[m][n+1]]++;
}
}
}

if(n>0)
{
if(!LabelImage[m][n-1])//左边若未处理
{
temp.x=m;
temp.y=n-1;
LabelImage[m][n-1]=i+1;//左边点标记为已淹没区域

if(OriginalImage[m][n-1]<=WaterLevel)//左边若为可生长点则加入当前队列
{
qu[i][WaterLevel].push(temp);
}
else//否则加入OriginalImage[m][n-1]级队列
{
qu[i][OriginalImage[m][n-1]].push(temp);
SeedCounts[i][OriginalImage[m][n-1]]++;
}
}
}
}//while循环结束
SeedCounts[i][WaterLevel] = (int) qu[i][WaterLevel].size();
}//if结束
}//for循环结束
}//while循环结束
}//for循环结束
while(!qu.empty())
{
uu=qu.back();
delete[] uu;
qu.pop_back();
}
while(!SeedCounts.empty())
{
array=SeedCounts.back();
delete[] array;
SeedCounts.pop_back();
}
}

相关文档