文档库 最新最全的文档下载
当前位置:文档库 › 谐波齿轮传动动画演示

谐波齿轮传动动画演示

齿轮传动测试题

齿轮传动测试题 一、单项选择题(从给出的A 、B 、C 、D 答案中选一) 1. 软齿面闭式齿轮传动的主要失效形式是—b —。 A .齿面胶合 B .齿面疲劳点蚀 C .齿面磨损 D .轮齿折断 2. 高速重载齿轮传动,最可能出现的失效形式是—a ——。 A .齿面胶合 B .齿面疲劳点蚀 C .齿面磨损 D .轮齿塑性变形 3. c 对于标准齿轮传动,影响齿形系数Fa Y 的主要几何参数是 ——。 A .齿轮的模数 B .齿轮的全齿高 C .齿轮的齿数 D .齿轮的顶隙系数 4.在闭式软齿面减速齿轮传动中,若小齿轮采用45钢调质处理,大齿轮采用45钢正火处理,则它们的齿面接触应力_______d____。 2121212 1.... H H H H H H H H D C B A σσσσσσσσ=≈<> 5.在开式齿轮传动中,齿轮模数m 应依据_a_________条件确定,再考虑磨损适当增大 A .齿根弯曲疲劳强度 B .齿面接触疲劳强度 C .齿面胶合强度 D .齿轮工作环境 6. 依据渐开线齿轮正确啮合条件,一对标准渐开线圆柱齿轮实现正确啮合,它们的a ——必须相等。

A.模数m B.齿数z C.分度圆直径d D. 轮齿宽度b 7. 轮齿疲劳点蚀通常首先出现在齿廓的_____d______部位。 A.齿顶附近B.齿根附近 C.节线上D.节线靠近齿根处8. 齿轮传动中,动载系数Kv主要是考虑______________因素对齿轮传动的影响。 A.齿轮自身制造精度引起的误差 B.载荷沿齿宽分布不均 C.双齿啮合时的载荷分配不均 D.齿轮以外的其它 9. 在设计直齿圆柱齿轮和斜齿圆柱齿轮时,通常取小齿轮齿宽b1大于大齿轮齿宽b2,其主要目的在于—b—。 A.节省材料B.考虑装配时的轴向窜动C.提高承载能力D.使两齿轮接近等强度10 下列措施中,____a___不利于提高轮齿抗疲劳折断能力。 A.减小齿根圆角半径B.减小齿面粗糙度 C.减轻加工损伤D.表面强化处理11. 斜齿轮不产生根切的最少齿数为 A.大于17 B.小于17

少齿差行星齿轮减速器计算说明书一

设计计算说明书 在少齿差内啮合传动中,由于内齿轮和外齿轮的齿数差少,在切削和装配时会产生种种干涉,以致造成产品的报废。因此,在设计减速器内齿轮副参数的时候,需要对一些参数进行合理的限制,以保证内啮合传动的强度和正确的啮合。同时要对一些主要零件进行强度校核计算。 2.1 减速器结构型式的确定 选用卧式电机直接驱动,因传动比53 i,传动i=153.53>100时,少 = 153 . 总 齿差行星齿轮减速器有两种设计方案可供选择。第一种是采用二级或多级的N 型少齿差行星齿轮减速器;第二种是采用内齿轮输出的NN型少齿差行星齿轮减速器。 以下分别阐述其特点: 图2-1 图2-1为典型二级N型少齿差齿轮减速器的传动原理简图,传动原理如下:当电动机带动偏心轴H转动时,由于内齿轮K与机壳固定不动,迫使行星齿轮绕内齿轮做行星运动;又由于行星轮与内齿轮的齿数差很少,所以行星轮绕偏心轴的中心所做的运动为反向低速运动。利用输出机构V将行星轮的自转运

动传递给输出轴,达到减速目的。减速后的动力通过输出轴传递给中心轮1,而行星轮2绕中心轮1和3做行星反向低速运动,从而达到第二次减速。 此类减速器的优点是:2K-H(负号机构)这种传动机构制造方便、轴向尺寸小, K-H-V 型的机构效率较高,承载能力大,两者串联可实现大的传动比。 缺点是:因转速很高,行星轮将产生很大的离心力作用于轴承上,此机构设计计算复杂,销孔精度要求高,制造成本高,转臂轴承载荷大。 图1-3为典型的内齿轮输出的NN 型少齿差行星齿轮减速器,这种结构的减速器优点是:内齿轮输出的N 型少齿差行星减速器的结构简单,用齿轮传力,无需加工精度较高的传输机构;零件少,容易制造,成本低于上种型式;可实现很大或极大的传动比。 缺点是:传动比越大则效率也越低,为了减少振动需添加配重。 基于经济性方面因素考虑,采用第二种方案作为本次课题的设计方案。 2.2 确定齿数差和齿轮的齿数 由《渐开线少齿差行星传动》表4-17可知,如齿数差增大,减速器的径向尺寸虽增大一些,但转臂轴承上的载荷可降低很多;并且由于齿轮直径的增大,从而可使轴承的寿命得到显著提高;此外,对减速器的效率、散热条件等也有了一定的改善。因减速器传递的功率不大,决定采用三齿差。 齿数差 : 3412Z Z Z Z Z d -=-==3 31,Z Z 分别为双联行星齿轮的齿数;42,Z Z 分别为内齿轮的齿数。 错齿差 : 31Z Z Z c -= ,取c Z =3~10,在这取值为5; 可按《机械设计手册:单行本.第11~14篇,机械传动》公式(13-6-2)计算,即 []) 1(4)(2 1 2 2总i Z Z Z Z Z Z Z c d c d c d --+++= [])()(53.153153453532 1 2 -???-+++= 999.51= 圆整得 522=Z 通过2Z 可计算其余的齿数分别为:1Z =49, 3Z =44, 4Z =47 。 由《机械设计手册:单行本.第11~14篇,机械传动》第13-436页传动比 公式验算,即 c d c d Z Z Z Z Z Z Z Z Z Z Z Z i ) (= 总++= -333 2414 1)(

少齿差行星齿轮减速器的设计

摘要 对少齿差行星齿轮减速器国内外的发展现状、优缺点、结构型式和其传动原理进行了一定的阐述。在设计过程当中,对内啮合传动产生的各种干涉进行了详细验算;从如何提高转臂轴承的寿命为出发点,来计算选择减速器齿轮的模数,进行少齿差内齿轮副的设计计算,最终合理设计减速器的整体结构。 关键词:少齿差行星传动;行星齿轮减速器;内齿轮副

Abstract Having expounded the planetary gear reducer of a few-tooth difference about its development of the status quo at home and abroad, the advantages and disadvantages, structural type and principle of its transmission. Among the process of designing, having checked detailedly about the interference which generated by internal mesh transmission. From how to improve the life of bearing arms to the starting point, choosing and calculating the modulus of the gear reducer for designing the internal gear pair of a few-tooth difference and the final overall structure of the reducer. Key words:Small tooth number difference planet transmission; Planetary gear reducer; Annular gear

影响齿轮工作平稳性的加工误差分析 - 普通齿轮传动

影响齿轮工作平稳性的加工误差分析 影响齿轮传动工作平稳性的主要因素是齿轮的齿形误差△ff和基节偏差△fpb。齿形误差会引起每对齿轮啮合过程中传动比的瞬时变化;基节偏差会引起一对齿过渡到另一对齿啮合时传动比的突变。齿轮传动由于传动比瞬时变化和突变而产生噪声和振动,从而影响工作平稳性精度。 滚齿时,产生齿轮的基节偏差较小,而齿形误差通常较大。下面分别进行讨论。(1)齿形误差 齿形误差主要是由于齿轮滚刀的制造刃磨误差及滚刀的安装误差等原因造成的,因此在滚刀的每一转中都会反映到齿面上。常见的齿形误差有如图9-6所示的各种形式。图a为齿面出棱、图b为齿形不对称、图c为齿形角误差、图d为齿面上的周期性误差、图e为齿轮根切。 由于齿轮的齿面偏离了正确的渐开线,使齿轮传动中瞬时传动比不稳定,影响齿轮的工作平稳性。 (2)基节极限偏差滚齿时,齿轮的基节极限偏差主要受滚刀基节偏差的影响。滚刀基节的计算式为: pb0=pn0cosα0=pt0cosλ0cosα0≈pt0cosα0 式中:pb0――滚刀基节; pn0――滚刀法向齿距; pt0――滚刀轴向齿距; α0――滚刀法向齿形角; λ0――滚刀分度圆螺旋升角,一般很小,因此cosλ0≈1。 由上式可见,为减少基节偏差,滚刀制造时应严格控制轴向齿距及齿形角误差,同时对影响齿形角误差和轴向齿距误差的刀齿前刀面的非径向性误差也要加以控制。 影响齿轮接触精度的加工误差分析 齿轮齿面的接触状况直接影响齿轮传动中载荷分布的均匀性。滚齿时,影响齿高方向的接触精度的主要原因是齿形公差△ff和基节极限偏差△fpb。影响齿宽方向的接触精度的主要原因是齿向公差△Fβ。产生齿向公差的主要原因: (1)滚齿机刀架导轨相对于工作台回转轴线存在平行度误差。 (2)齿坯装夹歪斜由于心轴、齿坯基准端面跳动及垫圈两端面不平行等引起的齿坯安装歪斜,会产生齿向误差。 (3)滚切斜齿轮时,除上述影响因素外,机床差动挂轮计算的误差,也会影响齿轮的齿向误差。

少齿差行星齿轮传动原理

少齿差行星齿轮传动原理 1.1 少齿差行星齿轮传动原理 少齿差行星齿轮传动是行星齿轮传动中的一种。由一个外齿轮与一个内齿轮组成一对内啮合齿轮副(它采用的是渐开线齿形,内外齿轮的齿数相差很小,简称为少齿差传动。一般所讲的少齿差行星齿轮传动是专指渐开线少齿差行星齿轮传动而言的。渐开线少齿差行星齿轮传动以其适用于一切功率、速度范围和一切T 作条件,受到了世界各国的广泛关注(成为世界各国在机械传动方面的重点研究方向之一。 1.1 2少齿差传动 1.2 行星齿轮传动是动轴齿轮传动的一种主要方式,其最基本的形式是2K—H 型(即两个中心轮 a,b和个转臂 H),如图 l所示,传动比为 iaH=1+Zh/Zn. 它演变出两种典型的少齿差行星齿轮传动形式 (如图 2所示:K—H—V行星齿轮传动如图 2(a)所示 (基本构件为中心轮 b、转臂H和构件V,当中心轮 b固定,转臂H 主动,构件V从动时,传动比为iHg= - Zg/(Zb-Zg).。把构件V 固定(转臂H主动,中心轮 b输出(如图2(b)所示,其传动比iHb=Zb/(Zb-Zg)。为少齿差行星齿轮传动机构实质是一个由平面四连杆机构和内啮合齿轮副组成的齿轮连杆机构。通过对不同构件作不同限制,可以设计出多种少齿差行星齿轮传动结构形式。 1.1.3 少齿差行星齿轮传动的特点 少齿差行星齿轮传动具有以下优点: (I)加工方便、制造成本较低渐开线少齿差传动的特点是用普通的渐开线齿轮刀具和齿轮机床就可以加工齿轮,不需要特殊的刀具与专用设备,材料也可采用普通齿轮材料料。 (2)传动比范围大,单级传动比为 10,1000以上。

(3)结构形式多样,应用范围广,由于其输入轴与输出轴可在同一轴线上,也 可以不在同一轴线上,所以能适应各种机械的需要。 (4) 结构紧凑、体积小、重量轻,由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少 1/3,2,3。 (5)效率高。当传动比为 10,200时,效率为 80,,94,。效率随着传动比的增加而降低。 (6)运转平稳、噪音小、承载能力大,由于是内啮合传动(两啮合轮齿一为凹齿、一为凸齿两齿的曲率中心在同一方向(曲率半径义接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制(轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是 3-9对轮齿同时接触受力(所以运 转平稳,噪声小,并且在相同的模数情况下(其传递力矩比普通同柱齿轮减速器大。 基于以上特点,小到器人的关节、大到冶金矿用机械 (以及从要求不高的农用、食品机械(到要求较高的印刷和国防工业都有应用实例。 少齿差减速器的结构型式较多,常见的型式可按输出的型式、减速器的级数、行星齿轮的数目、使用安装的型式分类。 其中按输出型式可分为: (1)销轴式这种减速器使用历史较长,应用范围较广,实践证明效率较高;在 高速连续运转,功率较大或扭矩较大的使用场合下,可采用销轴式输出机构 (2)十字滑块式这种结构形式较简单,加工方便,但是承载能力及效率较销轴式低,常用于小功率、只有一个行星齿轮的结构中。 (3)浮动盘式这种结构形式较新颖,比销轴式容易加工,使用效果好。但对其效率 和承载能力还缺乏测试数据。

齿轮传动的使用要求

齿轮传动的使用要求 1、传递运动的准确性: 影响因素:几何偏心、运动偏心。 检验参数: (1)切向综合总偏差F i’:被测齿轮与测量齿轮单面啮合时,被测齿轮一转内,齿轮分度园上实际圆周位移与理论圆周位移的最大差值。(2)齿距累积总偏差F p:齿轮同侧齿面任意弧段内的最大齿距累积偏差。(万能齿轮检查仪) (3)径向综合总偏差F i“”:产品齿轮的左右齿面同时与测量齿轮接触,并转过一整圈时出现的中心距最大值和最小值之差。 (4)径向跳动F r:齿轮轴线的最大和最小径向距离之差。(齿圈径向跳动检查仪) 2、传动的平稳性: 影响因素:两齿轮的基节不等和齿廓误差。 检验参数: (1)齿廓总偏差F α:在计算范围内,包容实际齿廓迹线的两条与平均齿廓迹线完全相同的曲线间的距离,且两条曲线与平均齿廓迹线的距离为常数。 (2)一齿切向综合偏差f i‘:在一个齿距的切向综合偏差,它能综合地反映基节偏差和齿形误差在转一齿过程中的速比影响。 (3)一齿径向综合偏差f i“”: (4)单个齿距偏差f pt:在端面上,在接近齿高中部的一个与齿轮轴

线同心园上,实际齿距与理论齿距的代数差。 (5)基园齿距偏差f pb 3、载荷分布均匀性 影响因素:主要是由机床刀架导轨与工作台回转轴线不平行,齿呸端面的跳动或心轴歪斜。 检验参数: 螺旋线总偏差F β:包容实际螺旋线迹线的两条螺旋线迹线的距离。 螺旋线形状f f β:包容实际螺旋迹线的两条与平均螺旋线迹线完全的曲线间的距离,且两条曲线与平均螺旋线迹线的距离为常数。 螺旋线倾斜偏差f H β:在计算范围内的两端与平均螺旋线迹线相交的设计螺旋线迹线间的距离。 4、齿侧间隙 影响因素:主要因素,齿厚偏差即实际齿厚与公称齿厚之差是影响齿侧间隙的主要因素。另外,两轮安装的中心距偏差。 检验参数 (1)齿厚偏差E sn:实际齿厚和公称齿厚之差。(测齿卡尺) (2)公法线长度偏差E bn:公法线长度实际值与公差值之差。(公法线千分尺) 测量步骤:计算模数m n==D e/(Z+2),确定跨齿数,n==Z/9+0.5

齿轮误差分析

1.1 齿圈径向跳动误差(即几何偏心) 齿圈径向跳动是指在齿轮一转范围内,测头在齿槽内或轮齿上,与齿高中部双面接触,测头相对于轮齿轴线的最大变动量。也是轮齿齿圈相对于轴中心线的偏心,这种偏心是由于在安装零件时,零件的两中心孔与工作台的回转中心安装不重合或偏差太大而引起。或因顶尖和顶尖孔制造不良,使定位面接触不好造成偏心,所以齿圈径跳主要应从以上原因分析解决。 1.2公法线长度误差(即运动偏心) 滚齿是用展成法原理加工齿轮的,从刀具到齿坯间的分齿传动链要按一定的传动比关系保持运动的精确性。但是这些传动链是由一系列传动元件组成的。{HotTag}它们的制造和装配误差在传递运动过程中必然要集中反映到传动链的末端零件上,产生相对运动的不均匀性,影响轮齿的加工精度。公法线长度变动是反映齿轮牙齿分布不均匀的最大误差,这个误差主要是滚齿机工作台蜗轮副回转精度不均匀造成的,还有滚齿机工作台圆形导轨磨损、分度蜗轮与工作台圆形导轨不同轴造成,再者分齿挂轮齿面有严重磕碰或挂轮时咬合太松或太紧也会影响公法线变动超差。 1.3齿形误差分析 齿形误差是指在齿形工作部分内,包容实际齿形廓线的两理想齿形(渐开线)廓线间的法向距离。在实际加工过程中不可能获得完全正确的渐开线齿形,总是存在各种误差,从而影响传动的平稳性。齿轮的基圆是决定渐开线齿形的惟一参数,如果在滚齿加工时基圆产生误差,齿形势必也会有误差。基圆半径R= 滚刀移动速度/工作台回转角速度x cos ao (ao为滚刀原始齿形角),在滚齿加工过程中渐开线齿形主要靠滚刀与齿坯之间保持一定速比的分齿来保证,由此可见,齿形误差主要是滚刀齿形误差决定的,滚刀刃磨质量不好很容易出现齿形误差。同时滚刀在安装中产生的径向跳动、轴向窜动(即安装误差)也对齿形误差有影响。常见的齿形误差有不对称、齿形角误差(齿顶变肥或变厚)、产生周期误差等。 1.4齿向误差分析 齿向误差是在分度圆柱面上,全齿宽范围内,包容实际齿向线的两条设计齿向线的端面距离。引起齿向误差的主要原因是机床、刀架的垂直进给方向与零件轴线有偏移,或上尾座顶尖中心与工作台回转中心不一致,还有滚切斜齿轮时,差动挂轮计算误差大,差动传动链齿轮制造和调整误差太大。另外夹具和齿坯制造、安装、调整精度低也会引起齿向误差。 1.5齿面粗糙度分析 齿面粗糙度不好一般有几种现象:发纹、啃齿、鱼磷、撕裂。 引起齿面粗糙度差的主要原因有以下几方面:机床、刀具、工件系统整体刚性不足、间隙大;滚刀和工件相对位置发生变化;滚刀刃磨不当、零件材质不均匀;切削参数选择不合适等。

齿轮传动链的运动精度与加工误差

1996—4目 次 ?人物专访? 走自己的路 创中国之“微软” k k 访青年机译专家陆肇雄博士左琼峰(插5)……?试验研究? 高强度高韧性高耐蚀性非晶合金  Fe-C r-B -P -Se 的研究白聿钦(1)………………变截面细长杆振动车削的试验研究祝锡晶等(3)………切屑折断过程及槽型CAD 专家  系统研究郑敏利等(4) (2) 1 4 C r-1M 材料切削 硬化规律的研究董丽华等(6)…………………………提高磁栅传感速度的研究段丽华等(7)…………………热管式换热器热工性能试验研究白奉臣等(9)…………谷物干燥机通风干燥工艺及参数 试验研究李景慧等(11)…………………………………圆周均布多轴头齿轮传动系统的 分析与研究隋秀凛等(13)……………………………新设计?新装置?新结构 镗床加工空间凸轮特殊装置的设计张碚等(14)………任意斜截圆柱面壳体的展开计算曹中生(16) …………整体镗床用可编程电控及变频  调速系统的设计熊新民(17) ……………………………YDX-1射孔弹生产线自动称药机  输料机的设计张永德等(19) …………………………工件以圆孔在心轴上定位误差的 分析和计算彭庚新(21)……………………………………变螺距螺旋的设计 王朝辉等(22) ………………………S 型深孔麻花钻张 霞(24) ………………………………筒体大开孔结构的应力分析设计法 徐 毅(26) ………一种新颖的轮毂联结结构分析陈龙厚(28)……………?实用技术? 编网机超越离合器的应用沈民光(29)……………………可编程控制器在变频调速供水 系统中的应用陈 涛等(30)………………………………磁性流体密封技术朱孝平等(32)…………………………小型转炉氧枪升降装置结构分析刘剑平(33)……………用解析法求解回转体的不平衡重量李克原等(34) ……预拉处理对链条疲劳强度的影响王严兴等(35) ……… ?工厂经验?传动链中心距测量仪 兰宏等(37) ………………………下穿横梁的铸造工艺吕烨等(38)…………………………聚氨脂橡胶模在应用中几个主要 问题的分析廖 江(40)……………………………………汽车交流发电机和调节器主要 故障诊断与排除王 兴(41)………………………………液压油缸球铰架制造新工艺于润海(42)…………………木工机械设备的选型佟小平等(43)………………………套类零件不停车加工内胀式定心  夹紧装置夏建中(44)……………………………………浅谈机械产品的艺术造型王 琨等(45)………………?标准化? 表面粗糙度代号及其注法新旧标准  对比分析李瑞芬等(46)…………………………………剖析米制锥螺纹的标准示例李 琦等(48)……………?理论探讨? 齿轮传动链的运动精度与加工误差程友联(49)…………脂润滑点接触弹流的数值分析蓝嘉铭等(51)……………连铸机预应力结构拉矫辊的设计思想张春宜等(53)…?企业管理? 企业公关形象的重要作用 韩晓萍等(55) ……………… 封面广告说明(56)…………………………………………封三广告说明(54)…………………………………………信息(18) ……………………………………………M a i n Top ic 4 1996D evel op le Ch ina’s M icro soft Docto r L u Zhaox i ong Specilist on tran slating m ach ine Zuo Q i ongfeng (插5) ………………………Study of H igh strength h igh ductility co rro si on resistan t a mo rphou sall oy Bai Yuqin (1)…………T est study on o scilating tu rn ing of irregu lar  BA R Zhu X ijing et al (3)………………………T est study of ch i p b reak ing p rocess and  sl o t CAD syste m Zheng M in li et al (4) ………Study of cu tting w o rk harden ing of 21 4C r -1M o Dong L ihua et al (6)………………… Study on sen so ring speed of m agnetic grid D uan L ihua et al (7) ………………………T est study on ther m al m ach in ical p roperties of p i pe heat exchanger Bai Fengchen et al (9)……T est study of grain drying p rocess and specificati on of drying m ach ine L i J inghu i et al (11)…………………………A nalysis and study of circum ference un ifo r m m u lti sp indle gearing Su i x iu lin et al (13)………D evel op ing calcu lati on of m iter cylinder  Cao Zhongsheng (16)……………………Su rvey of in tegral bo ring m ach ine PC frequency conversi on mon ito ring syste m X i ong X inm in (17) …………………………D esign of W eigh ing and conveying equ i pm en t in YDX-1ho le m ak ing bu llet p roducti on line Zhang Yongde et al (19)……………………D esign of V ari ouab le p itch scre w W ang Zhaohu i et al (22)…………………… S type t w ist drill Zhang X ia (24)…………… Stress an lysis design m ethod of cylinder w ith large dia m eter ho le Xu Y i (26)……………… Structu ral analysis of ne w hub coup ling chen L onghou (28) …………………………本期责任编辑:杨桂霞 机械工程师 1996年第4期(总第73期)  出版时间:1996年8月15日  地 址:哈尔滨市动力区文治头道街30号 电 话:2119234 邮政编码:150040 广告经营许可证:黑工商广字(哈动003) 订购处:全国各地邮局

齿轮公差的计算及描述

2012—2013学年第一学期课程论文 论文题目:浅析精密机械齿轮传动中的误差及计算方法 课程名称:误差理论与数据处理 学院:机电学院 专业:机械工程 班级: 姓名: 学号: 2013年1月8日

目录 0 引言 (3) 1 齿轮误差来源 (3) 1.1 齿轮制造误差 (4) 1.1.1 几何偏心 e的影响 (4) r 1.1.2 运动偏心 e的影响 (5) k 1.1.3 齿形误差、周节偏差、齿向误差等因素的影响 (5) 1.2 齿轮装配误差 (6) 2 齿轮传动计算方法 (6) 2.1绝对值法 (6) 2.2概率法 (6) 3误差源的分布 (7) 4传动链精度计算 (8) 5结语 (9) 参考文献 (10)

浅析精密机械齿轮传动中的误差及计算方法 摘要:齿轮传动是机械传动中最重要的传动形式之一,在精密传动中的应用也很广泛。精密机械传动对传动精度要求很高,所以,在精密传动中,我们必须要充分考虑齿轮传动中的误差的影响。本文给出了误差来源、误差分布及相关计算方法。文中主要分析了传动误差,并给出了空程误差的计算式,没有考虑齿轮传动中的温度、受力变形的影响。计算方法采用了常用的概率法,这种方法简单,但算出的误差较大,具体计算时应结合实际情况,看此法是否能满足精密传动机械的精度要求。若不能满足,则需另寻他法。 关键词:齿轮传动精度传动误差

A Brief Analysis Of Error And Computing Method In Gear Transmission Of Precise Machinery Abstract: Gear transmission is one of the most important mechanical transmission in the form of transmission and is widespread in precision machinery. It requires a high transmission accuracy in Precision mechanical transmission[]1. To meet the requirements, we must fully consider the influence of gear transmission error in precise transmission. In this paper, it gives the source of error, error distribution and computing method. This paper mainly analyzes the transmission error and gives the error calculation of empty-range without considering the influence of temperature and stress deformation. We use the mostly-used probabilistic method to get the result[]2. This method is brief, but the error is too high. In the specific calculation, we should consider the actual situation to see whether this method can meet the demands of the transmission accuracy in precise machinery. If not, we have to look for other methods. Key words: gear transmission error analysis transmission accuracy.

齿轮检验的3个公差组

齿轮检验的3个公差组 一般厂家检验ff、Fβ、Fr、Wk、ΔW,欧洲厂家主要要求检测Fi″、fi″、Fr、Wk。还有一个隐含要求,就是装配后噪音要小。 1、齿轮的检测有三方面要求:传递运动的精确性、平稳性、载荷分布的均匀性。 2、这三个公差组各有数个检测项目,按国标要求每个公差组只检一项或两项(当然不是随意选)一般情况下设计者会给出每个公差组的精度 等级和需检测的项目。 3、但有时图纸上会给出数个项目或只给精度等级和标准,这种情况下个人认为最好和设计沟通一下,看对方有什么要求,否则你费了半天劲 可能人家一句话你就得从头再来。若设计没什么要求那你可以按标准要求每个公差组检一项或两项就可以了,记住是按照标准要求,不是自己随意挑的。 4、个人感觉一般情况下是这样的,每一公差组检FP或公法线变动和FR,第二公差组检Fα和FPT,第三公差组检Fβ。纯属个人感觉没有依 据。 5、除了这三方面的要求外,还有齿厚要求,当然这个是好检的,可测公法线或跨棒距。 渴望与大家一同进步,有愿意讨论的可加我QQ951666310,注明机械,或发https://www.wendangku.net/doc/6217091994.html, 一典型零件检测 https://www.wendangku.net/doc/6217091994.html,view09f4486fb84ae45c3b358ce1.html 1.5齿轮的检测 1.5.1 齿轮线性尺寸的测量 1.5.1.1分析工作任务书 1.阅读齿轮零件图,了解减速器直齿圆柱齿轮的结构; word版本.

2. 熟练掌握齿轮的基础知识; 3.掌握齿轮检测原理; 4. 掌握常用的齿轮检测工具; 5.选择齿轮的检测方案,确定测量工具; 6.进行检测; 7.记录数据并进行数据处理; 一典型零件检测 1.5齿轮的检测 1.5.1 齿轮线性尺寸的测量1.5.1.1分析工作任务书 1.阅读齿轮零件图,了解减速器直齿圆柱齿轮的结构; 2. 熟练掌握齿轮的基础知识; 3.掌握齿轮检测原理; 4. 掌握常用的齿轮检测工具; 5.选择齿轮的检测方案,确定测量工具; 6.进行检测; 7.记录数据并进行数据处理; word版本.

渐开线少齿差行星传动设计要点

渐开线少齿差行星传动设计要点 作者中国七砂陆在潮 摘要:本文介绍了渐开线少齿差行星传动的设计特点,给出了简化设计的条件和计算公式。提出了在实际设计制造过程中可取的窍门和特别注意的关键点。 关键词:渐开线,少齿差,行星传动,设计,窍门 The main points to design a planetary drive with fewer differential involute gear teeth Abstract:In this thesis,the characteristics to design a planetary drive with fewer differen- tial involute gear teeth have been introduced,and also show you the conditions& the formulas for the simplified design calculation.Furthermore,the knowhows and the key strongpoints which should be kept in the process of practical design and manufacture have been put forward. Key word:Involute,fewer differential tooth,planetary drive,design,knowhow. 渐开线少齿差行星减速器,是一种新型减速器。其优点是结构紧凑,体积小、重量轻、传动比大、传动效率高、制造维修方便。因此,应用越来越广。但是由于其传动行式是内啮合行星齿轮传动,所以又产生了设计复杂,使不少希望自行设计制造者望而却步,严重影响普及应用。前些年我厂自行设计制造了一台内齿轮输出的NN型(原称2N—N)少齿差行星减速器捲筒。投入运行后效果很好。通过这次实践,我总结出一套简化设计计算又不影响结果的公式,找到了一些可以放宽要求,甚至降低制造精度又不影响使用效果的窍门,根据这些简化公式和窍门,一般厂家设计人员完全可以根据需要充满信心的自行设计制造这种减速器。因为实际的设计计算远不必象书本上介绍的那么复杂繁索,一般设备使用的减速器,其设计制造精度也没有必要那么高,我这么说绝不是要降低产品质量,而是强调:只要把握住设计要点,灵活运用,就一定可以设计制造出满意的减速器。下面就将这些简化公式和窍门介绍给大家参考。 渐开线少齿差行星传动有两大特点,其优点是由此产生的,麻烦也是它带来的。这两大特点是:行星齿轮传动和内啮合少齿差传动。下面就针对这两大特点进行分析。

齿轮传动中可能的问题

一、空回和产生空回的因素 所谓空回,就是当主动轮反向转动时从动轮滞后的一种现象。滞后的转角即空回误差角。产生空回的主要原因是由于一对齿轮有侧隙存在。 从理论上来说,一对啮合齿轮可以是无侧隙的。但在某些情况下,侧隙对传动的正常工作是必要的.。由于侧隙的存在,可以避免由于零件的加工误差而使轮齿卡住;此外它还提供了贮存润滑油的空间,以及考虑由于温度变化而引起零件尺寸的变化等因素。但是,侧隙在反向传动中引起的空回误差,将直接影响传动精度。因此,必要时须对空回误差予以控制或设法消除其影响。 产生空回的主要因素是:就齿轮本身而言,如中心距变大、齿厚偏差、基圆偏心和齿形误差等。此外,齿轮装在轴上时的偏心、滚动轴承转动座圈的径向偏摆和固定座圈与壳体的配合间隙等也会对空回产生影响。 二、齿轮传动的失效形式 齿轮传动的失效形式主要是:轮齿的折断,齿面的点蚀、磨损和胶合等。 1.轮齿的折断 轮齿的折断一般发生在齿根部分,因为齿根处弯曲应力最大而且有应力集中。折断有两种:一种是在短期过载或受到冲击载荷时发生的突然折断;另一种是由于多次重复弯曲所引起的疲劳折断。这两种折断都起始于齿根受拉应力的一边。对于齿宽较小的直齿圆柱齿轮,齿根裂纹往往是从齿根沿着齿宽方向扩展,发生全齿折断。齿宽较大的直齿圆柱齿轮,容易因制造及安装的误差以及转轴等零件的弹性变形等因素,使载荷沿齿宽分布不均而使载荷集中于齿的一端,斜齿及人字齿轮因为接触线是倾斜的,载荷有时也作用在齿的一端的齿顶上,因此这些齿轮的齿根裂纹往往是从齿根沿着斜向齿顶的方向扩展,而发生轮齿的局部折断。增大齿根过渡曲线半径、降低表面粗糙度值、采用表面强化处理(如喷丸、辗压)等,都有利于提高轮齿的抗疲劳折断能力。 2.齿面的点蚀 润滑良好的闭式传动齿轮,当齿轮工作一段时期以后,常在轮齿的工作表面上出现疲劳点蚀。点蚀齿面的点蚀多出现在靠近节线的齿根表面上。在磨损严重的齿轮传动中,特别是在开式齿轮传动中见不到点蚀现象,这是因为表层的磨损速度比在表层上出现疲劳裂纹的速度要快得多。 出现点蚀的齿面,将失去正确的齿形。从而破坏了正确的啮合,使得传动精度下降,引起附加动载荷,产生噪声和振动,并加快齿面磨损和降低传动寿命。 提高齿面的硬度和降低表面粗糙度值,在许可范围内采用最大的移距系数和增大齿轮传动的综合曲率半径,以及增大润滑油粘度与减小动载荷等,都可提高齿面的接触疲劳强度。 3.齿面的磨损 当表面粗糙的硬齿与较软的轮齿相啮合时,由于相对滑动、软齿表面易被划伤而产生齿面磨损。外界硬屑落人啮合齿间也将产生磨损。磨损后,正确齿形遭到破坏,齿厚减薄,最后导致轮齿因强度不足而折断。 对于闭式传动,减轻或防止磨损的主要措施有:①提高齿面硬度;②降低齿面粗糙度值;③注意润滑油的清洁和定期更换;④采用角度变位齿轮传动,以减轻齿面滑动等。对于开式传动,应特别注意环境清洁,减少磨粒(硬屑)的侵入。 4.齿面的胶合

对少齿差行星减速器结构的改进

[收稿日期]2008-11-28 [作者简介]黄清世(1946-),男,1969年大学毕业,硕士,教授,现主要从事机械基础方面的教学工作和机械传动、采油机械方面 的研究工作。对少齿差行星减速器结构的改进 黄清世,周传喜 (长江大学机械工程学院,湖北荆州434023) [摘要]针对现有少齿差减速器存在的问题,对其结构提出了改进意见,从而得到了一种新型的少齿差减 速器 完全平衡少齿差减速器。它主要由一根输入轴、两个对称安装的双偏心套、两个薄行星齿轮、 一个厚行星齿轮、一个内齿轮和输出系统等组成。无需附加任何配重,便能实现整机的完全平衡。具有 运转平稳、承载能力大、机械效率高等许多优点,特别适用于高速、重载场合。 [关键词]少齿差减速器;结构;平衡;机械效率 [中图分类号]T H 13 [文献标识码]A [文章编号]1673-1409(2009)01-N 085-03 渐开线少齿差行星齿轮减速器具有结构紧凑、体积小、重量轻、传动比范围大、运转平稳、制造容易、运转可靠的特点,已在轻工、化工、食品、纺织、冶金、建筑、军事装备等方面得到广泛应用。但由于其结构上的原因,也还存在承载能力不高及传动效率偏低的缺点,一般只宜用于轻载及短时工作的场合[1~3]。因此,尚有对其结构加以改进的必要。 图1 常用少齿差减速器的结构简图 1 现有渐开线少齿差行星齿轮减速器的问题分析 现有最常用的少齿差减速器的结构简图如图1。 它主要由固联着2个偏心块的输入轴、装在偏心块上 的转臂轴承、一个固定于机座的内齿轮、2个相位相 差1800并与内齿轮啮合的齿数略小于内齿轮的行星 齿轮、端面上装有若干个销轴的输出轴以及套在销轴 上的销套等组成。工作时,输入轴上的2个偏心块分 别通过2个转臂轴承带动行星齿轮绕内齿轮的轴线作 高速的公转运动和绕自身的轴线作低速的自转运动。 作行星运动的2个行星齿轮再通过其上作出的若干个 柱销孔的内壁压迫销套从而推动输出轴作低速转动。 实践证明,少齿差传动主要存在如下不足: 1)转臂轴承寿命过短。转臂轴承所受的力可以 分解成一个沿输入轴及偏心块中心连线方向的径向力 和与之垂直的切向力。该径向力等于行星轮所受柱销的压力及轮齿啮合力的径向分力的总和。由于在少齿差情况下啮合角很大,故该径向力的值很大。而切向力等于输入扭矩除以偏心距。因偏心距极小,故该切向力也很大。这就造成了转臂轴承所受的总载荷很大。此外,因行星齿轮与输入轴的转向相反,这就使得转臂轴承内外圈的相对转速等于两者转速绝对值之和。转臂轴承一是受力过大、二是转速过高,这是造成它易于失效的原因。 2)机械效率偏低。实测结果表明,少齿差行星减速器总机械效率大约在0 73~0 91之间。连续运行时功率损失较大,并会造成机体过热等不良情况,一般只宜用于轻载及短时工作的场合。影响少齿差行星减速器总机械效率的因素很多,但最主要的是轮齿啮合效率、转臂轴承效率和输出机构效率。前两者效率偏低,是各种正号机构存在的共性问题。但同样也存在这2个问题的三环传动能获得0 92~0 98 85 长江大学学报(自然科学版) 2009年3月第6卷第1期:理工 Journal of Y angtze University (Nat Sci Edit) M ar 2009,V o l 6N o 1:Sci &Eng

少齿差行星齿轮减速器毕业设计文献综述

本科毕业设计(论文) 文献综述 院(系):机电工程学院 专业:机械设计制造及其自动化班级:机械设计制造及其自动化姓名:学号: 201 年月日

本科生毕业设计(论文)文献综述评价表

少齿差行星齿轮减速器的设计 文献综述 1 少齿差行星齿轮减速器的特点 随着现代工业的高速发展,机械化和自动化水平的不断提高,各工业部门需要大量的减速器,并要求减速器体积小,重量轻,传动比范围大,效率高,承载能力大,运转可靠以及寿命长等。减速器的种类虽然很多,但普通的圆柱齿轮减速器的体积大,结构笨重;普通的蜗轮减速器在大的传动比时,效率较低;摆线针轮行星减速器虽能满足以上提出的要求,但成本较高,需要专用设备制造;而渐开线少齿差行星减速器不但基本上能满足以上提出的要求,并可用通用刀具在插齿机上加工,因而成本较低。能适应特种条件下的工作,在国防,冶金,矿山,化工,纺织,食品,轻工,仪表制造,起重运输以及建筑工程等工业部门中取得广泛的应用。 渐开线少齿差行星减速器具有以下优点: 1.结构紧凑、体积小、重量轻由于采用内啮合行星传动,所以结构紧凑;当传动比相等时,与同功率的普通圆柱齿轮减速器相比,体积和重量均可减少三分之一至三分之二; 2.传动比范围大 N型一级减速器的传动比为10~100以上;二级串联的减速器,传动比可达一万以上;三级串联的减速器,传动比可达百万以上。NN 型一级减速器的传动比为100~1000以上; 3.效率高 N型一级减速器的传动比为10~100时,效率为80~94%;NN 型当传动比为10~200时,效率为70~93%.效率随着传动比的增加而降低。 4.运转平稳、噪音小、承载能力大由于式内啮合传动,两啮合齿轮一位凹齿,一为凸齿,两齿的曲率中心在同一方向。曲率半径接近相等,因此接触面积大,使轮齿的接触强度大为提高,又采用短齿制,轮齿的弯曲强度也提高了。此外,少齿差传动时,不是一对轮齿啮合,而是3~9对轮齿同时接触受力,所以运转平稳,噪音小,并且在相同模数的情况下,其传递力矩臂普通圆周齿轮减速器大。 5.结构简单、加工方便、成本低; 6.输入轴和输出轴在同一轴线上,安装和使用较为方便; 7.运转可靠、使用寿命长。 但是,这种减速器还存在以下缺点: 1.计算较复杂当内齿轮与行星轮的齿数差小于5时,容易产生各种干涉,为了避免这些干涉,需采用变位齿轮,所以计算较复杂。

齿轮传动链误差分析

齿轮传动链误差分析 一传动误差的来源与分类 机床内联系传动链产生传动误差后, 将引起执行环节的角速度和线位移误差, 就不能保持精确、恒定的传动比, 而影响传动的准确性和均匀性。对于刀具和工件间要求有准确的传动比关系的机床应减小传动误差,提高传动精度, 如螺丝车床、螺纹磨床、滚齿机床等。 传动误差主要来源于四个方面。第一是传动件的布置误差。在设计传动链时, 由于传动件的位置不合理, 而使传动误差逐级扩大。第二是传动件的制造误差。如齿轮、蜗轮的齿形误差、周节偏差、切向一齿综合误差, 蜗杆、丝杠的导程误差以及导程累积误差等。第三是传动件的装配误差。如齿轮、蜗轮、蜗杆及丝杠因装配而产生的径向跳动和轴向窜动。第四是机床的热变形及传动件受交变的切削力、摩擦力和惯性力作用产生的传动误差。 传动误差按其性质分为原发性误差和再生性误差两类。原发性误差是指传动件布置误差、传动件制造误差、传 传动件装配误差。它是常位性误差, 机床一经制造好就存在着, 如果不人为地设置误差抵消或补偿装置, 此误差是不会消除的。再生性误差是指机床在动态(工作状态)过程中, 受力、受热后产生的误差。它是偶然性误差, 如果机床停止工作, 此误差逐渐消除。相比之下,往往原发性传动误差对内联系传动链的传动精度影响更大。本文着重讨论原发性误差。

二、传动误差的分析方法 通常分析传动误差大小的方法有动态多因素综合测试法和单因素分析法两种。动态多因素综合测试法是在机床动态下, 通过仪器实测出某些选定参数的大小,然后进行综合分析处理, 得到传动误差的定 量位。单因素分析法可以在静态或设计机床传动系统时对传动件布置误差、传动件制造误差, 进行定量的分析, 比较不同传动件如齿轮副、蜗轮副、螺母、丝杠等、传动件处于不同位置或传动件不同精度等级时传动误差的大小, 进而合理、正确的设计传动链, 以减少原发性误差位, 提高内联系传动链的精度。 三、单因素分析法的基本原理 (1)分析对象 由于在内联系传动链中,其主要传动件为齿轮副, 常选择齿轮副的布置制造误差为分析的对象。 (2)分析思路 首先应考虑到由传动件布置误差、制造误差引起的原发性误差最终将反映到执行环节上, 而误差经过转换, 以不同的传递比影响着执行环节, 传递比可能大于、小于或等于。其次传动件中的齿轮副对传动链精度影响较大的制造误差是齿轮切向一齿综合误差, 故应计算出各个齿轮的切向一齿综合误差。 (3)计算公式 第一,根据给定的齿轮精度等级, 查表确定齿轮周节极限偏差值

相关文档
相关文档 最新文档