文档库 最新最全的文档下载
当前位置:文档库 › 对热力学定律的认识

对热力学定律的认识

对热力学定律的认识
对热力学定律的认识

对热力学定律的认识

应用化学201201姓名:XXX 学号:2012XXXX 热物理学是整个物理学理论的四大柱石之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用,具有高度的可靠性和普遍性,无论是在热力学理论中或在热工技术中,都有重要的作用。

热力学定律是描述物理学中热学规律的定律,包括热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。其中热力学第零定律又叫热平衡定律,这是因为热力学第一、第二定律发现后才认识到这一规律的重要性;热力学第一定律即能量守恒定律;热力学第二定律有多种表述,也叫熵增加原理。

1 热力学第零定律

如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。

热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。

定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。

热力学中以热平衡概念为基础对温度作出定义的定律,通常表述为:与第三个系统处于热平衡状态的两个系统之间,必定处于热平衡状态。

2 热力学第一定律

能量是永恒的,他不会被谁制造出来,也不会被谁消灭。但是热能可以给动能提供动力,而动能还能够再转化成热能。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。

2.1 热力学定义定律数学表达式

表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态1经过任意过程到达终态2后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q和系统对外界作功W之差,即:

这就是热力学第一定律的表达式。

上面说的是有限的过程,如果系统经历一个无穷小的过程,内能的变化为dU,外界所作的功为dW,系统从外界吸收的热量为dQ,则有:

dU=dQ+dW

对于准静态过程,把上式改写为:dU=dQ+pdV

2.2 热机效率

热机是把热转化为功的机械,18世纪第一台蒸气机问世以后,经过很多人的改进,特别是纽科门和瓦特的工作,使蒸气机成为普遍适用于工业的万能原动机,但当时的热机效率也仅有约3%。热机效率是指在一个循环中热机从外界吸收的热量有多大部分转变为对外输出的有用功,如果用表示,则定义式为:

式中Q1表示系统从高温热源吸收的热量,Q2表示系统向低温热源放出的热量。

热机的效率是热机问世以来科学家、发明家和工程师们一直研究的重要问题。现在的内燃机和喷气机跟最初的蒸汽机相比,效率虽然提高了很多,但从现在节约能源的要求来看,热机的效率还远远不能满意。现在最好的空气喷气发动机,在比较理想的情况下其效率也只有60%。用的最广的内燃机,其效率最多只达到40%。大部分能量被浪费掉了。如何进一步提高机器的效率就成了工程师和科学家共同关心的问题。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许

多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背了能量守恒定律。

3 热力学第二定律

热永远只能由热处传到冷处(在自然状态下)。

3.1 卡诺定理

早在开尔文与克劳修斯建立热力学第二定律前20多年,卡诺在1824年发表

的《谈谈火的动力和能发动这种动力的机器》的一本小册子中不仅设想了卡诺

循环,而且提出了卡诺定理。

(1)在相同的高温热源和相同的低温热源间工作的一切可逆热机其效率都相等,而与工作物质无关。

(2)在相同高温热源和相同低温热源间工作的一切热机中,不可逆热机的效率都不可能大于可逆热机的效率。

若一可逆热机仅从某一温度的热源吸热,也仅向另一温度的热源放热,从

而对外做功,那么这部可逆热机必然是由两个等温过程及两个绝热过程所组成

的可逆卡诺机。所以卡诺定理中讲的热机就是卡诺热机。

这个理论包含了热力学第二定律的基本内容,阐明了一切可逆热机的效率与工作物质无关,而且要小于100%。如工作物质为理想气体,它能把从高温热源

吸收的热量的一部分转化成机械功,其余的部分仍以热量的形式在低温热源处给外界;在逆循环中,理想气体把从低温热源吸收的热量传递给了高温热源,同

时也把外界对它所作的功转化成热量传递给了高温热源。即热力学系统内部的

任何过程都无法自动复原,必须依靠外界施加影响才能实现。这是由于热现象

在初态与终态之间存在着重大差异的缘故。这种差异导致了过程进行具有方向性,而不仅仅是满足热力学第一定律就可以实现的过程,说明了一切与热现象

有关的宏观过程都是不可逆的。

3.2 熵与熵增加原理

3.2.1 熵的定义

Clausius根据可逆过程的热温商值决定于始终态与可逆过程无关这一事实定

义了“熵”。用符号“S”表示,单位J·K-1。

设始终态A、B的熵分别为S A和S B,则:

这几个熵变的计算式习惯上称为熵的定义式。

3.2.2 熵增加原理

Clausius 不等式:。

对于绝热体系,δQ=0,所以Clausius 不等式为:dS≥0或△S≥0,等号表示绝热可逆过程,不等号表示绝热不可逆过程。熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使体系的熵增加。或者说在绝热条件下,不可能发生熵减少的过程。

换句话说,在绝热条件下,趋向于平衡的过程体系的熵增加,这就是熵增加原理。

3.2.3 熵的特点

(1)熵是系统的状态函数,是容量性质。

(2)可以用Clausius不等式来判别过程的可逆性

(3)在绝热过程中,若过程是可逆的,则系统的熵不变。若过程是不可逆的,则系统的熵增加。绝热不可逆过程向熵增加的方向进行,当达到平衡时,熵达到最大值。

(4)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,一切能自动进行的过程都引起熵的增大。

4 热力学第三定律

1906年,德国物理学家能斯特在研究低温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,这个规律被表述为:“当绝对温度趋于零时,凝聚系的熵在等温过程中的改变趋于零。”

即,称为能斯特定理。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常

数取值的任意性。

1912年,能斯特又将这一规律表述为绝对零度不可能达到原理,通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。

热力学第三定律认为,当系统趋近于绝对温度零度时,系统等温可逆过程

的熵变化趋近于零。第三定律只能应用于稳定平衡状态,因此也不能将物质看

做是理想气体。绝对零度不可达到这个结论称做热力学第三定律。

总结

热力学的这些基本定律是以大量实验事实为根据建立起来的,在此基础上,又引进了三个基本状态函数:温度、内能、熵,共同构成了一个完整的热力学

理论体系,热力学定律的发现是19世纪物理学的重大成果,表明了物理学的又

一次大的综合。不仅对自然科学的发展提供了坚实的基础,而且对辩证唯物史

观提供了证据。宣布了第一类永动机(不需要动力便能不断对外作功的机器)的

死刑,并对第二类永动机也做了科学的判决。

热力学第二定律习题详解(汇编)

习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于2 1 1T T -。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于2 1 1T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式2 1 1Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于21 1T T -。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ] (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能 不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;

摘 要 介绍了热力学三个定律和非平衡态热力学的发展过程及其

摘要介绍了热力学三个定律和非平衡态热力学的发展过程及其关系,并阐述了热力学定律和热力学量的含义。 关键词热力学不可逆过程热力学熵 化学是论述原子及其组合方式的科学。人们最初考察化学反应时,是把反应物放在一起,经过加热等手段,然后分析得到些什么产物,后来根据原子分子假说,有了“当量”的概念,建立了反应物与产物之间的一定联系。人们根据化学组分随条件的变化,发现了质量作用定律,引伸出化学平衡常数。运用热力学定律,人们开始掌握从热力学函数去计算化学平衡常数的方法,并且可以对化学反应的方向作出判断,诞生了化学热力学。 化学现象是由反应速率表征的,只有在非平衡条件下化学反应过程才会呈现出非零的反应速率。因此,化学现象本身是一种非平衡现象。化学热力学应属于非平衡热力学(也即不可逆过程热力学)的范畴。但是,传统热力学虽然从科学体系来看,的确是严谨而完美的;严格来讲,整部经典热力学并不涉及“时间”和“空间”,它主要限于研究平衡态和可逆过程,其主要原因是长期以来整个非平衡热力学缺乏一个较为令人满意的理论。现实世界发生的变化却不可避免地涉及到时间上的演化和空间上的不均匀性,这种变化都是不可逆的。对非平衡的不可逆过程,经典热力学仅仅提供了一个关于熵(或自由能)的不等式,要对非平衡过程作定量描述,必须寻找适当的等式代替上述不等式。 还有一点应指出,由于传统的化学热力学只涉及平衡问题,因此几乎和化学动力学不发生关系。非平衡化学反应的热力学必定要与非平衡的化学过程相联系,热力学不再能和动力学相分离,动力学因素(如催化剂)有可能在热力学上起作用,如何把化学热力学和化学动力学有机地结合起来是值得研究的一个重要课题。 尽管线性非平衡态热力学理论对热传导、扩散等输运过程有主要应用,但对化学反应的应用却受到很大的限制,这是因为通常条件下的化学反应的流(反应速度)和力(反应亲和势)并不满足线性关系。化学反应的速率一般地说是浓度、温度等变量的非线性函数,化学反应体系是用三维线性方程描述的,本世纪60年代以来对非线性区的研究获得可喜的成果,并已形成了“非线性不可逆过程热力学”。 热力学是一门实验科学,又是牢固地以严格的代数为基础的领域。热力学是由一群方程式和一些不等式构成的,这些方程式和不等式将某些类型的可测物理量相互联系起来。著名的量子化学家美国波士顿学院教授潘毓刚曾说古典热力学有千万个公式,而量子力学只有一个公式--薛定谔方程,任何一个热力学方程都是很有用的,因为某些量比另一些量容易测量,通过测量易测之量,利用热力学方程式,就可以得出那个难测之量。 热力学的基本内容,就是论证几个抽象的热力学量的存在(温度、热力学能、熵)并研究热力学量之间的关系。 热力学中一个平衡系统完全由一组参量(体积、温度、熵)描述,我们总是认为这组参量是完整的。然而,人们评价热力学之所以有力和有独到之处,就在于它本质上的不完整性,这样一个系统在许多细节上还有大量不知道的这一事实,也许正是热力学家们引以自豪的根源。由于不要求系统内部知识的完整性,有了系统参量就可以精确地导出系统的值,充分利用已有的知识,促使成为可用的东西才是更富有成效的工作。 把热力学的基本原理用来研究化学现象以及和化学现象有关的物理现象,就称为化学热力学。 热力学第零定律正确的表述应为“热平衡具有传递性,由此,证明存在一个表征热平衡状念的态函数--温度。温度在热力学中时常出现,温度是一个极其特殊的物理量,两个物体的温度不能相加,若说某一温度为其它两个温度之和是毫无意义的,甚至,某温度的几倍,以某种单位来测量温度等等说法,也都缺乏明确的意义,严格讲,两个温度之间只有相等或不相等这种关系。测量、普通的观测,测量所得的即为该单位的倍数或小数,但

热力学第二定律的建立及意义

1引言 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。19蒸汽机的发明,使提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺从理论上研究了热机的效率问题. 卡诺的理论已经深含了热力学第二定律的基本思想,但由于受到热质说的束缚,使他当时未能完全探究到问题的底蕴。这时,有人设计这样一种机械——它可以从一个热源无限地取热从而做功,这被称为第二类永动机。1850 年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,1851年开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的“开尔文表述”。在提出第二定律的同时,克劳修斯还提出了熵的概念,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。热力学第二定律的各种表述以不同的角度共同阐述了热力学第二定律的概念,完整的表达出热力学第二定律的建立条件并且引出了热力学第二定律在其他方面的于应用及意义。 2热力学第二定律的建立及意义 2.1热力学第二定律的建立 热力学第二定律是在研究如何提高热机效率的推动下, 逐步被人们发现的。但是它的科学价值并不仅仅限于解决热机效率问题。热力学第二定律对涉及热现象的过程, 特别是过程进行的方向问题具有深刻的指导意义它在本质上是一条统计规律。与热力学第一定律一起, 构成了热力学的主要理论基础。 18世纪法国人巴本发明了第一部蒸汽机,后来瓦特改进的蒸汽机在19 世纪得到广泛地应用, 因此提高热机效率的问题成为当时生产领域中的重要课题之一. 19 世纪20 年代, 法国工程师卡诺(S.Carnot, 1796~ 1832) 从理论上研究了热机的效率问题。

热力学三定律

热力学: 1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不 可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。 2.热力学第二定律: 克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。 开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 第二类永动机是不存在的。 3.热力学第三定律: 奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。 不可能通过有限过程将系统冷却至绝对零度。 绝对零度只能无限逼近,而不能最终达到。 4.热力学第零定律: 两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。 5.卡诺定理: (1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。 (2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。 燃气轮机: 工作原理:: 燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。 空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。 机械设计基础: 自由度:构件可能出现的独立运动的数目。对构建自由度的限制叫做约束。 零件—静连接—构件—运动副—机构—动静连接—机器—机械。 英语: 热能与动力工程—Thermal energy and power engineering 机械动力—Mechanical power 机械设计基础—Mechanical design basis 热力学—Thermodynamics 传热学—Heat-transfer 专业—major

高中物理第4章能量守恒与热力学定律3宏观过程的方向性4热力学第二定律5初识熵学业分层测评教科版3

宏观过程的方向性 热力学第二定律 初识熵 (建议用时:45分钟) [学业达标] 1.下列关于熵的有关说法正确的是( ) A.熵是系统内分子运动无序性的量度 B.在自然过程中熵总是增加的 C.热力学第二定律也叫做熵减小原理 D.熵值越大表示系统越无序 E.熵值越小表示系统越无序 【解析】根据熵的定义知A正确;从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,B正确;热力学第二定律也叫熵增加原理,C错;熵越大,系统越混乱,无序程度越大,D正确,E错误. 【答案】ABD 2.下列说法正确的是( ) A.热量能自发地从高温物体传给低温物体 B.热量不能从低温物体传到高温物体 C.热传导是有方向性的 D.气体向真空中膨胀的过程是有方向性的 E.气体向真空中膨胀的过程是可逆的 【解析】如果是自发的过程,热量只能从高温物体传到低温物体,但这并不是说热量不能从低温物体传到高温物体,只是不能自发地进行,在外界条件的帮助下,热量也能从低温物体传到高温物体,选项A、C对,B错;气体向真空中膨胀的过程是不可逆的,具有方向性,选项D对,E错. 【答案】ACD 3.以下说法正确的是( ) 【导学号:74320064】A.热传导过程是有方向性的,因此两个温度不同的物体接触时,热量一定是从高温物体传给低温物体的 B.热传导过程是不可逆的 C.两个不同的物体接触时热量会自发地从内能多的物体传向内能少的物体 D.电冰箱制冷是因为电冰箱自发地将内部热量传给外界

E.热量从低温物体传给高温物体必须借助外界的帮助 【解析】热量可以自发地由高温物体传递给低温物体,热量从低温物体传递给高温物体要引起其他变化,A、B、E选项正确. 【答案】ABE 4.(2016·西安高二检测)下列说法中不正确的是( ) A.电动机是把电能全部转化为机械能的装置 B.热机是将内能全部转化为机械能的装置 C.随着技术不断发展,可以把内燃机得到的全部内能转化为机械能 D.虽然不同形式的能量可以相互转化,但不可能将已转化成内能的能量全部收集起来加以完全利用 E.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 【解析】由于电阻的存在,电流通过电动机时一定发热,电能不能全部转化为机械能,A错误;根据热力学第二定律知,热机不可能将内能全部转化为机械能,B错误;C项说法违背热力学第二定律,因此错误;由于能量耗散,能源的可利用率降低,D正确;在电流做功的情况下,热量可以从低温物体向高温物体传递,故E正确. 【答案】ABC 5.下列说法中正确的是( ) A.一切涉及热现象的宏观过程都具有方向性 B.一切不违背能量守恒定律的物理过程都是可能实现的 C.由热力学第二定律可以判断物理过程能否自发进行 D.一切物理过程都不可能自发地进行 E.功转变为热的实际宏观过程是不可逆的 【解析】热力学第二定律是反映宏观自然过程的方向性的定律,热量不能自发地从低温物体传到高温物体,但可以自发地从高温物体传到低温物体;并不是所有符合能量守恒定律的宏观过程都能实现,故A、C正确,B、D错误,一切与热现象有关的宏观过程都是不可逆的,则E正确. 【答案】ACE 6.下列宏观过程能用热力学第二定律解释的是( ) 【导学号:74320065】A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动

11 热力学第二定律习题详解电子教案

11热力学第二定律 习题详解

仅供学习与交流,如有侵权请联系网站删除 谢谢2 习题十一 一、选择题 1.你认为以下哪个循环过程是不可能实现的 [ ] (A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。 答案:D 解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。 2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T - 。丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T - 。对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。 答案:D 解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。乙的说法是对的,这样就否定了B 。丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211 Q T Q T =,所以理想气体可逆卡诺热机的效率等于211T T - 。故本题答案为D 。 3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ]

仅供学习与交流,如有侵权请联系网站删除 谢谢3 (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 答案:A 解:绝热自由膨胀过程,做功为零,根据热力学第一定律2 1V V Q U pdV =?+?,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。 4.在功与热的转变过程中,下面的那些叙述是正确的?[ ] (A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功; (B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。 答案:D 解:(A )违反了开尔文表述;(B )卡诺定理指的是“工作在相同高温热源和相同低温热源之间的一切不可逆热机,其效率都小于可逆卡诺热机的效率”,不是说可逆卡诺热机的效率高于其它一切工作情况下的热机的效率; (C )热量不可能自动地从低温物体传到高温物体,而不是说热量不可能从低温物体传到高温物体。故答案D 正确。 5.下面的那些叙述是正确的?[ ] (A )发生热传导的两个物体温度差值越大,就对传热越有利; (B )任何系统的熵一定增加; (C )有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量; (D )以上三种说法均不正确。 答案:D 解:(A )两物体A 、B 的温度分别为A T 、B T ,且A B T T >,两物体接触后, 热量dQ 从A 传向B ,经历这个传热过程的熵变为11( )B A dS dQ T T =-,因此两

热力学第二定律习题解析

第二章热力学第二定律 习题 一 . 选择题: 1. 理想气体绝热向真空膨胀,则 ( ) (A) △S = 0,W = 0 (B) △H = 0,△U = 0 (C) △G = 0,△H = 0 (D) △U = 0,△G = 0 2. 熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是() (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:() (A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 0 4. 理想气体经可逆与不可逆两种绝热过程() (A) 可以从同一始态出发达到同一终态 (B) 不可以达到同一终态 (C) 不能断定 (A)、(B) 中哪一种正确 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定 5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零? (A) △U (B) △H (C) △S (D) △G 6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变 化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m 7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定 8. H2和 O2在绝热钢瓶中生成水的过程:() (A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 0

热力学第二定律概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

从四大定律角度对热力学学习的认识

从四大定律角度对热力学学习的认识 2013级物理萃英班洪熹宇 摘要: 热力学是一门研究热运动的宏观理论,它与统计物理学的研究目的,都在于研究运动的规律,同时研究与热运动有关的物性,以及宏观物质系统的演化过程。但是它与统计物理学的研究方法上有着很大的不同,统计物理学侧重于从微观角度分析和解决问题,而热学的基础则是建立在宏观的基础上。它是一种唯象的宏观理论,具有较高的普适性和一般性。本文由学生在热力学学习过程中,将自己的体会与知识相结合,从四大定律着手给出学生对于热力学研究意义的思考和认识。 关键词:热力学三大定律,热平衡定律,能量守恒,自由能,熵,绝对零度 正文: 一、热力学四大定律的发现与形式 宏观角度看待问题的是经典的,因此热力学总是能给出一个条件给定系统的最终平衡状态的各个参数。人们在对热力学研究的基础上,总结出了热力学的三大定律,加上热平衡定律,便构成了热力学最主要的四个结论。 首先,能量守恒与转换定律是自然界最普遍、最基本的规律之一。它指出,自然界中的一切物质都具有能量,能量有各种不同的形式,这种不同形式的能量都可以转移(从一个物体传递到另一个物体),也可以相互转换(从一种能量形式转变为另一种能量形式),但在转移和转换过程中,它们的总量保持不变。这一规律成为能量守恒与转换定律。能量守恒与转换定律应用在热力学中,或者说应用在伴有热效应的各种过程中,便是热力学第一定律。历史上,焦耳在绝热过程中所做的两个实验,首先认识到外界对于系统所做的功,仅仅与系统的初态和末态是相关联的。在此人们定义了一个内能的概念,它的意义是,系统在末态和初态的内能之差,等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,这便是热力学第一定律的数学表达形式。此外,在工程热力学上,热力学第一定律也可表述成“热是能的一种,机械能变热能或热能变机械能时,它们之间的比值是一定的”,或者“热可以变功,功可以变热。一定量的热消失时必定产生相应量的功;消耗一定量的功时必定出现与之相应量的热”。 其次,人们在各类实验基础上又发现了热力学第二定律。卡诺在研究中发现,各种热机运动最终都服从于卡诺关于可逆热机的两个定理。然而卡诺在热机工作过程的认知上并不正确,由此克劳修斯和开尔文分别提出了热力学第二定律的两种表述:开尔文提出了“利用无生命物质的作用,把物质任何部分冷到比它周围最冷的客体以下,以产生机械效应,这是不可能的”。现在表述为“不可能从单一热源吸取热量,使之完全变为有用的功,而不产生其它影响”,克劳修斯提出了“不可能把热量,从低温物体传到高温物体,而不引起其他变化。”,二者分别从不同角度说明了热力学第二定律的实质,即任何与热现象有关的实际过程都有着其自发进行的方向,是不可逆的。这两种表述也可以相互进行逻辑上的论证,由此也发现了不同种类的不可逆过程本质上其实是可以互相进行推断的。特别的,在孤立系统下,由热力学第二定律可以推出重要的熵增加原理,为今后判断孤立系统的稳定平衡条件提供了依据。 随着科学研究的深入和对于低温条件获取的需要,人们在思考,究竟可不可以通过有限的过程实现绝对零度?20世纪初,人们通过对低温下热力学现象的研究,确定了物质熵值的零点,逐步建立起了热力学第三定律,进而提出了规定熵的概念,为解决一系列的热力学问题提供了极大的方便。热力学第三定律可以准确、简洁的表述为:0K时,任何完美晶体的熵值为0。也可以表达为,绝对零度不能达到。

热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。 这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等 克劳修斯表述 克劳修斯 克劳修斯表述是以热量传递的不可逆性(即热量总是自 发地从高温热源流向低温热源)作为出发点。 虽然可以借助制冷机使热量从低温热源流向高温热源, 但这过程是借助外界对制冷机做功实现的,即这过程除 了有热量的传递,还有功转化为热的其他影响。 1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响。 开尔文表述 参见:永动机#第二类永动机

开尔文勋爵 开尔文表述是以第二类永动机不可能实现这一规律作为 出发点。 第二类永动机是指可以将从单一热源吸热全部转化为 功,但大量事实证明这个过程是不可能实现的。功能够 自发地、无条件地全部转化为热;但热转化为功是有条 件的,而且转化效率有所限制。也就是说功自发转化为热这一过程只能单向进行而不可逆。 1851年开尔文勋爵把这一普遍规律总结为: 不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。 两种表述的等价性 上述两种表述可以论证是等价的: 1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述 的热机A,可以从低温热源吸收热量并将其全部转化为有用功。假设存在热机B,可以把功完全转化为热量并传递给高温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到从低温热源流向高温热源,而并未产生任何其他影响,即克劳修斯表述不真。 2.如果克劳修斯表述不真,那么开尔文表述不真:假设存在违反克劳修斯表 述的制冷机A,可以在不利用外界对其做的功的情况下,使热量由低温热源流向高温热源。假设存在热机B,可以从高温热源吸收热量 并将其中的热量转化为有用功,同时将热量传递给低温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到A与B联合组成的热机从高温热源吸收热量并将其完全转化为有 用功,而并未产生任何其他影响,即开尔文表述不真。 从上述二点,可以看出上述两种表述是等价的。

热力学三大定律

热力学第一定律 热力学第一定律:也叫能量不灭原理,就是能量守恒定律。 简单的解释如下: ΔU = Q+ W 或ΔU=Q-W(目前通用这两种说法,以前一种用的多) 定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。 热力学第一定律是对能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。对于无限小过程,热力学第一定律的微分表达式为 δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。 热力学第二定律 (1)概述/定义 ①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。 ②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。 (2)说明

热力学三大定律

热力学三大定律 热力学第一定律 热力学第一定律是能量守恒定律。热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。或者绝对零度(T=0K)不可达到。 热力学第一定律也就是能量守恒定律。 内容 一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。) 表达式:△U=W+Q 符号规律 :热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定: ①外界对系统做功,W>0,即W为正值。 ②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值 ③系统从外界吸收热量,Q>0,即Q为正值 ④系统从外界放出热量,Q<0,即Q为负值 ⑤系统内能增加,△U>0,即△U为正值 ⑥系统内能减少,△U<0,即△U为负值 从三方面理解 1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W 2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q 3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。即△U=W+Q 能量守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。 能量的多样性 物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。 不同形式的能量的转化 “摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。。。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。 能量守恒的意义

第三章 热力学第二定律讲解学习

第三章热力学第二定律 一、选择题 1.理想气体与温度为T 的大热源接触,做等温膨胀吸热Q,而所做的功是变到相同终态最大功的20%,则体系的熵变为() A.ΔS = 5Q /T B.ΔS = Q /T CΔS= Q/5T D.ΔS =T/Q A 2.下列过程哪一种是等熵过程() A. 1mol 某液体在正常沸点下发生相变 B. 1mol 氢气经一恒温可逆过程 C. 1mol 氮气经一绝热可逆膨胀或压缩过程 D. 1mol 氧气经一恒温不可逆过程 C 3.d G = ?S d T+V d p 适用的条件是() A.只做膨胀功的单组分,单相体系 B. 理想气体 C. 定温、定压 D. 封闭体系 A 4.熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是:() A.1,2 B. 2,3 C. 2 D.4 C 5.体系经历一个不可逆循环后() A.体系的熵增加 B.体系吸热大于对外做功 C.环境的熵一定增加 C环境内能减少 C 6.理想气体在绝热可逆膨胀中,对体系的ΔH 和ΔS 下列表示正确的是()A. ΔH > 0, ΔS > 0 B. ΔH = 0, ΔS = 0 C. ΔH < 0, ΔS = 0 D.ΔH < 0, ΔS < 0 B 7.非理想气体绝热可逆压缩过程的△S() A.=0 B.>0 C.<0 D.不能确定 A 8.一定条件下,一定量的纯铁与碳钢相比,其熵值是() A.S(纯铁)>S(碳钢) B.S(纯铁)

(完整版)高中物理所有定律定理定则大全

高中物理所有定律、定理、定则 一、牛顿三大定律 1、牛顿第一定律: 一切物体(在不受任何外力作用时)总保持静止状态或匀速直线运动状态,直到有外力迫使它改变这种状态为止。 (任何物体都保持静止或沿一条直线做匀速运动的状态,除非作用在它上面的力迫使它改变这种状态。) 2、牛顿第二定律: 物体的加速度跟受到的外力成正比,跟物体的质量成反比:加速度的方向总跟外力方向一致。 运动的变化与所加的动力成正比,并且发生在这力所沿的直线的方向上。 3、牛顿第三定律: 物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。作用在两个物体上,同时产生、同事变化、同时消失、性质总相同。 对于每一个作用,总有一个相等的反作用与之相反;或者说,两个物体之间对各自对方的相互作用总是相等的,而且指向相反的方向 二、开普勒三大定律 1、开普勒第一定律,(轨道定律) 每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

2、开普勒第二定律(面积定律:) 在相等时间内,太阳和运动中的行星的连线所扫过的面积都是相等的。 3、开普勒第三定律(周期定律) 绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道半长轴的立方与周期的平方之比是一个常量。 三、热力学三大定律 1、热力学第一定律: 一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。) 热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=-W+Q时,通常有如下规定: ①外界对系统做功,W>0,即W为正值。 ②系统对外界做功,W<0,即W为负值。 ③系统从外界吸收热量,Q>0,即Q为正值 ④系统从外界放出热量,Q<0,即Q为负值 ⑤系统内能增加,△U>0,即△U为正值 ⑥系统内能减少,△U<0,即△U为负值 第一类永动机是不消耗任何能量却能源源不断地对外做功的机器。其不可能存在,因为违背的能量守恒定律

2019届人教版 热力学第二定律 单元测试

热力学第二定律 一、选择题 1.关于热力学第一定律和热力学第二定律,下列论述正确的是(). A.热力学第一定律指出内能可以与其他形式的能相互转化,而热力学第二定律则指出内能不可能完全转化为其他形式的能,故这两条定律是相互矛盾的 B.内能可以转化为其他形式的能,只是会产生其他影响,故两条定律并不矛盾 C.两条定律都是有关能量的转化规律,它们不但不矛盾,而且没有本质区别 D.其实,能量守恒定律已经包含了热力学第一定律和热力学第二定律 2.以下哪个现象不违背热力学第二定律(). A.一杯热茶在打开盖后,茶会自动变得更热 B.没有漏气、没有摩擦的理想热机,其效率可能是100 C.桶中浑浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离 D.热量自发地从低温物体传到高温物体 3.下列关于能量耗散的说法,正确的是(). A.能量耗散使能的总量减少,违背了能量守恒定律 B.能量耗散是指耗散在环境中的内能再也不能被人类利用 C.各种形式的能量向内能的转化,是能够自动全额发生的 D.能量耗散导致能量品质的降低 4.关于能源,以下说法中正确的是(). A.煤、石油、天然气等燃料的化学能实际上是太阳能转化而成的 B.能源的利用过程,实质上是能的转化和转移的过程 C.到目前为止,人类所利用的所有能源实际上都是太阳能转化而成的 D.核能和地热能来自地球本身 5.当前世界上日益严重的环境问题主要源于(). A.温室效应B.厄尔尼诺现象 C.人类对环境的污染和破坏D.火山喷发和地震 6.下列叙述中不正确的是(). A.市区禁止摩托车通行是为了提高城区空气质量 B.无氟冰箱的使用会使臭氧层受到不同程度的破坏 C.大气中CO2含量的增多是引起温室效应的主要原因 D.“白色污染”是当前环境保护亟待解决的问题之一 7.如图所示为电冰箱的工作原理图.压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环.那么,下列说法中正确的是().

对热力学第三定律的理解

对热力学第三定律的理解 摘要:热物理学是整个物理学四大理论之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。热力学中有四大定律,其中热力学第三定律更是重要。本文主要介绍对热力学第三定律的认识和对其应用价值的理解。 关键词:热力学第三定律;绝对零度;应用价值 1.引言 热力学第三定律的建立已近一百年,是热力学统计物理学的基本理论基础之一.l906年德国物理化学家能斯特从化学平衡常数的确定出发,建立了热力学第三定律.接着,许多其他科学家在此基础上进一步对该定律作了大量的研究,并提出了他们相应的说法.本文简要地介绍该定律的创立与发展过程,并说明它的重要意义以及在科学上的应用。 2.正文 2.1热力学第三定律的发现 我们可以想象如果不停降温,那么,蒸汽就会凝结成水,然后冻成冰。那么,是否存在降低温度的极限呢?为此早在开尔文提出热力学温标时,就提出温度是存在下限的。也就是说,存在一个绝对的唯一的温度值,并且在达到这一临界值后温度就无法继续下降了。其实,早在1702年,法国物理学家阿蒙顿也曾提到过“绝对零度”的概念。他根据空气受热时体积和压强都随温度的增加而增加这一现象出发,计算出在某个温度下,空气的压力将等于零。这个温度用后来提出的摄氏温标表示,约为-239℃,后来,兰伯特更精确地重复了阿蒙顿实验,计算出这个温度为-270.3℃。他说,在这个“绝对的冷”的情况下,空气将紧密地挤在一起。然而他们的这个看法没有得到人们的重视。直到盖吕萨克定律提出之后,

存在绝对零度的思想才得到物理学家的普遍承认。现在我们知道,绝对零度更准确的值是-273.15℃。由于绝对零度不能达到原理的表述简洁且物理意义明确,所以被现代人们公认为热力学第三定律的标准表述,热力学第三定律作为热力学基本定律,从此,热力学的基础基本得以完备。 在统计物理学上,热力学第三定律反映了微观运动的量子化。在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的意图。而是鼓励人们想方设法尽可能接近绝对零度。目前使用绝热去磁的方法已达到K 10105-?,但永远达不到0K 。 2.2热力学第三定律的两种描述 热力学第二定律只定义了过程的熵变,而没有定义熵本身. 因而熵的确定,有赖于热力学第三定律的建立,1902年美国科学家雷查德(T.W.Richard)在研究低温电池反应时发现电池反应的?G 和?H 随着温度的降低而逐渐趋于相等,而且两者对温度的斜率随温度同趋于一个定值:零 ? 由热力学函数的定义式, ?G 和?H 当温度趋于绝对零度时,两者必会趋于相等: ? ?G= ?H -T ?S ? limT →0?G= ?H -limT →0T ?S ? = ?H (T →0K) ? 虽然两者的数值趋于相同,但趋于相同的方式可以有所不同. ? 雷查德的实验证明对于所有的低温电池反应, ?G 均只会以一种方式趋近于?H. 上图中给出三种不同的趋近方式, 实验的结果支持最后一种方式, 即曲线的斜率均趋于零. 0000)/(lim )/(lim ====??=??P K T P T T H P G 0)(lim )/(lim 00=?-=??==S T G T P T 上式的物理含义是: 温度趋于绝对零度时, 反应的熵变趋于零, 即反应物的熵等于产物的熵. 推广到所有的化学反应, 即是:一切化学反应的熵变当温度趋于绝对零

热力学第二定律导学案

【教学目标】 1、了解热传导过程的方向。 2、了解什么是第二类永动机,为什么第二类永动机不可能制成。 3、了解热力学第二定律的两种不同的表述以及这两种表述的物理实质。 4、了解什么是能量耗散。 5、知道绝对零度不可能达到。 6、指导学生分析事例,培养学生分析问题和理论联系实际的能力 【重点、难点分析】 重点:1、热力学第二定律两种常见的表述 2、什么是绝对零度,知道它是不可达到的 难点:1、热力学第二定律表述的物理实质 2、自然界中进行的涉及热现象的宏观过程都具有方向性 【课时安排】一课时 【课前准备】 教师:投影仪及胶片,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳

学生:课下预习课文,在家观察自家的电冰箱 【教学设计】 引入新课 我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×1018 t , 如果这些海水的温度降低0.1o C,将要放出多少焦耳的热量?海水的比热容为C=4.2×103J/(kg·℃)。下面请大家计算一下。 学生计算:Q = 4.2×103×1.4×1018×103×0.1 = 5.8×1023J 这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。 【板书】第六节热力学第二定律 【板书】一、热传导的方向性 教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题? 学生思考,教师给予启发

相关文档
相关文档 最新文档