文档库 最新最全的文档下载
当前位置:文档库 › 寓创新能力培养于几何定理教学之中_石鸿鹏

寓创新能力培养于几何定理教学之中_石鸿鹏

寓创新能力培养于几何定理教学之中_石鸿鹏
寓创新能力培养于几何定理教学之中_石鸿鹏

寓创新能力培养于几何定理教学之中

石鸿鹏1,韩瑞瑾2

(1.伊川县城关一中,河南伊川471300;2.洛阳第三师范学校,河南洛宁471700)

摘 要:平面几何的定理、公式、法则反映了几何概念的内在联系,揭示了它们之间的基本规律.探究定理教学的科学方法,不仅能使学生牢固地掌握这些知识,尤其有利于培养学生的逻辑思维和创新能力.

关键词:几何;定理;教学;创新

中图分类号:O123文献标识码:A

文章编号:1009-4970(2001)02-0119-03

收稿日期:2000-12-11

作者简介:石鸿鹏(1962-),男,河南伊川人,一级教师.

随着教育教学改革的深入,培养学生的创新能力已成为教学的重要课题.数学中的定理、公式、法则反映了数学概念间的内在联系,揭示了数学的基本规律.加强数学定理教学,是促进学生逻辑思维和能力形成与发展的根本,是正确、合理、迅速运算的基本保证.定理教学如何培养学生的创新能力呢?

1 创设问题情景,启迪思维飞跃

发现问题,提出问题是创新的开端.在定理的引入过程中,要联系学生的感性认识和具体问题,创设一种问题的氛围,启迪引导学生了解定理的来源,是怎样“想”出来的,怎样被人“发现”的,以培养学生的学习兴趣和探究问题的能力.例如在《弦切角定理》教学中,设计出了如下的问题情景,促使学生思维,大胆猜想结论.如图,圆周角∠CAB 1的一边AB 1绕着A 旋转,观察∠C AB 1的变化,当AB 为⊙0的切线时,∠C AB 具有什么特征?请给出弦切角定义,并提出弦切角∠CAB 与园周角CPA 的量值关系

?

图1 《弦切角定理》教学附图

∠C AB 1=∠CPB 1,∠CAB 2=∠CPB 2……为什么?观察∠CPB n 随着∠CAB n 的变化的情况,猜想∠CAB =?是否与∠APC 相等呢?进而让C A 旋转观察得到∠C AB 的三种情况.而后,转入证明的环节.在这个过程中,通过图形变化、圆周

角定理,创设出一种图形相关的问题情景,充分启迪学生思维,提高兴趣,产生猜想、发现的过程.

2 重视一题多解,培养思维灵活性

定理的证明和推导过程都体现出重要的数学思想和典型的数学方法,因此探求定理的证明推导是提高学生数学思维方法和创新能力的有效途

径.教学中,对定理的证明推导,常采用一题多解的方法,寻求多种证明方法,从不同角度观察、分析,可以培养学生思维的灵活性.

例如:定理“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.”证明时,通过教师的启发,引导学生讨论,能够按照下列四种思路进行证明.

思路1:要证明图2中B C =1

2AB 只要延长B C 到D ,使CD =BC ,连结AD ,利用∠AB C ΔACD 得到AB =AD 证出ΔAB D 为等角三角形,则,定理得证.

思路2:如图3,取AB 的中点D ,连结CD ,只要证明BD =BC 或AD =BC 即可,联系直角三

角形斜边与斜边上的中线的等量关系,可得到

BD =CD ,从而ΔB CD 为等边三角形,B C =BD =12

AB

.图2 思路1教学附图

思路3:如图3,可在AB 上截取B D ,连结CD ,且使BD =CD 可证ΔCBD 为等边三角形,ΔADC 为等腰三角形,即得B C =DC =AD

.

图3 思路2、3教学附图

思路4:如图4,可过B 作∠B 的平分线BD 交AC 于D ,作DE ⊥AB ,垂足为E ,然后证明ΔABD 为等腰三角形,E 为AB 中点,ΔB CD ΔBED ,问题得证

.

图4 思路4教学附图

这里给出了四种不同的证明思路,涉及了几

何证题中的“加倍法”,“折半法”以及全等三角形,等边三角形,等腰三角形等知识的运用,让学生变换观察问题的角度,寻求新的证明思路,即巩固了原有知识,又培养了发散思维能力.

对于教材中有些定理的推导或证明难以向学生讲清楚,我从未放过认真仔细地研究,除了介绍教材上的思想方法外,还要从学生易理解、感兴趣的角度出发,研究出一种直观易懂的证法,

以培养学生创造性的思维能力.

3 深刻理解定理,培养发散思维

创造性思维从思维的形态分,可分为发散思维和集中思维,发散思维是创造的关键,创新能力的培养,就需要从发散思维中提出各种假设、猜想、预测等,全方位实施.对定理形成之后就要深入理解定理,向纵深处探求,可适当引伸定理,通过对定理进行类比、联想,培养横向思维.

比如,在讲到比例和相似三角形以后,对三

角形面积S =1

2

ah 加以引伸,具有“同底”的两三

角面积之比等于该底上两条高的比,如图5,引伸为:

S ΔABC S ΔA ′BC =A D A ′D ′ S ΔA BC S ΔA ′BC =

A D

A ′D

图5 同底三角形面积比引伸

具有“同高”的两三角形面积之比等于对应的底边的比,如图6,引伸为:

S ΔABC S ΔAC D =BC C D S ΔABC S ΔA B ′C ′=

BC

B ′

C ′

S ΔABB ′:S ΔAB ′C :S ΔACC ′=BB ′:B ′C :

CC ′

图6 “同高”三角形面积比引伸

这里对公式中的底,高分别加以限制,图形进行适当变化,引伸了定理,不仅加深了对定理的理解,更加灵活地运用公式解题,而且培养了发散思维.

使用类比,联想发现命题,沟通知识内在联系的事例,在数学上是很多的.例如“圆内接四边形对角互补”可从正方形、矩形、等腰梯形等基本图形类比得出结论.关于“和圆有关的比例

线段”的几个定理,在讲完“相交弦定理”、“切割线定理”、“割线定理”之后,向纵深处猜想,可以把这几个定理统称为“圆幂定理”,深刻揭示了定理的本质.

4 展现思维过程,突出数学思想方法

定理的应用突出体现在应用定理解题上,解题教学是培养创新能力的主要方法之一.教学中要把解题思路形成的过程,暴露、展现出来,使学生思维与教师思维产生共鸣,变传授过程为发现过程

.

图7 过圆内点A 作弦,使A 平分该弦附图

例如,在“垂径定理”讲完后,对作图题,“经过己知⊙O 内的己知点A 作弦,使它以点A 为中

点”进行讨论,首先进行逆向分析,如图7设弦BC 就是所求作的弦,A 为BC 中点,若连结OA ,你能得到什么结论?

显然,由垂经定理,有下面的推理:

OA 经过圆心O

A B =A C

OA ⊥BC 然后再倒回来考虑,若欲使A 为BC 中点,只需OA ⊥B C ,从而得到作法:

(1)连结OA (2)过点A 作弦B C ⊥OA ,BC 即为所求.同时画出图形.

作法正确性的证明,有下面的推理:

OA 经过圆心O OA ⊥BC AB =AC

最后进一步讨论,A 点与圆心O 重合时的情形.

通过以上命题的分析、讨论,充分展现了对问题思维的全过程,并把分析法的数学方法贯彻于问题应用过程,对学生创造思维能力的开发起到了促进作用.

5 结束语

毫无疑问,上述4种定理教学的方法,对培养 学生的思维能力和剖析能力有十分重要的作用,但限于教学时数也不可滥用,即讲解的“定理”一定要精选.

Creativity Education Embedded in the Teachin g of Geometrical Theorem

SHI Hong -peng 1,H AN Rui -jin 2

(1.No .1Middle School of Yichuan County ,Yichuan 471300,China ;

2.Luoyang No .3teachers school ,Luoyang 471700,China )

A bstract :The theorems ,for mulas and principles in plane geometr y reveal the intrinsic r elations and basic la ws of geometrical concepts .It not only enhances students 'mastery of the knowledge to research the scientific teaching methodology ,but also helps develop students 'ability of creation and logical thinking .Key words :geometry ;theor em ;teaching ;innovation

高中立体几何八大定理

线面位置关系的八大定理 、直线与平面平行的判定定理: 文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言:符号语言: a u a b u o alia a//b 作用:线线平行=线面平行 二、直线与平面平行的性质定理: 文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线就和交线平行。 图形语言: I//: 符号语言:I u E l //m a o P = m 作用:线面平行=线线平行 、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直 线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言: a u a b u a aPlb = Au a//P a// P b/厂 作用:线线平行=面面平行四、平面与平面平行的性质定理: 文字语言:如果两个平行平面同时和第三个平面相交图形语言: ?// P 符号语言:「二a = a//b Y =b“ 作用:面面平行=线线平行,那么所得的两条交线平行

图形语言: 符号语言: a 丄m a 丄n :a _ : m 「n 二 A m 二二,n 二: 作用:线线垂直=线面垂直 a / * 六、直线与平面垂直的性质定理: 文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言: a - :■ 匕 a//b b -:- 作用:线面垂直=线线平行 七、平面与平面垂直的判定定理: 文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。 图形语言: 一 a 丄a 〕 任 符号表示: _ ■ a u Pj 注:线面垂直 =?面面垂直 八、平面与平面垂直的性质定理: 文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另 个平面 图形语言: 符号语言: a 1 P l AB : AB _丨 作用:面面垂直=线面垂直 五、直线与平面垂直的判定定理: 文字语言:如果一条直线和一个平面内的两条相交直线垂直,

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学《立体几何》重要公式、定理

高中数学《立体几何》重要公式、定理 1.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行. 3.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直; (3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 4.证明直线与平面垂直的思考途径 (1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 5.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直. 6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 7.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a . (2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb . 8.共线向量定理 对空间任意两个向量a 、b(b ≠0 ),a ∥b ?存在实数λ使a=λb . P A B 、、三点共线?||AP AB ?AP t AB =?(1)OP t OA tOB =-+. ||AB CD ?AB 、CD 共线且AB CD 、不共线?AB tCD =且AB CD 、不共线. 9.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 10.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角 线所表示的向量. 11.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1 k ≠

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质 一、公理及其推论 文字语言符号语言图像语言作用公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 α α α ? ? ∈ ∈ ∈ ∈ l B A l B l A, , ,①用来验证直线 在平面内; ②用来说明平 面是无限延展的 公理2 如果两个平面 有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 (那么它们有且只有一条通过这个公共点的公共直线) l l P ∈ = ? ? ? ∈ P 且 β α β α ①用来证明两 个平面是相交关 系; ②用来证明多 点共线,多线共 点。 公理3 经过不在同一条直线上的三点,有且只有一个平面 确定一个平面 不共线 C B A C B A , , , , ? 用来证明多点共 面,多线共面 推论1 经过一条直线和这 条直线外的一点,有且只有一个平面 α α α α ? ∈ ? ? a A A , 使 ,有且只有一个平面 推论2 经过两条相交直 线,有且只有一个平面 α α α ? ? ? = ? b a P b a , 使 ,有且只有一个平面 推论3 经过两条平行直 线,有且只有一个平面 α α α ? ? ? b a b a , 使 ,有且只有一个平面 ∥ 公理4 (平行公理) 平行于同一条直线的两条直线平行 c a c b b a ∥ ∥ ∥ ? ? ? ?用来证明线线平 行

二、平行关系 文字语言符号语言图像语言作用(1)公理4 (平行 公理) 平行于同一条直线的两条直线平行 c a c b b a ∥∥ ∥ ? ? ? ? (2)线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 αα α∥∥ a b a b a ? ? ? ? ? ? ? ? (3)线面平行的性 质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 b a a b b ∥∥ ? ? ? ? ? ? ? = ? β β α β (4)面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. β α α α β β ∥∥ ∥ ? ? ? ? ? ?? ? ? ? ? ? = ? b a O b a b a (5)面面平行 的判定如果两个平面垂直于同一条直线,那么这两个平面平行。 β α β α ∥ ? ? ? ? ⊥ ' ⊥ ' O O O O (6)面面平行 的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 b a b a∥∥ ? ? ? ? ? ? = ? = ? γ β γ α β α (7)面面平行 的性质如果两个平面平行,那么其中一个平面内的直 βα β α ∥∥ a a ? ? ? ? ?

高中立体几何常用结论、定理

立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.若A∈l,B∈l,A∈α,B∈α,则l?α. 2.公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线. P∈α,P∈α?α∩β=l,且P∈l. 3.公理3经过不在同一条直线上的三点,有且只有一个平面. 推论1经过一条直线和这条直线外的一点,有且只有一个平面. 推论2经过两条相交直线,有且只有一个平面. 推论3经过两条平行直线,有且只有一个平面. 4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a?α,A/∈α,B∈α,B/∈a,则直线AB和直线a是异面直线.) 5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行. 6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.若b∥c,a⊥b,则a⊥c. 8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. 若a?/α,b?α,a∥b,则a∥α. 9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 若a∥α,a?β,α?β=b,则a∥b. 10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直. 若m?α,n?α,m?n=O,l⊥m,l⊥n,则l⊥α. 11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.若a∥b,a⊥α,则b⊥α. 12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.若a⊥α,b⊥α,则a∥b. 13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 若a?α,b?α,a?b=A,a∥β,b∥β,则α∥β. 14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 若α∥β,α∩γ=a,β∩γ=b,则a∥b. 15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.若α∥β,a⊥α,则a⊥β. 16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 若l⊥α,l?β,则α⊥β. 17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 若α⊥β,α∩β=l,a?α,a⊥l,则a⊥β. 18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.

立体几何公理、定理推论汇总74915

立体几何公理、定理推论汇总 一、公理及其推论 公理 1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理 2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈?=∈I I 且 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。 符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么 这条直线和这个平面平行。(2) 符号语言:////a b a a b ααα?? ? ????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和 这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα ? ? ????=? I 图形语言: 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行.(4)

立体几何常考定理总结(八大定理)

l m β α α b a 立体几何的八大定理 一、线面平行的判定定理:线线平行?线面平行 文字语言:如果平面外.的一条直线与平面内. 的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα?? ? ???? ?//a α 关键点...:.在.平面内...找一条与....平面外...的.直线平行的线...... 二、线面平行的性质定理:线面平行?线线平行 文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交.. ,那么这条直线就和交线.. 平行. 符号语言://l l m α βαβ? ? ????=? ?//l m 关键点:需要......借助一个....经过已知直线......的.平面..,接着找交线。....... 三、面面平行的判定定理:线面平行? 面面平行 文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面.. ,那么这两个平面平行. 符号语言://a b a b A a b αα αβββ ?????? = ?????? ∥∥ 关键点:....在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。............................... 四、面面平行的性质定理: 面面平行?线线平行、面面平行?线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言: ////a a b b αβαγβγ? ? ?=????=? 关键点...:找..第三个平面.....与已知平面都相.......交,则交线平行....... 文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面. 符号语言://,//a a αβαβ?? 关键:只要是其中一个平面内的直线就行..................

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

高中立体几何定理及性质讲课讲稿

高中立体几何定理及 性质

高中立体几何定理及性质 一、公理及其推论 文字语言符号语言图像语言作用公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 α α α ? ? ∈ ∈ ∈ ∈ l B A l B l A, , ,①用来验证直 线在平面内; ②用来说明平 面是无限延展 的 公理2 如果两个平面有 一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 (那么它们有且只有一条通过这个公共点的公共直线) l l P ∈ = ? ? ? ∈ P 且 β α β α ①用来证明两 个平面是相交 关系; ②用来证明多 点共线,多线 共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面 确定一个平面 不共线 C B A C B A , , , , ? 用来证明多点 共面,多线共 面 推论1 经过一条直线和 这条直线外的一点,有且只有一个平面 α α α α ? ∈ ? ? a A A , 使 ,有且只有一个平面 推论2 经过两条相交直 线,有且只有一个平面 α α α ? ? ? = ? b a P b a , 使 ,有且只有一个平面 推论3 经过两条平行直 线,有且只有一个平面 α α α ? ? ? b a b a , 使 ,有且只有一个平面 ∥ 仅供学习与交流,如有侵权请联系网站删除谢谢2

公理4 (平行公理) 平行于同一条直线的两条直线平行 c a c b b a ∥ ∥ ∥ ? ? ? ?用来证明线线 平行 二、平行关系 文字语言符号语言图像语言作用 (1)公理4 (平行公理)平行于同一条直线的两条直线平行 c a c b b a ∥∥ ∥ ? ? ? ? (2)线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 αα α∥∥ a b a b a ? ? ? ? ? ? ? ? (3)线面平行 的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 b a a b b ∥∥ ? ? ? ? ? ? ? = ? β β α β (4)面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. β α α α β β ∥∥ ∥ ? ? ? ? ? ?? ? ? ? ? ? = ? b a O b a b a (5)面面平行的判定如果两个 β α β α ∥ ? ? ? ? ⊥ ' ⊥ ' O O O O 仅供学习与交流,如有侵权请联系网站删除谢谢3

(完整word版)立体几何常考定理总结(八大定理)

关键点:需要借助一个经过已知直线 的平面,接着找交线。 内有两条相交直线都平行于另一个平面,那么这两个平面平行. 符号语言:a I b A a// b// 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。 四、面面平行的性质定理:面面平行 线线平行、面面平行 线面平行 文字语言:如果两个平行平面 冋时和第三 个平面相交,那么所得的两条 交线平行? 文字语言:如果两个平面平行,那么其中 符号语言: 亠 一个平面内的 任意一条直线平行于另一个 // 平面. a a//b 符号语言 : // ,a a// b 丨v 关键点:找第三个平面与已知平面都相 关键:只要是其中一个平面内的直线就行 交,则交线平行 立体几何的八大定理 、线面平行的判定定理: 线线平行 线面平行 文字语言:如果平面 外的一条直线与平面 内的一条直线平行,则这条直线与平面平行 符号语言:b all a//b 关键点:在平面内找一条与平面外的直线平行的线 二、线面平行的性质定理: 线面平行 线线平行 文字语言:如果一条直线和一个平面平行, 经过这条直线的平面和这个平面相交,那么这条直 线就和交线平行. 1 〃 符号语言: I I l/m 三、面面平行的判定定理: 线面平行 面面平行 文字语言:如果一个平面 //

五、线面垂直的判定定理: 线线垂直 线面垂直 文字语言:如果一条直线和一个平面 内的两条相交直线垂直,那么这条直线垂直于这个平面 符号语言: 六、线面垂直的性质定理: 线面垂直 线线垂直 文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的 任意一条直线. 、亠 l 符号语 言: a 关键点:往往线面垂直中的线线垂直需要用这个定理推出 七、平面与平面垂直的判定定理: 线面垂直 面面垂直 文字语言:如果一个平面 经过另一个平面的一条垂线,则这两个平面互相垂直 (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直) 符号表示: 八、平面与平面垂直的性质定理: 面面垂直 线面垂直 文字语言:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另 个平面? 符号语言: 1 1 AB AB AB I 关键点:先找交线,再在其中一个面内找与交线垂直的线。 关键点:在平面内找两条相交直线与所要证的直线垂直 关键点:在需要证明的两个平面中找线面垂直 a

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

高中数学立体几何解析几何 判定&性质&公式整理(全)

高中数学必修二复习 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系: 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为[0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

最新高中数学常用公式及结论(立体几何总结)

最新高中数学常用公式及结论(立体 几何总结) 一、线线平行的判断: ①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 直线和交线平行图 ②如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

交线平行图 ③垂直于同一平面的两条直线平行。 直线平行图 二、线线垂直的判断: ①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 ②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。 线线垂直图

③若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 三、线面平行的判断: ①如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 ②两个平面平行,其中一个平面内的直线必平行于另一个平面。 四、面面平行的判断: ①一个平面内的两条相交直线分别平行于另一个平面内两相交直线,这两个平面平行。 ②垂直于同一条直线的两个平面平行。 五、线面垂直的判断: ①如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 六、面面垂直的判断: 一个平面经过另一个平面的垂线,这两个平面互相垂直。 七、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) ①异面直线所成的角: 通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。 异面直线所成角的范围:0°< α≤90°; 注意: 若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以通过补形, 如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 ②线面所成的角:

高中的数学竞赛平面几何基本定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中立体几何公理及推论及定理总汇表

高中立体几何公理及推论及定理总汇表 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。(1)判定直线在平面内的依据 (2)判定点在平面内的方法 公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线。(1)判定两个平面相交的依据 (2)判定若干个点在两个相交平面的交线上 公理3:经过不在一条直线上的三点,有且只有一个平面。(1)确定一个平面的依据(2)判定若干个点共面的依据 推论1:经过一条直线和这条直线外一点,有且仅有一个平面。(1)判定若干条直线共面的依据 (2)判断若干个平面重合的依据 (3)判断几何图形是平面图形的依据 推论2:经过两条相交直线,有且仅有一个平面。 推论3:经过两条平行线,有且仅有一个平面。 立体几何直线与平面 空间二直线平行直线 公理4:平行于同一直线的两条直线互相平行 等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。 异面直线 空间直线和平面位置关系 (1)直线在平面内——有无数个公共点 (2)直线和平面相交——有且只有一个公共点 (3)直线和平面平行——没有公共点

立体几何直线与平面 直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角 (2)一条直线垂直于平面,定义这直线与平面所成的角是直角 (3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角 三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直 空间两个平面两个平面平行判定 性质 (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 (2)垂直于同一直线的两个平面平行 (1)两个平面平行,其中一个平面内的直线必平行于另一个平面 (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面 二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角 平面角是直角的二面角叫做直二面角 两平面垂直判定 性质 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内

立体几何常考定理总结(八大定理)

立体几何常考定理总结(八大定理) 一、线面平行的判定定理:线线平行线面平行文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行、符号语言:关键点:在平面内找一条与平面外的直线平行的线 二、线面平行的性质定理:线面平行线线平行文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行、符号语言:关键点:需要借助一个经过已知直线的平面,接着找交线。 三、面面平行的判定定理:线面平行面面平行文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行、符号语言:关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。 四、面面平行的性质定理: 面面平行线线平行、面面平行线面平行文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行、符号语言:关键点:找第三个平面与已知平面都相交,则交线平行文字语言:如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面、符号语言:关键:只要是其中一个平面内的直线就行 五、线面垂直的判定定理:线线垂直线面垂直文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂

直于这个平面、符号语言:关键点:在平面内找两条相交直线与所要证的直线垂直六、线面垂直的性质定理:线面垂直线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意一条直线、符号语言:关键点:往往线面垂直中的线线垂直需要用这个定理推出七、平面与平面垂直的判定定理:线面垂直面面垂直文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直、(如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:关键点:在需要证明的两个平面中找线面垂直八、平面与平面垂直的性质定理:面面垂直线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面、符号语言:关键点:先找交线,再在其中一个面内找与交线垂直的线。 一、线线、线面和面面的位置关系两直线位置关系线面位置关系面面的位置关系 二、有关平行的证明线∥线⑴线∥线线∥线(都是直线)⑵线∥面线∥线(相交平面)⑶面∥面线∥线(平行平面)⑷同垂直于一个平面线∥线(线面垂直)线∥面⑴线∥线线∥面⑵面∥面线∥面面∥面线∥面面∥面线⊥线线⊥线线⊥线线⊥面线⊥线线⊥面线⊥线线⊥面面⊥面线⊥面面⊥面线⊥面面⊥面 四、三种角的范围异面直线所成角直线与平面所成角二面角

相关文档
相关文档 最新文档