文档库 最新最全的文档下载
当前位置:文档库 › 解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法
解决三角函数各类问题的十种方法

解决三角函数各类问题

1 凑角法

例1 求tan 204sin 20?+?的值.

解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20?+??+?-?==?? sin 202(sin 60cos 20cos 60sin 20)

cos 20?+??-??==?

评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异

2 降幂法

一些涉及高次三角式的求值问题,往往借助已知及22

sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22

αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.

解析 由2cos cos 1αα+=,得cos α=cos α=.由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,

则263sin sin cos cos αααα+=+,又由2c o s c o s 1αα+=,得2c o s 1c o s αα=-,故322c o s c o s c o s (1c o s )c o s (2c o s )2c o s c o s 3c o ααααααααα+=+=-=-=-,代值可得

26sin sin αα+= 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.

3 配对法

根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答. 例3 已知(0,)2x π

∈,且222cos cos 2cos 31x x x ++=,求x 的值.

解析 设222cos cos 2cos 3m x x x =++,令222s i n s i n 2s i n 3n x x x =++,

则3m n +=,cos 2cos 4cos 6m n x x x -=++,其中,2cos62cos 31x x =-,

cos2cos4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又

cos cos3cos(2)cos(2)2cos cos2x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-

,故可解得1cos cos 2cos3(22)0(1)4

x x x m m =-== .则c o s 0x =,或c o s 20x =,或c o s 30x =,又(0,)2

x π∈,则6x π=或4x π

=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答.

4 换元法

很多给值求值问题都是给的单角的某一三角函数值,但有时会出现给出复合角的三角函数值求值的问题,此时,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值问题.

例4 求sin 75cos 4515ααα+?++?+?()()()

的值.

解析 令15αβ+?=,则原式sin(60)cos(30)βββ=+?++?

(sin cos60cos sin60)(cos cos30sin sin30)0βββββ=?+?+?-?=.

评注 知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.

5 方程法 有时可以根据已知构造所求量的方程解答.

例5 若33cos sin 1x x =+,试求sin x 的值.

解析 令cos sin x x t =+,则21cos sin (1)2x x t =

-,[t ∈.由已知,有 2

221(cos sin )(cos sin cos sin )(1)12

t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.

评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.

6 讨论法

涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.

例6 已知ABC !中,54sin ,cos 135

A B =

=,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC !的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-

<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65

C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!

7 平方法

分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.

例7 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.

解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++

22(sin )(cos )1γγ=-+-=,即1cos()2

αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的.

8 猜想法

有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题.

例8 已知sin cos αα+=,且α为第二象限角,则sin α= .

解析 由sin 0,cos 0αα><及22221

sin cos 1,()(12αα+=+=,可得1sin 2α=.

评注 实际上,将sin cos αα+=与22sin cos 1αα+=联立所得二元二次方程组只有两组解,

即1sin ,cos 22αα==或1cos ,sin 22

αα==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.

9 图象法

有时候,借助图象才能更好的解决对应的三角函数问题.

例9 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.

解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,

(,)D d A ,由三角函数图象的对称性,则有22b c π

π+=?=,

3232

c d ππ+=?=,有b c π=-,3d c π=-,又222()(3)34c b d c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4

A π,代入可

得2A =.

评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.

10 比例法

借助比例的性质,有时可以实现快速解答三角函数问题.

例10 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα

-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.

若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα

--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα

-+-==+++,代入等式左边可知所证成立. 评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin α

αααα

-==+,按照比例性质,立得1cos sin tan 21cos sin α

αααα

-+=++.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

7.6用锐角三角函数解决问题(3)

7.6锐角三角函数解决问题(3) 学习目标: 1.掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、角有关的实际问题,培养学生。 2.经历探索实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用. 教学流程提纲 1.仰角、俯角的定义:如图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线 与水平线的夹角叫做俯角。右图中的∠1就是俯角,∠2就是仰角。 2.课本例题讲解 3.课本练习 4.拓展例题 如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离. 变式:如上图,飞机在一定高度上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行10km 后,在B处测得该小岛的俯角为60°,求飞机的飞行高度。 本节课2个目标你达成个?分别是:

7.6锐角三角函数解决问题(3)过关检测 1.热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30o,看这栋高楼底部C处的俯角为60o,若热气球与高楼的水平距离为90m,则这栋高楼有多高?(结果保留整数,2≈1.414,3≈1.732) 2.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离. 3.据黄石地理资料记载:东方山海拔DE=453.20米,月亮山海拔CF=442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数值表

三角函数值表一常用三角函数值:

二反三角函数值

同角三角函数的基本关系式 1,倒数关系: 1csc sin =?x x 1sec cos =?x x 1cot tan =?x x 2,商数关系: x x x cos sin tan = x x x sin cos cot = 3,平方关系 1cos sin 22=+x x x x 22sec tan 1=+ x x 22csc cot 1=+ 倍角公式:

x x x cos sin 22sin = 2 cos 2sin 2sin x x x = x x x 22sin cos 2cos -= 2 sin 2cos cos 2 2 x x x -= 1cos 22 -=x 12 cos 22 -=x x 2 sin 21-= 2 sin 212 x -= x x x 2tan 1tan 22tan -= 2 tan 12tan 2tan 2x x x -= 半角公式: 2cos 12sin x x -±= 22cos 1sin 2x x -= 2cos 12cos x x +±= 2 2cos 1cos 2x x += x x x x x x x cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 万能公式: 2 tan 12tan 2sin 2x x x +=

2 tan 12tan 1cos 22 x x x +-= 2 tan 12tan 2tan 2x x x -= 奉送直线有关 1,斜截式 斜率K 和在Y 轴的截距是b b kx y += 2点截式 点()111,y x P 和斜率k ()11x x k y y -=- 3,两点式 点()()222111,,y x P y x P 和 1 21 121x x x x y y y y --=-- 4,截距式 在x 轴上截距是a 1=+b x a x 在y 轴上截距是b 两条直线平行的充要条件:21k k = 两条直线垂直的充要条件:121-=?k k 圆: 圆心在圆点,半径为r 的圆的方程是: 222r y x =+ 圆心在点()b a C ,,半径为r 的圆的方程是: ()()22 2 r b y a x =-+-

7.6用锐角三角函数解决问题(2)学案

7.6用锐角三角函数解决问题(2)学案 学习目标: 通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。 教学过程: 一、复习巩固: 1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。 2、在△ABC中,∠C=90°。 (1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。 二、例题学习: 问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)? 拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m? 2、小明将有多长时间连续保持在离地面30.3m以上的空中? 三、练习巩固

, B B A 1、如图,单摆的摆长A B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。问这时摆球B ' 较最低点B 升高了多少? 2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角. 3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米) 四、小结 五、课堂作业

B A O B A 初三数学课堂作业 1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( ) A. αcos 5 B. αcos 5 C . αsin 5 D. αsin 5 第1题 第3题 第4题 2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( ) A .8米??B.83米? C .833米? D.433 米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 ??B.253 C.10033 ?D .25253+ 4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。时跷跷板与地面的夹角为_____ ____。 7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低 位置的高度之差。 5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离. 6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’ 较最低点B 升高了多少(精确到1cm)? sin110.191?≈cos110.982?≈tan110.194?≈

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

《用锐角三角函数解决问题》教案

《用锐角三角函数解决问题》教案1 教学目标 1、了解测量中坡度、坡角的概念. 2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题. 3、进一步培养学生把实际问题转化为数学问题的能力. 重点难点 重点:有关坡度的计算. 难点:构造直角三角形的思路. 教学设计 一、引入新课 如下图所示,斜坡AB 和斜坡A 1B 1哪一个倾斜程度比较大?显然,斜坡A 1B l 的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,1111 B C BC AC AC ,即tan A 1>tan A . 在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度. 二、新课 1.坡度的概念,坡度与坡角的关系. 如图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i =AC BC ,坡度通常用l :m 的形式,例如上图中的1:2的形式.坡面与水平面的夹角叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i =tan B ,显然,坡度越大,坡角越大,坡面就越陡. 2.习题讲解. 1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)

分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决.2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角.和坝底宽AD.(i =CE:ED,单位米,结果保留根号) 三、练习 课本第114页课内练习. 四、小结 会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决. 五、作业 课本117页习题7.6的1、2题. 《用锐角三角函数解决问题》教案2 教学目标 知识与技能 1.通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系. 2.把实际问题转化为数学问题,同时借助计算器进行有关三角函数的计算,并能对结果的意义进行说明. 数学思考与问题解决 经历实际问题数学化的过程,进一步体会三角函数在解决问题中的作用,不断探索解决实际问题的方法和规律. 情感与态度 在独立思考探索解决问题方法的过程中,培养学生不断克服困难,增强应用数学的意识和解决实际问题的能力.

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

常用三角函数值

高中数学常用公式一常用三角函数值:

二反三角函数值 同角三角函数的基本关系式 1,倒数关系: 1c s c s i n =?x x 1s e c c o s =?x x 1c o t t a n =?x x 2,商数关系: x x x c o s s i n t a n = x x x s i n c o s c o t = 3,平方关系 1c o s s i n 2 2 =+x x x x 2 2 s e c t a n 1=+

x x 2 2c s c c o t 1=+ 倍角公式: x x x c o s s i n 22s i n = 2 c o s 2 s i n 2s i n x x x = x x x 2 2s i n c o s 2c o s -= 2 s i n 2 c o s c o s 2 2 x x x -= 1c o s 22 -=x 12 c o s 22 -=x x 2 s i n 21-= 2 s i n 212 x -= x x x 2 t a n 1t a n 22t a n -= 2 t a n 12 t a n 2t a n 2 x x x -= 半角公式: 2 c o s 12s i n x x -± = 2 2c o s 1s i n 2 x x -= 2c o s 12c o s x x +±= 22c o s 1c o s 2 x x += x x x x x x x c o s 1s i n s i n c o s 1c o s 1c o s 12t a n +=-=+-±= 万能公式: 2 t a n 12 t a n 2s i n 2 x x x += 2 t a n 12t a n 1c o s 2 2 x x x +-=

苏科初中数学九年级下册《7.6 用锐角三角函数解决问题》教案 (1)

锐角三角函数的简单应用

板 书 设 计 7.6锐角三角函数的简单应用(1) 教 学 环 节 学生自学共研的内容方法 (按环节设计自学、讨论、训练、探索、创新等内容) 教师施教提要 (启发、精讲、 活动等) 再 次 优 化一、 例题 教学 【【典型例题】 1. “五一”节,小明和同学一起到游乐场游玩. 游乐场的大型 摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的 车厢(离地面约0.5m)开始1周的观光,经过2min后,小明离地 面的高度是多少? (1).摩天轮启动多长时间后,小明离地面的高度将首次达到 10m? (2).小明将有多长时间连续保持在离地面10m以上的空中? 2.1.单摆的摆长AB为90cm,当它摆动到AB’的位置时, ∠ BAB’=11°,问这时摆球B’较最低点B升高了多少(精确到 1cm)? 分析:如图,小 明开始在车厢点 B,经过2min后 到了点C,点C 离地面的高度就 是小明离地面的 高度,其实就是 DA的长度 DA= AE - sin110.191 ?≈cos110.982 ?≈ tan110.194 ?≈ sin110.191 ?≈cos110.982 ?≈tan110.194 ?≈

二、(1)巩固练习3.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离 地面1.5m.求此时跷跷板与地面的夹角(精确到0.1°). 4.如图所示,电工李师傅借助梯子安装天花板上距地面 2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形 面的长都被六条踏板七等分,使用时梯脚的固定跨度为 1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m, 当他攀升到头顶距天花板0.05~0.20m时,安装起比较方便. 他现在竖直站立在梯子的第三级踏板上,请你通过计算判断 他安装是否比较方便? 课后练习 【基础演练】 1.如图,秋千链子的长度为3m,当秋千向两边摆动时,两 边的摆动角度均为30o。求它摆动至最高位置与最低位置的 高度之差(结果保留根号). 让学生小结 60o O A B

课中习利用三角函数解决实际问题

课中习利用三角函数解决实际问题 1.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG 30,在E处测得∠AFG 60,CE8米,仪器高度CD 1.5米,求这棵树AB 的高度(结果保留两位有效数字,3≈1.732). 2. 如图,在△ABC中,∠A=30°,∠B=45°,AC=3 2,求AB 的长, 习得:解直角三角形,常用的辅助线是:________________________________ ___________________________________________________________________ 3.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:41 .1 2 , 73 .1 3≈ ≈) 第16题图D B A O C A G F E C D 3060 45° 30° C B A 第19题图

(第22题图) A P C B 36.9° 67.5° 4. (2013山东东营,22)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此 时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈3 4 , sin67.5°≈1213,tan67.5°≈12 5 ) 5. 中考几何题目的三角函数 (2011四川南充市,19)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上. (1)求证:⊿ABE ∽⊿DFE;(2)若sin ∠DFE= 31 ,求tan ∠EBC 的值. F E D C B A

三角函数值表及记忆方法

角度 sin cos tan cot sec csc 函数 0 0 1 0 \ 1 \ 15 30 2 45 1 1 60 2 75 90 1 0 \ 0 \ 1 105 120 -2 135 -1 -1 150 2 165 -1 \ 180 0 -1 0 \

195 210 -2 225 1 1 240 -2 255 0 \ -1 270 -1 0 \ 285 300 2 315 -1 -1 330 -2 345

常用三角函数 角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 只想上传这一个表 下面的都是无用的话 不用看了。 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 2 1 sin45°=cos45°= 2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2、列表法: 值 角 函 数 0° 30° 45° 60° 90° sin α 20 21 22 23 24 cos α 2 4 2 3 2 2 2 1 2 tan α 3 3 1或 3 9 √3或 3 27 不存在 cot α 不存在 √3或 3 27 1或3 9 3 3 30? 1 2 3 1 45? 1 2 1 2 60? 3

运用三角函数解决与直角三角 形有关实际问题教案(石凯)

运用三角函数解决与直角三角形有关 实际问题教案 教学目标 1、运用锐角三角函数,解决与直角三角形有关的实际问题。 2、通过运用直角三角形相关知识解决问题, 培养学生的综合运用知识解决问题的能力,体验运用数学知识解决一些简单的实际问题,培养学生用数学的意识。 教学重难点 重点:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化。 难点:将实际问题转化为数学问题,选择合适关系式运用三角函数解决与直角三角形有关的实际问题。 教学过程 一、知识回顾(展示ppt 课件) (一)、在解直角三角形的过程中,一般要用到的一些关系: 1、三边之间的关系: 2、两锐角之间的关系:∠A+∠B=90° 3、边与锐角之间的关系: 正弦函数:c a A A =∠=斜边的对边sin 余弦函数:c b A A =∠=斜边的邻边cos 正切函数:b a A A A =∠∠=的邻边的对边tan (二)特殊三角函数值 α 30° 45° 60° sin α 12 22 32 cos α 32 22 12 tan α 33 1 3 A C B c b a a 2+ b 2= c 2

1.(2011年铜仁21题10分)如图,在A岛周围25海里水域有暗礁,一轮船由西向 东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)。 2.(2015年铜仁22题12分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732) 3.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船 32 .7 1 3

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

用锐角三角函数解决问题(2)

课题:锐角三角函数的简单应用(2)——方位角 主备:林金强 课型:新授 编号:90706 班级 姓名 备课组长签名【教学过程】: 教学目标:使学生掌握三角函数的简单应用——对方位角的认识。例题讲解: 例1. 如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 测得B 地的走向是南偏东52°,现A 、B 公路准确对接,则B 地所修公路的走向应该是( ) A 、北偏西52° B 、南偏东52° C 、西偏北52° D 、北偏西52° 例2. 海船以5海里/小时的速度向正东方向行驶,在A 北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 方向,求此时灯塔B 到C 处的距离. 例3.一船以每小时20海里的速度沿正东方向航行。上午8某灯塔位于它的北偏东30°的B 处,上午9时行到C 正北方向,此时它与灯塔的距离是多少海里?( 例4.某民航飞机在大连海域失事,为调查失事原因,的黑匣子,如图所示,一潜水员在A 处以每小时8处测得黑匣子B 在北偏东60°的方向,划行半小时后到达C 处,偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B

例5 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气 旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220 千米的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米, 风力就会减弱一级,该台风中心现在以15千米/时的速度沿北偏东300方向往 C 移动,且台风中心风力不变,若城市所受风力达到或超过四 级,则称为受台风影响. (1)该城市是否会受到这次台风的影响?请说明理由. (2)若会受到台风影响,那么台风影响该城市的持续时间有 多长? (3)该城市受到台风影响的最大风力为几级? 【当堂训练】: 1.如图,A 市东偏北60°方向有一旅游景点M ,在A 市东偏北30?°的公路上向前行800米到C 处,测得M 位于C 的北偏西15°,则景点M 到公路AC?的距离MN 为________米(结果保留根号). 2.如图王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A .350m B .100 m C .150m D .3100m 3.如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东30゜的方向,炮台B 测得敌舰C 在它的正南方,则敌舰与两炮台的距离分别为_______米(结果保留根号). 4.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,?为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长多少? 学生笔记栏

相关文档
相关文档 最新文档