文档库 最新最全的文档下载
当前位置:文档库 › 共模电感设计

共模电感设计

共模电感设计
共模电感设计

1.前言

近年来,由于政府机构或其他团宥訣MC(电磁兼容)日益重视,工程师们在设计产品时亦是非常注意产品的辐射问题。特别值得一提的是:直流变换器很高的开关频率及尖峰脉冲斜波就是一典型的EMI(电磁干扰)。

共模电感就是一个重要的抗电磁干扰零件,它可以在一宽频条件下提供非常高的阻抗。大多数EMI滤波器主要部件就是一共模电感。在此文中,主要介绍共模电感的设计及磁芯选材问题。

2.基本的共模

开关电源有两种噪声:一为共模,另一为差模。与输入信号的路径相同的噪声称之为差模噪声,而每相相同的从接地到输出的尖峰信号称之为共模噪声。(详见图1A和1B)

一典型抗电磁干扰滤波器包含共模电感,差模电感及X,Y电容。Y电容和共模电感使共模噪声衰减。在高频噪声时,电感呈现高阻抗特性,并且反射和吸收噪声。然而电容呈低阻抗(至接地)且改变主线的噪声方向。(见图2)

共模电感两绕组圈数是相同的,产生两大小相等方向相反的磁通量。此两磁通相互抵消。因此使磁芯处于无偏磁状态。差模电感只有一个绕组,需要磁芯提供一完全无饱和线性电流。此与共模电感有较大的不同。为防止磁饱和,差模电感必须使用一低的有效磁导率的磁芯(有气隙的铁氧体或铁粉磁芯)。然而,共模电感可以使用一较高的磁导率磁芯且在磁芯相对小的条件下可得到一比较高的电感。

3.磁芯选材

首先,噪声是由开关电源的单位基频所产生的,再加上高频谐波。也就是表示噪声在10KHz 到50MHz范围内都会存在。为此,电感必须有更宽的频率范围内存在高阻抗特性。共模电感的总阻抗由两部分组成:串联感抗(Xs)和串联电阻(Rs)。在低频时,阻抗呈感抗特性。但随着频率的增加,有效磁导率下降,感抗亦在下降。(见图3)由串联感抗(Xs)和串联电阻(Rs)的相互作用,在整个频宽内产生一可接受的阻抗(Zs)。

对于大多数产品来讲,共模电感的磁芯都选用铁氧体(镍锌系和锰锌系)。镍锌系磁芯的特点是具有较低的初磁导率,但在非常高的频率(大于100MHz)时,仍能保持初磁导率。而锰锌系则恰恰相反,其具有很高的初磁导率,但在频率很低(20KHz)时,磁导率可能会衰减。由于镍锌系磁芯有很低的初磁导率,所以在低频时,不可产生高阻抗特性。然而锰锌系磁芯在低频时,能提供非常高的阻抗特性,且非常适用于10KHz到50MHz的抗电磁干扰。基于此,本文只集中讨论锰锌系磁芯。

锰锌系磁芯有很多种形状:环形,E形,罐形,RM形及EP形等等。但对于大多数共模电感都是使用环形磁芯。主要是有以下两种好处:

第一:环形磁芯比较便宜。因为环形只有一个就可制作,而其他形状的磁芯必须有一对才能构成共模电感所需,且在成型时,因考虑两磁芯的配对问题,还须增加研磨工序(如镜面磁芯)才能得到较高的磁导率。对于环形磁芯却不需如此。

第二:与其它形状磁芯相比环形磁芯有较高的有效磁导率。因为两配对磁芯在装配时,无论怎样作业都不可消除气隙的现象,故有效磁导率比只有单一封闭形磁芯要低。

环形磁芯有一缺点:绕线成本较高。因其他形状磁芯有一配套线架在使用,绕线都可以机器作业,而环形磁芯只可以手工作业或机器(速度较低)作业。但通常情况下,共模电感圈数较少(小于30圈),故绕线成本比较少。

基于上述原因,下面的共模电感都是对使用环形磁芯的叙述。

4.设计考虑

共模电感设计所需的基本参数为:输入电流,阻抗及频率。输入电流决定了绕组所需的线径。在计算线径时,电流密度通常取值为400A/cm3。但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。

共模电感的阻抗在所给的频率条件一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但很不幸,线性阻抗有相当少的人知道,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能够提供阻抗。故电感可以用下式来表达:

Ls=Xx/2πf (1)

电感大家都知道,但值得一提的是,设计时须注意磁芯,磁芯材质及所需的圈数。首先,设计第一步是磁芯型号的选取,如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取;

第二步是计算磁芯所能绕最大圈数。共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

5.设计案例

要求:在工作频率为10KHz,输入线性电流为3A(RMS)时,阻抗为100 欧的共模电感。1)选取线径

铜线截面积=3A/400A/cm2=0.0075cm2

铜线线径=2

=0.98mm

取铜线线为1.0mm

2)计算最小电感值

3)假如无指定空间,任取一磁芯

内径(ID)=13.72+/-0.38=13.34mm MIN

4)计算内圆周长和最大可绕圈数

内圆周长=3.14×(13.34-1.08)=38.5mm

最大圈数=(160/360)×38.5/1.08=15.8TS或16TS

5)计算磁芯的AL值,并选取材质

磁芯的AL最小值=1.59/162=6211nH/TS2MIN

因此种磁芯AL值变化范围一般为+/-30%故磁芯的AL值取9000nH/TS2,以上述条件,即可选取一合适磁芯。

6.总结

共模电感的设计看起来十分简单,但实际上,它还有点复杂。为了防止磁芯饱和时,必须考虑温度及应力等等因素。但如果对磁芯材料特性比较了解,此问题就不难解决。此文只是介绍了共模电感基本的设计方法,希望对大家有一定的帮助并能提供其它的参考意见!

EMC滤波电路的原理与设计---整理【WENDA】

第一章开关电源电路—EMI滤波电路原理 滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗 Z=(R^2+(2ΠfL)^2)^1/2。也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。实际都是两者的结合。但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。电感器滤波器是通过串联在电路里实现。撒旦谁打死多少次顺风车安顺场。 因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感 器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000 的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 电容的阻抗是Z=-1/2ΠfL那么也就是频率越高阻抗绝对值越小,那么就是高通低阻,就是频率越高越能通过,所以电容滤波是旁路,也就是采用并联方式,把高频的干扰通过电容旁路给疏导回去。

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

电感式压力传感器设计

机械工程测试技术基础题目:电感式压力传感器设计 班级 13机械自动化1班 学号 姓名 指导教师李红星 成绩

目录 一、概述 (2) 1.1、相关背景和应用简介 (2) 二、设计内容 (3) 1.主要参数 (3) 2.选用的元件和工作原理 (3) 3.测量方法 (5) 4.外观设计 (6) 课程设计小结 (7) 参考文献 (7)

一、概述 1.相关背景和应用简介 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。 本次课程设计的电感式压力传感器为自感型,是由于磁性材料和磁导率不同,当压力作用于膜片时,气隙大小发生改变,气隙的改变影响线圈电感的变化,处理电路可以把这个电感的变化转化成相应的信号输出,从而达到测量压力的目的。电感式压力传感器的优点在于灵敏度高、测量范围大;缺点就是不能应用于高频动态环境。本次课程设计由于所学知识的欠缺,只说明电感式压力传感器的主要参数、选用的原件和工作原理、测量方法和外观设计。

二、设计内容 1.主要参数 量程:0~100KG. 综合精度:0.5%(线性、滞后、重复性). 灵敏度:1.0---1.5mV/V. 工作环境温度:—10O C~50O C. 适用对象:电子称,平台秤。 外壳材质:合金钢。 特殊要求:不得用于高频动态环境。 2.选用的元件和工作原理 选用的元件:线圈,铁心,衔铁,连接导线,合金钢外壳。工作原理: 1-线圈2-铁心3-衔铁 (a)可变磁阻结构 (b)特性曲线

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。 1.抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出:

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。 2.抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

共模、差模电源线滤波器设计

切断电磁干扰传输途径——共模、差模电源线滤波器设计 电源线干扰可以使用电源线滤波器滤除,开关电源EMI滤波器基本电路如图6所示。一个合理有效的开关电源EMI滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。在图6中CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。差模滤波元件和共模滤波元件分别对差模和共模干扰有较强的衰减作用。 共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。通常使用环形磁芯,漏磁小,效率高,但是绕线困难。当市网工频电流在两个绕组中流过时为一进一出,产生的磁场恰好抵消,使得共模电感对市网工频电流不起任何阻碍作用,可以无损耗地传输。如果市网中含有共模噪声电流通过共模电感,这种共模噪声电流是同方向的,流经两个绕组时,产生的磁场同相叠加,使得共模电感对干扰电流呈现出较大的感抗,由此起到了抑制共模干扰的作用。L1的电感量与EMI滤波器的额定电流I有关,具体关系参见表1所列。 [4] 实际使用中共模电感两个电感绕组由于绕制工艺的问题会存在电感差值,不过这种差值正好被利用作差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个∏型滤波器。这种滤波器对差模干扰有较好的衰减。 除了共模电感以外,图6中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。计算电容CY漏电流的公式是 ID=2πfCYVcY 式中:ID为漏电流; f为电网频率。 一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。 差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等

电感式传感器的功能及应用.

便携式压力传感器用于煤矿压力传感器的定期检测检验和校准。下面就让艾驰商城小编对电感式传感器的功能及应用来一一为大家做介绍吧。 1、压力范围-100Kpa-6Mpa,适合各种类型的煤矿用压力传感器。采用手动容积式调节压力,气密性好,压力精度0.1%FS。 2 、压力传感器压力源采用精密研磨器件构成,符合IP54密封标准,压力/真空开关式选择,切换简单方便,容积式微调节器,极易实现检定点压力。 3、传感器显示值和对应输出信号值(频率或电流)同步检测。可以同时显示5路压力,显示控制方式为笔记本计算机,直观清晰。可以出具检定报告,具有打印机接口。 4、对不同输出信号(频率或电流)可方便选择、转换。 5、可在传感器不另外接负载电阻和外串接负载电阻500Ω时检测传感器各项参数。 6、传感器供电直流稳定电源具有稳压、稳流功能,其输出电压可在0~30V 范围内任意调节、输出电流的上限值可在0~2A范围内任意设置。 7 、一体化结构,外型美观、坚固耐用、操作简单、方便。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/6b17746003.html,/

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

共模滤波器设计指南

共模滤波器设计指南 简介 选择共模滤波器的元件值不需要很复杂的过程。可使用标准过滤器排列来取得相对简单和直观的设计过程,虽然这些排列可能经过修改以使用预先定义好的元件值。 概述 线路滤波器防止在电子设备和AC线路之间产生过多噪音;一般而言,重点还是对AC 线路的保护。图1显示了在AC线路(通过全阻抗匹配电路)和(噪音)电源转换器之间使用共模滤波器的情况。共模噪音(噪音在接地的两条线路上同时产生)的运动方向是从负载端进入滤波器,这样两个线路共有的噪音得到很大衰减。最后,滤波器加到AC线路(通过全阻抗匹配电路)上的输出小到可以忽略不计。 图1 通用线路滤波 设计共模滤波器必须设计两个相同的差动滤波器。其中每个滤波器分别对应两极的线路,而每一边的感应器分别耦合一个磁芯。 图2 共模感应器 对于差动输入电流(从A到B的输入是沿L1,从B到A是沿L2),两个感应器之间的耦合净磁通量为0。 任何差动信号引起的自感应是两个滤波器耦合不好引起的。滤波器作为独立元件工作,其漏感对差动信号做出响应:漏感衰减了差动信号。 当感应器L1和L2收到接地的同一电极的相同信号,它们都会在共用的磁芯中产生一个非零的净通量。两个感应器于是作为独立元件工作,其共同的自感应对共同的差动信号做出响应:共同的自感应衰减了共同的差动信号。 一阶滤波器 设计最简单、最便宜的滤波器是一阶滤波器。这种滤波器使用单个反应元件来储存波谱能量的特定波段,而不将能量传递到负载。在低通共模滤波器中,使用的反应元件是共模线圈。 滤波器的自感应值是用负载(单位:欧姆)除以信号将衰减时及超过这一水平的角频率。例如,在50欧姆的负载中,当频率达到4000HZ或以上水平时候信号开始衰减,则需要使用1.99mH(50/(2π×4000))的感应器。其相应的共模滤波器配置如下图: 图3 一阶(单极)共模滤波器 频率达到4000HZ时,衰减量为3dB,每增加8HZ,衰减6dB。由于最主要的感应器对一阶滤波器的依赖性,因此必须考虑线圈自感应的变动。例如,额定自感应值变动±20%意味着名义33dB,4000HZ的频率其实际范围在3332-4999HZ。典型做法是规定共模滤波器的自感应值为最小值,这样就保证了交叉频率不会升得太高。但是,在选择一阶低通滤波器的线圈时要加以注意,因为比典型和最小值高得多的自感应值可能限制线圈可使用的衰减波段。

电感式传感器习题及解答.doc

第5章电感式传感器 一、单项选择题 1、电感式传感器的常用测量电路不包括()。 A. 交流电桥 B. 变压器式交流电桥 C. 脉冲宽度调制电路 D. 谐振式测量电路 2、电感式传感器采用变压器式交流电桥测量电路时,下列说法不正确的是()。 A. 衔铁上、下移动时,输出电压相位相反 B. 衔铁上、下移动时,输出电压随衔铁的位移而变化 C. 根据输出的指示可以判断位移的方向 D. 当衔铁位于中间位置时,电桥处于平衡状态 3、下列说法正确的是()。 A. 差动整流电路可以消除零点残余电压,但不能判断衔铁的位置。 B. 差动整流电路可以判断衔铁的位置,但不能判断运动的方向。 C. 相敏检波电路可以判断位移的大小,但不能判断位移的方向。 D. 相敏检波电路可以判断位移的大小,也可以判断位移的方向。 4、对于差动变压器,采用交流电压表测量输出电压时,下列说法正确的是()。 A. 既能反映衔铁位移的大小,也能反映位移的方向 B. 既能反映衔铁位移的大小,也能消除零点残余电压 C. 既不能反映位移的大小,也不能反映位移的方向 D. 既不能反映位移的方向,也不能消除零点残余电压 5、差动螺线管式电感传感器配用的测量电路有()。 A.直流电桥 B.变压器式交流电桥 C.差动相敏检波电路 D.运算放大电路 6、通常用差动变压器传感器测量()。 A.位移 B.振动 C.加速度 D.厚度7、差动螺线管式电感传感器配用的测量电路有( )。 A.直流电桥 B.变压器式交流电桥 C.差动相敏检波电路 D.运算放大电路 二、多项选择题 1、自感型传感器的两线圈接于电桥的相邻桥臂时,其输出灵敏度()。 A. 提高很多倍 B. 提高一倍 C. 降低一倍 D. 降低许多倍 2、电感式传感器可以对()等物理量进行测量。

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

差模滤波器和共模滤波器

共模和差模信号与滤波器 山东莱芜钢铁集团动力部周志敏(莱芜271104) 1概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 2差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。 共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 3滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF; CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。

共模电感设计

共模电感设计 选择共模滤波电感规格不是一件困难和令人困惑的事情。用一个标准滤波器平面图可以用来实现一个相对简单直接的设计过程。预设的平面模型滤波器元件参数很容易被修改,从而,达到符合设计要求。 常规共模电感 线性滤波器防止过度的噪声从AC线传导到正在工作的电子设备。通常AC线为防护的重点。 图示-1所示,共模滤波器与AC线之间接阻抗匹配电路,后面再接开关变换器。共模噪声(大地为参考在两根线上同时产生的噪声大小相等方向相同)的方向是从负载流向滤波器,流向两条AC线上的共模噪声已经被充分地衰减了。其结果是从滤波器输出到AC线的共模噪声经过阻抗匹配电路衰减得非常微弱了。 共模滤波器的设计本质上是设计两个相同的差分滤波器,每个分别作用于同一个磁心,两边耦合的是两个极性一致的电感。对于一个差分输入电流(从(A)到(B)通过L1和从(B)到(A)通过L2),两电感间的磁通(大小相等方向相反)耦合为零。 任何电感通过差模信号时,两个扼流圈未能耦合。它们作为独立的元件,只有漏感响应差模信号:这个漏感会衰减差模信号。 当电感L1和L2,通过相对于大地方向相同的完全一样的信号(共模型号),每个扼流圈在同一个磁心上出力的是非零磁通。对于共模信号电感作为独立的元件运行相互间产生互感:互感的作用使共模信号变弱。

第一阶滤波器 最简单、最昂贵的滤波器设计是一阶滤波器。这种类型的滤波器采用单一的电抗结构存储某一频率段的能量,使这些能量未能传递出去。就一个低通共模滤波器来说,一个共模电感的电抗元件会被采用。 所要求扼流圈的电感量可以简单地采取负载电阻除以衰减频率(包含以上频率)的角频率。譬如,要衰减4000Hz以上的频率到50Ω的负载里面需要一个1.99mH(50/(2π×4000) )的电感。由此产生共模滤波器结构如图示-3: 在4000Hz的衰减将是3dB,并以6dB每倍频程增加。因为主要的电感依赖的一阶滤波器,实际变化中,扼流圈电感是必须被考虑的。例如,正常电感测量误差为±20%,那个在4000Hz频率名义上的3dB,实际衰减得频率范围从3332Hz到4999Hz。这是共模电感的典型电感值被指定的一个最低要求,从而保证这个交叉频率不被改变太高。然而,一些情况应该观察到选择扼流圈作一阶低通滤波器可能限制阻塞一些有用的衰减,因为用了一个较高于典型值或极小值的电感。 二阶滤波器 一个二阶滤波器使用了两个电抗部分。比第一阶滤波器有两个优势:⑴理论上,在截点频率以后,一个二阶滤波器有12dB每倍频程(4倍于一阶滤波器)的衰减量。⑵在电感谐振频率以上提供了更大的衰减。(参见图示-4)

传感器课程设计 电感式位移传感器

东北石油大学 课程设计 2015年7 月 8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器姓名祖景瑞学号 主要内容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测 0~20cm 的位移; 2、电压输出为 1~5V; 3、电流输出为 4~20mA; 主要参考资料: [1] 贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69. [2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9. [3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50. [4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90.完成期限—

指导教师 专业负责人 2015年 7 月 1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;测量位移;位移传感器

共模电感设计与案例

共模电感设计与案例 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。 下面我就对于共模电感的设计过程与案例结合起来简单讲讲。 一、设计过程: ①选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ②设定电感的阻抗 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为 50~100 Q,即至少50%的衰减,因此有:Z=?L ③选择磁芯的形状的和尺寸

成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容 易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定 的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电 感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯 无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于 磁芯的数据手册由LI的乘积选取。 ④计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:(106 )0.5 L N = L X A ⑤计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要 求的线径。 二、案例: 在工作频率为10KHZ,输入线性电流为3A(RMS)时,阻抗为100欧的共模电感。1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径=0.98mm 取铜线线为1.0mm 2)计算最小电感值 512翼血1 x J0000^1.S9rah 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14 ><13.34-1.08)=38.5mm

037 差模滤波和共模滤波

差模滤波和共模滤波 1 差模滤波 低频滤波可以分为两类,差模滤波和共模滤波。根据前面的讨论,差模滤波试图减小电源线中通过地线返回的噪声。这就意味着电源线中的噪声首先会流出机壳再通过地线返回。因此滤波的策略就是在噪声流出机壳之前先将电源线的噪声旁路到地线中去,这样,噪声形成回路而且不会被测量到。可以在电源线中串联一个电感,阻止其流出,同时,在电源线和地线之间跨接一个电容,为噪声提供一个低阻抗回路。 商用与军用 尽管在前面对商用滤波和军用滤波的讨论已经表明了两者密切相关,但在设计一个低频差模滤波器的时候仍然会有不同之处。问题是设计一个电感在前电容在后的滤波器还是一个电感在后电容在前的滤波器(从电源内部向外部供电看)。商业测试方法通常测量电压,而且阻抗源相对比较大(50Ω)。可以利用这个阻抗源来阻断噪声,因此采用电感在前电容在后的滤波器更好,如图9-17所示。 在某些情况下,噪声的幅值很小,可能不需要电感,这个电容就与50Ω的电阻组成分压网络,电容阻抗通常很小,因此可以分流大部分的噪声。为使电路正常工作,电容的ESR 非常关键。在这种应用场合,需要采用多层瓷片电容或金属化塑料电容。 针对军用测试时,相反地,阻抗源是个低阻抗(10μF 电容),通过测量电流来测试噪声。为防止噪声电流流过这个低阻抗,需要采用电容在前电感在后的滤波器(如图9-18所示)。 在这种情况下(与商业用途不一样),毫无疑问,这个电容作为输入电容,如大的电解电容已经存在,最好在这个电容上再并联一个1μF 或100nF 的瓷片电容(或者同时并联——一般1μF 的电容在1MHz 以下有效而100nF 的电容可以工作到10MHz)。这个方法通常用来解决大电容在高频下特性差的问题。 交流 电容 低阻抗回路

共模电感小知识

一、初识共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 图1 各种CMC 小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其它的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各组件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路,如图1-1所示。

图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也能看到一种贴片式的共模电感(图3),其结构和功能与直立式共模电感几乎是一样的。 图4 贴片CMC 二、从工作原理看共模电感 为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。 图5 共模电感滤波电路 图4是包含共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。 小知识:漏感和差模电感

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计 引言 开关电源以其体积小、重量轻、效率高等优点被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且本身的高频信号也会引起大量的噪声,会污染电网环境,干扰同一电网其他电子设备的正常工作。这样就对EMC提出了更高的要求指标。 分类: 开关电源中的电磁干扰(EMI)主要有传导干扰和辐射干扰。通过正确的屏蔽和接地系统设计可以得到有效的控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效的措施,辐射干扰的抑制可以通过加装变压器屏蔽铜片。 EMI滤波器介绍 开关电源与交流电网相连,尽管开关电源是一个单端口网络,但具有相线(L),零线(N),地线(E)的开关电源实际上形成了两个AC端口,所以噪声源在实际分析中可以将其分解为共模和差模噪声源。火线(L)与零线(N)之间的干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间的干扰叫做共模干扰(非对称性干扰)。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 1.开关电源的EMI干扰源 开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-O ff快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。 (4)PCB 准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上述EMI源抑制的好坏。

共模电感的设计实例讲解

共模电感的设计实例讲解 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。下面我就对于共模电感的设计过程与案例结合起来简单讲讲 一、设计过程: ① 选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ② 设定电感的阻 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为50~100Ω,即至少50%的衰减,因此有:Z =ωL

③ 选择磁芯的形状的和尺寸 成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于磁芯的数据手册由LI的乘积选取。 ④ 计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:( 106 )0.5 L N = L × A ⑤ 计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要求的线径。 二、设计案例: 在工作频率为10KHz,输入线性电流为3A(RMS)时,阻抗为100 欧的共模电感。 1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径 =0.98mm

取铜线线为1.0mm 2)计算最小电感值 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14×(13.34-1.08)=38.5mm 最大圈数=(160/360)×38.5/1.08=15.8TS或16TS 5)计算磁芯的AL值,并选取材质 磁芯的AL最小值=1.59/162=6211nH/TS2MIN 因此种磁芯AL值变化范围一般为+/-30%故磁芯的AL值取9000nH/TS2,以上述条件,即可选取一合适磁芯。

电感传感器的接口电路设计

电感传感器的接口电路设计 摘要:位移测量具有广泛应用,电感式传感器以其结构简单可靠、输出功率大、线性好、抗干扰和稳定性好、价格低廉等特点获得了大量的应用。针对目前电感式位移传感器的应用现状,在对电感式直线位移传感器深入分析的基础上,本文设计了一种电感式位移传感器接口电路。 该电路采用电感传感器把被测位移量转变为微弱电信号,经前置交流放大、相敏整流,直流放大,A/D转换等电路处理后,送入单片机进行综合运算处理后输出,并通过液晶显示结果,可以适应不同量程和分辨率的信号调理要求。文中介绍了整体电路的设计和单片机系统的硬件及软件流程。设计过程中用Protel99 SE对电路原理图进行了绘制,选用了单片机的开发工具Keil C51μvision2对软件设计中的程序进行编写、编译、模拟仿真,电路正常,完成了课题要求的电感传感器对位移测量并显示结果。 关键词:位移测量;电感式传感器;单片机;液晶显示

The Design of the Inductive Sensor Interface Circuit Abstract: the measurement of diaspacement is very important in engineering. Inductive transducers are widely used due to their simple structures,high output capacities,good linearity,good disturbance resistance,good stability and low prices.Based on thoroughly analysis of linear inductive displacement transducers,a inductive displacement transducer interface circuit is designed in this thesis. This metering circuit uses the inductive transceiver to transform that the displacement offset into the weak electrical signal, after the pre- AC amplification, the phase-sensitive rectifier,the DC Larger and the A / D conversion circuit processing, output after processing in the monolithic integrated circuit and display the results through the LCD. It can adapt to different range and resolution of the signal conditioning requirements. In the process of designing, Protel99SE is used to plot schematic diagram, Keil C51μvision2and the development kit of MCU is used to compile, translate and make simulation about the assemble program. The circuit is in gear and it basically can accomplish the task of measure of the displacement offset through the inductive sensor and dispiay the result. Keywords: the measurement of displacement;the inductive sensor;MCU;LCD

相关文档
相关文档 最新文档