文档库 最新最全的文档下载
当前位置:文档库 › 关于Poisson分布的检验

关于Poisson分布的检验

关于Poisson分布的检验
关于Poisson分布的检验

目录

承诺保证书……………………………………………………………………I

1 引言 (1)

1.1 研究背景 (1)

1.2 研究方法及目的 (1)

2 Poisson分布检验的步骤和基本理论 (2)

2.1 检验步骤 (2)

2.2 检验的基本原理 (3)

3 关于Poisson分布检验的三个案例及实际研究 (7)

3.1 案例分析 (7)

3.2 对单位时间到来顾客数的实际研究 (13)

参考文献 (18)

英文摘要 (19)

关于Poisson分布的检验

肖秋光

摘要:Poisson分布是概率论中的一种重要离散分布,在许多实际问题中都有着广泛应用.本文概括了检验样本数据是否服从泊松分布的一般方法,主要是对随机数据进行图像模拟估

χ检验是众所周知的拟合优度检验,计和利用假设检验原理对给定的临界值进行估计.其中2

它能适用于任意的备择假设.另外,通过三个例子进行说明,最后用该方法对实测数据进行了分析和检验,并得出了结论.

χ统计量

关键词:Poisson分布假设检验独立变量2

1 引言

1.1 研究背景

改革开放三十年来随着社会的发展、经济的增长,科学技术日新月异、人民拥有的物质日益丰富、感受到的文化也更加多元、社会的各种法规制度日臻成熟,无论是住房、保险、交通、旅游、高质量产品还是教育、饮食等.其结果是构成了大量的随机数据,而这些数据有没有什么规律可循呢?就需要我们对它进行研究.在现实生活中的许多数据经过人们大量的研究是服从泊松分布的.若通过观察记录得到了一组数据,它是否服从泊松分布,则需要我们对其进行检验.

泊松分布是1837年由法国数学家泊松(Poisson S.D.1781--1840)首次提出的.它是概率论中的一种重要的离散型随机变量的概率分布,在理论上和实践中都有广泛的应用.如110报警台24小时接到的报警次数、一定时间内发生的意外事件次数或灾害次数、布匹上的疵点数目、放射性物质放射出的粒子数目等.

1.2 研究方法及目的

由于向110报警台的报警是一次次到来的;自然灾害是一次次发生的;放射性粒子是一个个射出的;进入商场的人是一个个到来的……它们都可以看成是一种于随机时刻到来的“质点流”.要对其进行研究,首先,必须收集到有效

的数据.其次,由于得到的样本数据通常是实验或统计而来,因此它不能完全的反映事物的本质.我们主要对部分数据进行抽取分析,根据部分数据对全体数据做出推断及判断.

因此,研究单位时间内产生的诸多随机变量有助于当事者们对各种新措施、新技术作出更为科学合理的决策.例如,商场每个时段到达的人数不一,通过调查可以确定哪个时段是人流的高峰期,可以在这个时段做一些宣传或促销产生的效益就会比其他时段高,并有效控制成本,使其用最小的投入换来最大的收益.

2 Poisson 分布检验的步骤及基本理论 2.1 检验步骤 2.1.1 数据整理

进行Poisson 分布的检验时,首先要对收集到的数据进行整理.假设收集到单位时间的量为n x x x x 321,,,然后把这些量按从小到大顺序排列起来,并查出其频数稍加整理制成表格如下: 表 1

其中满足:i i n p x p p x x x ?++?+?=+++ 102110 2.1.2 用图像对样本数据进行模拟

由于图形比较直观,而且样本数据在一定程度上能有效反映总体的分布规律,故可以用样本数据的图像模拟通过对比,对该分布进行初步判断.

泊松分布的图形一般为左偏,但随λ数值的增大,图形趋于对称.

图1

2.1.3 检验得出结论

2.2检验的基本理论

2.2.1 假设检验

假设检验是对总体的分布函数形式或分布的某些参数作出某些可能的假设,然后根据所得的样本数据,对假设的正确性作出判断.

假设检验的步骤:

①根据问题建立原假设和备择假设

原假设是设总体参数等于某一数值,而备则假设是根据研究的目的来确定:可采用双侧检验,也可采用单侧检验.确定单、双侧检验的同时,也就确定了接受域和拒绝域的位置.

②选择适当的样本统计量,并确定以

H为真时的抽样分布

这一步是假设检验的关键,需要根据已知条件找到一个包含待检验总体参数和样本数据的已知分布,并计算出统计量的数值.

③选定显著性水平α,确定临界值

α应在抽样之前就确定下来,根据单、双侧检验的情况,将α放置一侧或双侧.然后根据第二步骤中所选择统计量服从的分布,查相应分布表,确定临界值.

④进行判别,得出结论

将第二步计算的数值与第三步得到的临界值进行比较,根据判别原则,作出结论.

2.2.2最大似然估计及拟合优度2χ检验

2.2.3 P 值检验

所谓P 值,是指在一个假设检验问题中,利用观测值能够做出拒绝原假设选择的最小显著性水平,如果p 值小于显著性水平α,则相应的检验统计量的值落入拒绝域中.其检验规则为:若p ≥α值,则拒绝原假设0H ;

若p <α值,则接受原假设0H . 2.2.4 Poisson 分布检验

设总体X 服从具有参数为0>λ的泊松分布,n X X X X ,,,,321 为其样本.

考虑检验问题:0H λ:010:;λλλ≠=H ,现有

∏∑∏∏

∏==-=--==?

?????=∑===n

i i

n i i n n

i i

x n n

i i x n i i x x e

x e

e

x x p n

i i

i

1

11

1

1

)

!(1

ln )(exp )

!(1

!

);(1

λλ

λ

λλ

λ

λ

其中()λλln )(,,,,1

21==∑=b x x x x T n

i i n

λλn n

i i

n e c x x x x h -===

∏)(,)

!(1

),,,(1

21

因此??

?

??<<==><=212121,02,1,,&,1),,,(c

T c j c T b c c T x x x j i n ?

则[]??

???==??????=??????∑∑==),,,(),(),,,(21001211000n n

i i n n i i x x x E M x x x x E X E ?λα?αλλλ 当0H 为真时,统计量∑==n

i i X T 1

服从参数为0λn 的泊松分布,0)(λn T E =,则

020

1020

1)(!)(!!)(!)(0220111

01

0λλλλλλλλαn c n c n c j j n c j j e n c b e n c b e j n e j n ---∞

+=--=+++

=∑∑ 0201020

1)(!

)(!!)(!

)(022201111

01

00λλλλλλλλαλn c n c n c j j n c j j e n c c

b e n

c c b e j n j e j n j n ---∞

+=--=+++=∑

在一般情况下上述方程不易求解,但当0λ不接近于零而n 又不很小时,统计量

1

λλn n X

U n

i i

∑=-=

的渐进分布为正态分布)1,0(N ,则

?

??

???>-=??????-<-∑∑==n i i n i i u n X P u n X P 101000λλλλ 对一切实数u 都渐近地成立(这是因为正态分布具有对称性).因此,2

121,,,c c b b 由下式确定:

02020101)(!)()(!

!)(2022

1

0011

100λλλλλλλλα

n c n c j j n c n c j j e n c b e j n e n c b e j n --∞

+=---=+=+=∑∑ 3

关于Poisson 分布检验的三个案例及实际研究

3.1 案例分析

3.1.1 论反腐败与泊松分布

腐败现象作为当今社会的一种非常态,它的发生、出现引起了广大群众的

关注.调查显示最近几年科级腐败正在加剧,小官受贿成隐患.据悉,某检察院工作人员对某经济较落后省的320个底层官员在一年时间内的受贿金额调查纪录如下表所示.根据这些数据(金额0表示未受贿,金额1表示受贿金额大于0小于等于1,其余类同)检验受贿金额是否服从泊送分布.

表 2 1年内320个官员受贿金额(万元)统计表

来源于参考文献[6]

用折线图像模拟数据如下:

图2

从图形走势看,为左偏凸值分布,与泊松分布较为相似,可初步判定为泊松分布.

在理论上,这里我们需要检验的是在一年的时间段内受贿官员的受贿金额是否服从泊送分布,所以可以假设

0H :一年的时间内受贿官员的受贿金额服从泊送分布; 1H : 一年的时间内受贿官员的受贿金额不服从泊送分布; 我们知道泊送分布的概率密度函数为 !

)(x e x X f x λ

λ-?=

=,式中:λ是未知参数.

如果假设为真时,可以根据本数据估计λ.由上表的数据可以的到在320个底层官员中,平均每一官员受贿的金额(万元),即

0.3320

1019471150?=?+?++?+?= λ

因此,可以用λ

?作为λ的估计值,即得到为真时的概率密度函数 !

3)(3

x e x X f x -?=

= 根据该密度函数,就可以计算出在每一个官员的受贿金额为各个类别出现的概率,这些概率值可通过泊送分布表查得.例如,在一年内受贿金额为0万元的官员人数的概率是498.0)0(==X f ,受贿金额为1万元的概率是1494.0)1(==X f 等.然后用查出的概率分别乘以样本容量)320(=n n ,就可以得到各类别期望的频数.例如,在320个官员中受贿金额为0万元的期望频数是936.153200498.0=?.下表列出了2χ统计量的计算过程.

表 3 2χ统计量的计算过程

我们注意到表中,受贿金额为8,9和10万元次及以上金额的期望频数都小于5,所以将这三类归于受贿金额为7万元的合并为一类,所以合并之后的类别数8=k .这时2χ统计量为

0068.5)(8

12

2

=-=∑=i i

i i e e n χ

需要注意的是:根据Pearson 定理,上式的2χ统计量服从自由度为1--r k 的2χ分布,其中k 时类别的个数,r 是估计的总体参数的个数.在这里1,8==r k (只估计了一个参数λ),所以自由度为61181=--=--r k .于是,当05.0=α时,

查表可得592.12)6(205.0=χ.对于样本的2

χ值,因为)6(205.02χχ<落在接受域中.所

以接受0H ,拒绝1H ,即在一年的时间中该地区官员的受贿金额是服从泊松分布的.

大家熟知当n 很大,p 很小时的二项分布趋于泊松分布.按照泊松分布的规律,一项非正常态现象的出现除了在总体中的概率很小外,其最明显的特征则是常常集中分布.通过上面检验和大量案例表明,腐败现象作为社会现象中的一种非正常态,其发生和发展呈泊松分布规律,特点是总体上的稀有性和局部的密集性加偶然性,具体表现有“前腐后继案”、“串案”、“窝案”等形式.因此治理腐败:一是要尽早发现,尽快惩前毖后;二是不能搞扩大化;三是要综合治理.

其次表明,泊松分布密集出现的概率跟社会体制有关,尤其是在经济转型、社会发生变革的时期容易出现。比如我国正处于向社会主义市场经济的过渡时期,法制不健全,各项改革和管理措施还跟不上形势发展的需要,所以腐败现象就表现得比较明显和集中。若从历史长河中看,这种过程还是短暂的,从全局来看它也只集中在某些特定的行业和领域,而大部分时间和大部分领域都是正常的,都是非腐败的。 3.1.2 卢瑟福散射实验

卢瑟福散射是近代物理科学发展史中最具影响力的重要实验之一。1909年卢瑟福(L.E. Rutherford )和其合作者盖革(H. Geiger )与马斯(E. Marsden )进行的α粒子散射实验,为原子的核式模型奠定了实验基础。

他们在云雾实验室观察镭所发射出的α粒子数目.记录了2608个相等时间间隔(他们以7.5秒为一个时间段)内观测了一放射性物质镭放射的α粒子数x ,

表 4

来源于参考文献[7]

在上表中的i n 是观测到i 个粒子的时间间隔数(最后一项已经合并).若要检验观测的数据服从泊松分布这一假设(05.0=α),则: 因为对参数为λ的泊松分布是: 2,1,0,!

)(==

=-k e k k X P k

λλ

根据上表原始数据可以算得λ最大似然估计870.3?==x λ

而870.3?=λ

的泊松分布通过计算机计算及查表(泊松分布函数表)可得下表: 表 5

因此,8967.122=χ其自由度为12-1-1=10,对05.0=α查(2χ分布分位数

)(2n p χ表)得307.18)10(205.0=χ,

所以我们接受0H ,认为观测数据服从泊松分布. 另外,根据数据模拟图像如下:

图3

卢瑟福等人经过两年时间综合多方面因素的分析,在1911年提出原子的核式模型,原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内.原子核的半径近似为10,约为原子半径的千万分之一.卢瑟福散射实验确立了原子的核式结构,为现代物理的发展奠定了基石.这充分表明研究泊松分布具有重大意义. 3.1.3 对印刷错误个数的检验

一个检验员检查了一本书的100页,并仔细记录各页中印刷错误的个数,其结果为:

表 6

其频数模拟如下图:

图 4

若要检验一页的印刷错误个数是否服从泊松分布.(取05.0=α)则:

假设 0H :总体X 服从泊松分布; 1H :总体X 不服从泊松分布 从表中数据可得:1100

7

061524032219140036=?+?+?+?+?+?+?+?=

x

当0H 成立时,λ的最大似然估计为1?==x λ

,检验的拒绝域为: )1(??2

2

2

-->-=∑r k n p

n f i i αχχ

由给出的条件可知 100=n

3679.0!0)0(?10====-e X p p , 3679.0!11)1(?1

11====-e X p p

18397.0!21)2(?122====-e X p p , 0613.0!31)3(?1

33====-e X p p

01533.0!41)4(?144====-e X p p

, 003066.0!

51)5(?1

55====-e X p p 000511.0!61)6(?1

66====-e X p p , 000023.0?1)7(?6

7=-=≥=∑=i i p X p p

而对于5?,3<>j p

n j 有,将其合并得 023.8?7

3

=∑=j j p n ,合并后 4=k ,查2χ分布

分位数)(2n p χ表可得:991.5114205

.0=--)(χ 而 444.1100023

.85397.181979.364079.36362

2222

=-+++=χ

由 991.5444.1<,故在05.0=α下,我们接受0H ,即可认为一页的印刷错误个数服从泊松分布.

通过对印刷错误的研究,我们可知每页印刷错误在一个左右时是正常的,所以在使用书刊时发现错误不用大惊小怪. 3.2 对单位时间到来顾客数的实际研究

在2011-3-11日星期五,通过实际采样,记录了上午10:55——12:05的70分钟内每分钟到达联合书城的人数,记录如下:

4 8 7

5 0 1 1 5 9 4 2 1

6 5

7 4 0 7

8 5 5 1

9 1 4 1 3 0 3 7 5 2 1 0 5 3 2 5 1 7 4 5 9 1 1 3 4 9 4 6 11 10 12 1 2 4 4 3 9 6 8 8 13 8 3 0 4 5 7 8

通过整理可以得到下表:

表 7

显然,可以初步认为进入书城的顾客流是相互独立的随机数.首先用图像初步模拟一下,其散点图如下:

图 5

如上图所示,这些点很凌乱,看不出其规律.下面将其用折线图展示如下:

图 6

上图和普通的泊松分布图相比差别比较大,有两处凹陷的地方,初步判断不是泊松分布.

基于以上内容,下面用假设检验原理对其检验.首先,假设顾客数是服从Poisson 分布的.即

0H :每分钟进入的人数服从泊松分布; 1H :每分钟进入的人数不服从泊松分布.

根据前文内容可知,Poisson 分布的最大似然估计λ

λ?=,则计算平均数 70

1

1111059686736105104634211150??+?+?+?+?+?+?+?+?+?+?+?=λ

6571.470113112≈?+?+

由于泊松分布表提供的λ 整数位后只有一位小数,而 λ?介于4.6到4.7之间 所以可以: ①用 6.4?=λ

作为λ 的估计值 ②用 7.4?=λ

作为λ 的估计值, 因此,用λ?作为λ的估计值,即得到0

H 为真时的概率密度函数 3.4.1 当取6.4=λ时,有()!

6.46.4x e x X f x -?==,查泊松分布表计算得下表,其

中2χ统计量按四舍五入取小数点后四位.

表 8

从表中观察进入人数为0,1,8及其以上的期望频数都小于5,所以将进入人数为0,1的与进入2个的合并为一类,进入 8个及以上与进入7的合并为一类,那么合并后的类别数6=k ,其2

χ统计量为: ()5399.466

12

2

=-=∑

i

i i e e n χ

根据Pearson 定理,2χ统计量服从自由度为1--r k 的2χ分布,在这里

1,6==r k ,所以自由度为4.于是,当05.0=α时,查2χ分布表得()488.942

05.0=χ对于样本的2χ值,有2χ>()4205.0χ落在拒绝域内.所以拒绝0H ,接受1H ,即每分

钟进入书城的人数不服从泊松分布,与用图像模拟得到的初步结论一致.

3.4.2 当取7.4=λ时,有()!

7.47

.4x e x X f x -?==,查泊松分布表计算得下表

表 9

其余同上,当05.0=α时,查2χ分布表得()488.94205.0=χ对于样本的2

χ值,仍然有2χ>()4205.0χ落在拒绝域内,结论也一致.

按照众多学者研究,在一般情况下对于这种随机变量的检验应该服从Poisson 分布.在这里为什么得到了相反的结论?我认为可能有两点原因:一是所采集到的样本数据可能具有特殊性,不能完全反映总体的分布,若多测几组数据进行检验结果可能会改变;二是我们假设的前提是每个人相互独立,而实际情

况有许多人是有关联的,例如一个家庭四个人同时进入、两个好朋友陪同一个朋友买书等诸多情况,这个因素可能也会对结果有影响.

结束语:随着社会的发展和可研究案例的增多,把自然科学领域的原理用到社会现象的研究、分析上来,对发现问题解决问题有许多益处.

参考文献:

[1] 茆诗松等.概率论与数理统计教程[M].北京:高等教育出版社,2008.

[2] 朱洪文.应用统计[M]. 北京:高等教育出版社,2006.

[3] 王荣华等.概率论与数理统计(习题精选).北京:北京大学出版社,2010.

[4] 谢民育,吴茗,熊明.多元分布下单边备择假设的两步检验.武汉 2009

[5] 徐亮,丁先文等.基于经验似然的部分线性模型的统计诊断.南京,2009

[6] https://www.wendangku.net/doc/6817788044.html,/g/20110401/10129630369.shtml

[7] https://www.wendangku.net/doc/6817788044.html,/advlab/nuclear/10.htm

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

3二项分布、泊松分布与泊松逼近

二项分布、泊松分布与泊松逼近 雅各布·伯努利与二项分布公式 雅各布·伯努利(Jacob Bernoulli,1654—1705)来自数学史上的传奇家族—瑞士巴塞尔的伯努利家族,该家族的三代成员中产生了8位数学家,在17世纪和18世纪微积分理论及应用的发展中占有领先地位,雅各布·伯努利是其家族第一代数学家中的第一位,他与弟弟约翰·伯努利(Johann Bernoulli,1667—1748)、侄子丹尼尔·伯努利(Daniel Bernoulli,1700—1782)在数学史上享有声誉。 家族简介 在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利(也译作贝努力、伯努利)家族最为突出。 伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一 代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。 老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。他有3个有成就的儿子。其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。 雅各布·伯努利

概率统计论 浅谈泊松分布

浅谈泊松分布 班级:XXX 姓名:XXX 学号:XXX

浅谈泊松分布当一个随机事件,以固定的平均瞬时速率λ

二项概率的泊松逼近 如果∞→n ,0→p 使得λ=np 保持为正常数,则 λλ--→-e k p p C k k n k k n !)1( 对k = 0,1,2,…一致地成立。

2.1泊松分布使用范围 泊松分布主要用于描述在单位时间(空间)中稀有事件的发生数. 即需满足以下四个条件: 1. 给定区域内的特定事件产生的次数,可以是根据时间,长度,面积来定义; 2. 各段相等区域内的特定事件产生的概率是一样的; 3. 各区域内,事件发生的概率是相互独立的;

4. 当给定区域变得非常小时,两次以上事件发生的概率趋向于0。 2.2泊松分布的性质 1. 泊松分布的均数与方差相等,即m =2σ 2.泊松分布的可加性 如果1x ,2x ,3x …k x 相互独立,且它们分别服从以1λ,2λ,3λ…k λ为参数的泊松分布,则k X X X X T ++++= 321也服从泊松分布,其参数为k λλλλ++++ 321。 3.泊松分布的应用 )0(P 是未产生二体的菌的存在概率,实际上其值的5%与采用2/05.0m J 照射时的大肠杆菌uvrA -株,recA -株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因

组有一个二体就是致死量,因此)1(P ,)2(P ……就意味着全部死亡的概率。 3.2泊松分布在医学统计上的应用 在遗传学上,计算遗传图距的基本方法是建立在重组率基础上的,根据重组率的大小作出有关基因间的距离,绘制线性基因图;可是当研究的两个基因间的距离相对较远,在它们之间可能发生双交换、三交换、四交换甚至更高数目的交换,而形成的配子总有一半是非重组型的。若简单的把重组率看作交换率,显然交换率降低了,图距也随之缩小。这里可以用泊松分布原理来描述减数分裂过程中染色体上某区段交换的分布。在图距计算中,x 表示交换数,m 表示对总样本来说每进行一次减数分裂两基因 间的平均交换数,而基因间不发生交换的概率为m m e e m P --==! 0)0(0 ,基因间至少发生一次交换的概率为m e P P --=-=1)0(1。由此可计算两基因间的交换率和重组率。进而可更科学的作出遗传图。 3.3 泊松分布在交通运输上的应用 道路是行驶各种车辆的通道。为了给编制交通建设规划提供可靠的依据和保证道路上的车能安全而有效地通行, 道路工作者必须对道路上的车流进行实地调查和统计分析以便掌握车流的变化规律。数理统计方法是对交通流分布进行研究的有效而实际可行的方法。通常把在单位时间内通过道路上某一地点的车辆叫做交通流。对于时间间隔极短,并非是高密度的交通流的分布状态, 它常常是服从“概率论” 中的“ 泊松分布” 规律的。 如用简单例子表示,取通过某一地点车辆的时间作为时间数轴, 在数轴上划出给定时间间隔和该时间间隔内通过的车辆数目,譬如, 以20秒的时间间隔的数轴为例, 在20~0秒内,一辆车也没有通过, 在40~20秒间隔内,有二辆车通过, 在60~40秒间隔内, 有一辆车通过, 等等。这样在实地进行大量观测就可以的到某一时间间隔内的随机来车数目和该时间间隔内出现该车辆数的次数, 从而按泊松分布公式求算在给定时间间隔内在某一地点通过γ辆车的概率)(γP 。 参考文献 1. 戴维 M. 莱文等.《以EXCEL 为决策工具的商务统计》.机械工业出版社,2009 2.庄军、林奇英《泊松分布在生物学中的应用》.激光生物学报.2007年第16卷第5期. 3.薛珊荣 《“泊松分布”在交通工程中的应用》.湖南大学学报.1995年第8卷第2期.

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

二项分布、泊松分布和正态分布的区别及联系

二项分布、泊松分布和正态分布的区别及联系 二项分布、泊松分布和正态分布的区别及联系?被浏览8,9732 个回答猴子微信公众号:猴子聊人物之前你已经了解概率的基础知识(如果还不知道概率能干啥,在生活中有哪些应用的例子,可以看我之前的《投资赚钱与概率》)。 今天我们来聊聊几种特殊的概率分布。这个知识目前来看,还没有人令我满意的答案,因为其他人多数是在举数学推导公式。我这个人是最讨厌数学公式的,但是这并不妨碍我用统计概率思维做很多事情。相比熟悉公式,我更想知道学的这个知识能用到什么地方。可惜,还没有人讲清楚。今天,就让我来当回雷锋吧。 首先,你想到的问题肯定是:1. 什么是概率分布?2. 概率分布能当饭吃吗?学了对我有啥用?好了,我们先看下:什么是概率分布? 1. 什么是概率分布?要明白概率分布,你需要知道先两个东东:1)数据有哪些类型2)什么是分布数据类型(统计学里也叫随机变量)有两种。第1种是离散数据。离散数据根据名称很好理解,就是数据的取值是不连续的。例如掷硬币就是一个典型的离散数据,因为抛硬币的就2种数值(也就是2种结果,要么是正面,要么是反面)。你可以把离散数据想象成一块一块垫脚石,你可以从一个数值调到另一个数

值,同时每个数值之间都有明确的间隔。 第2种是连续数据。连续数据正好相反,它能取任意的数值。例如时间就是一个典型的连续数据1.25分钟、1.251分钟,1.2512分钟,它能无限分割。连续数据就像一条平滑的、连绵不断的道路,你可以沿着这条道路一直走下去。 什么是分布呢?数据在统计图中的形状,叫做它的分布。 其实我们生活中也会聊到各种分布。比如下面不同季节男人的目光分布.。 各位老铁,来一波美女,看看你的目光停在哪个分布的地方。美女也看了,现在该专注学习了吧。现在,我们已经知道了两件事情:1)数据类型(也叫随机变量)有2种:离散数据类型(例如抛硬币的结果),连续数据类型(例如时间)2)分布:数据在统计图中的形状现在我们来看看什么是概率。概率分布就是将上面两个东东(数据类型+分布)组合起来的一种表现手段:概率分布就是在统计图中表示概率,横轴是数据的值,纵轴是横轴上对应数据值的概率。很显然的,根据数据类型的不同,概率分布分为两种:离散概率分布,连续概率分布。那么,问题就来了。为什么你要关心数据类型呢?因为数据类型会影响求概率的方法。对于离散概率分布,我们关心的是取得一个特定数值的概率。例如抛硬币正面向上的概率为:p(x=正面)=1/2而对于连续概率分布来说,我们无法给出每一个数值的概率,因为我们不可能列举每一

泊松分布下的Erlang C公式

泊松分布下的Erlang C 公式

目录 1 泊松分布下的Erlang C 公式 (4) 1.1 Erlang C 公式 (4) 1.2 性能指标 (4) 1.3 Erlang C公式与Erlang B公式的比较 (6) 附录A 泊松分布下Erlang C 公式的推导 (7)

图目录 图A-1 系统状态转移图 (8)

表目录 表A-1 各种方式发生的概率 (7)

1 泊松分布下的Erlang C 公式 1.1 Erlang C 公式 排队等待模型有两个基本假设: 1 用户数远远大于提供的信道数,相对于信道数来说,可以认为用户数为无穷大。 2 没有被处理的用户呼叫进入排队队列中等待,直到被处理。 在满足以上两个基本假设的情况下,认为用户呼叫到达是泊松分布,用户呼叫离开也是泊松分布。排队等待模型分两种情况:其一是队列长度有限的情况,此时阻塞率就是队列全满时的概率,另一种情况是队列长度无限的情况,此时没有阻塞率,其性能指标代之以等待队列长,总队列长,等待时间,逗留时间等参数。 在队列长度有限的情况下,当提供C 个信道,队列长度为N 时,设用户呼叫平均到达率为λ,平均用户呼叫持续时长为T ,T /1=μ,)/(μλρC =。则在某一时刻队列中有n 个用户的概率为: ∑-=---+=1 01 -1C n 0]1C!C ! [P C n N C n n C ρρρρ 0n n P !P ρn C n = n=C 当队列长度无限时,其概率为: ∑-=-+=1 01 -C C n 0]1C!C ! [P C n n n C ρρρ 0n n P !P ρn C n = n=C 1.2 性能指标 在队列长度有限的情况下,其性能指标如下: 其阻塞率为: 0N N P ! P B ρC C c == 其平均等待队列长度为:

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

泊松分布推导

泊松分布推导 如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的 一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p,如果我们让他开10枪,如果每击中一次目标就得1分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k,但可以求出k的概率分布,比如k=9的概率是50%,k=8分的概率是30%……并且根据k的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k分”的概率。比如“得9分”可以是“射失第1发,而命中其余的9发”,它的概率是p的9次方乘上1-p。 X O O OO O OOOO O X O OOOOOOO O O X O OOOOOO …… 根据组合数性质,在种情况下,牛仔都可以得到9分。因此牛仔“得9分”的概率。 同理,“得k分”的概率就是。而对于一个神枪手(p=1)来讲,他“得 10分”的概率就是1。 二项分布和泊松分布最大的不同是前者的研究对象是n个离散的事件(10次射击),而后者考察的是一段连续的时间(单位时间)。因此泊松分布就是在二项分布的基础上化零为整。 如果我们把单位时间划分成n个细小的时间片,假设在每个时间片内牛仔都在射击,只

Poisson分布的检验

P o i s s o n分布的检验文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

目录 承诺保证书……………………………………………………………………I 1 引言 (1) 研究背 景 (1) 研究方法及目 的 (1) 2 Poisson分布检验的步骤和基本理论 (2) 检验步骤 (2) 检验的基本原理 (3) 3 关于Poisson分布检验的三个案例及实际研究 (7) 案例分析 (7)

对单位时间到来顾客数的实际研究 (13) 参考文献 (18) 英文摘要 (19)

关于Poisson分布的检验 肖秋光 摘要:Poisson分布是概率论中的一种重要离散分布,在许多实际问题中都有着广泛应用.本文概括了检验样本数据是否服从泊松分布的一般方法,主要是对随机数据进行图像模拟估计和利用假设检验原理对给定的临界值进行估计.其中2χ检验是众所周知的拟合优度检验,它能适用于任意的备择假设.另外,通过三个例子进行说明,最后用该方法对实测数据进行了分析和检验,并得出了结论. 关键词:Poisson分布假设检验独立变量2χ统计量 1 引言 研究背景 改革开放三十年来随着社会的发展、经济的增长,科学技术日新月异、人民拥有的物质日益丰富、感受到的文化也更加多元、社会的各种法规制度日臻成熟,无论是住房、保险、交通、旅游、高质量产品还是教育、饮食等.其结果是构成了大量的随机数据,而这些数据有没有什么规律可循呢就需要我们对它进行研究.在现实生活中的许多数据经过人们大量的研究是服从泊松分布的.若通过观察记录得到了一组数据,它是否服从泊松分布,则需要我们对其进行检验.

简单理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np 固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改。所以现在的大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们每天去食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数,(比如一直是200人),而应该符合某种随机规律:比如1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k 个学生到达的概率为: ,...1,0,! )(==-k k e k f k λλ 其中λ为单位时间内学生的期望到达人数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p ,如果我们让他开10枪,如果每击中一次目标就得一分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k ,但可以求出k 的概率分布,比如k=9的概率是50%,k=8的概率是30%……并且根据k 的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k 分”的概率。比如“得9分”可以是“射失第一发,而命中其余的9发”,它的概率是p 的9次方乘上(1-p ),当然,可能情况不只这种,我们用X 代表“没命中”,O 代表“命中”,“得9分”所有的可能的情况如下: XOOOO OOOOO OXOOO OOOOO OOXOO OOOOO

正确理解-泊松分布-通俗解释

正确理解-泊松分布-通俗解释

年由贝尔发明,一台电话由几个部分构成”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一比如在一段个常数(比 如一直是200人),而应该符合某种随机规律: 学生的概率是10%,来180个学生的概率是假如在1个小时内来200个20%'般认为,这种随机规 若要公式化定义,那就是:若 当一个随 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在 只会做题”的阶段,因为试卷上不会出现请发表一下你对泊松公式的看法”这 样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一 样东西,那么我们就有必要停下来去思考一下诸如为什么要有泊松分布?” 泊松分布的物理意义是什么?”这样的哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:电话是 一种机器,两个距离很远的人可以通过它进行交谈”而不会说:电话在1876 律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布, 随机变量X只取非负整数值0,1,2,…,且其概率分布服 从"k!则随机变量X的分布称为泊松分布,记作P(入。)这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (/中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。生活中,当 机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜 F某区域中的白血球等等,以固定的平均瞬时速率入或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地

正确理解泊松分布

正确理解泊松分布 敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改。所以现在的大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们每天去食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数,(比如一直是200人),而应该符合某种随机规律:比如1个小时内来200个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k 个学生到达的概率为: ,...1,0,! )(==-k k e k f k λλ 其中λ为单位时间内学生的期望到达人数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。 二项分布很容易理解,比如一个牛仔一枪打中靶子的概率是p ,如果我们让他开10枪,如果每击中一次目标就得一分,问他一共能得几分?虽然我们不能在牛仔射击前准确地预测出具体的得分k ,但可以求出k 的概率分布,比如k=9的概率是50%,k=8的概率是30%……并且根据k 的分布来判断他的枪法如何,这便是概率统计的思想。 具体计算的方法就是求出“得k 分”的概率。比如“得9分”可以是“射失第一发,而命中其余的9发”,它的概率是p 的9次方乘上(1-p ),当然,可能情况不只这种,我们O 代表“命中”,“得9分”所有的可能的情况如下:

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

相关文档