文档库 最新最全的文档下载
当前位置:文档库 › 离散序列卷积(matlab实现)

离散序列卷积(matlab实现)

离散序列卷积(matlab实现)
离散序列卷积(matlab实现)

离散序列卷积(matlab实现)

————————————————————————————————作者:————————————————————————————————日期:

数字信号处理实验报告

实验一 离散时间序列卷积和MATLAB 实现

(一)实验目的:学会用MATLAB 对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。 (二)实验原理:

1、离散时间序列f1(k)和f2(k)的卷积和定义:

f(k)=f1(k)*f2(k)=

∑∞

-∞

=-?

i i k f i f )(2)(1

2、在离散信号与系统分析中有两个与卷积和相关的重要结论:

a 、f(k)=

∑∞

-∞

=-?i i k i f )()(δ=f(k)* δ(k)即离散序列可分解为一系列

幅度由f(k)决定的单位序列δ(k)及其平移序列之积。

b 、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状

态响应为y(k),则有:y(k)=

-∞

=-?i i k h i f )()(

3、上机:conv.m 用来实现两个离散序列的线性卷积。 其调用格式是:y=conv(x,h)

若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。 (三)实验内容

1、题一:令x(n)= {

}5,4,3,2,1,h(n)={}246326,,,,,,y(n)=x(n)*h(n),求y(n)。 要求用subplot 和stem 画出x(n),h(n),y(n)与n 的离散序列图形。

源程序: N=5; M=6;

L=N+M-1; x=[1,2,3,4,5]; h=[6,2,3,6,4,2]; y=conv(x,h); nx=0:N-1; nh=0:M-1; ny=0:L-1;

subplot(131); stem(nx,x,'*k'); xlabel('n'); ylabel('x(n)'); grid on ;

subplot(132); stem(nh,h,'*k'); xlabel('n'); ylabel('h(n)'); grid on ;

subplot(133); stem(ny,y,'*k'); xlabel('n'); ylabel('y(n)'); grid on ;

实验结果:

24

00.511.522.53

3.54

4.55n

x (n )

5

1

2

3

4

5

6

n

h (n )

510

010

203040

50

60

70

n

y (n )

分析实验结果:

根据实验结果分析可知,实验所得的数值跟x (n )与y (n )所卷积的结果相同。

2、题二:已知序列

f1(k)=???≤≤其它0201k f2(k)=????

??

?===其它

33

2211k k k

调用conv()函数求上述两序列的卷积和 源程序: clc; k1=3; k2=3;

k=k1+k2-1; f1=[1,1,1]; f2=[0,1,2,3]; f=conv(f1,f2); nf1=0:k1-1; nf2=0:k2; nf=0:k;

subplot(131); stem(nf1,f1,'*r'); xlabel('n'); ylabel('f1(n)'); grid on ;

ylabel('f2(n)'); grid on ;

subplot(133); stem(nf,f,'*g'); xlabel('n'); ylabel('f(n)'); grid on ;

实验结果:

12

00.10.20.30.40.50.60.70.80.91n

f 1(n )

24

0.511.522.53n

f 2(n )

5

1

2

3

4

5

6

n

f (n )

分析实验结果:

根据实验结果分析可知,实验所得的数值跟f1(n )与f2(n )所卷积的结果相同。

3、题三:编写计算两离散序列卷积和f(k)=f1(k)*f2(k)的实用函数dconv().要求该程序在计算出卷积和f(k)的同时,还绘出序列f1(k),f2(k)和f(k)的时域波形图。 function[f,k]=dconv(f1,f2,k1,k2)

%f1(k),f2(k)及f(k)的对应序号向量分别为k1,k2和k 。 源程序:

function [f,k]=dconv(f1,f2,k1,k2); f=conv(f1,f2); k(1)=k1(1)+k2(1);

k(length(f))=k1(length(f1))+k2(length(f2)); k=k(1):k(length(f));

subplot(131); stem(k1,f1,'*r'); xlabel('k1'); ylabel('f1(k1)'); grid on ;

ylabel('f2(k2)'); grid on ;

subplot(133); stem(k,f,'*g'); xlabel('k'); ylabel('f(k)'); grid on ;

该程序编写了一个可以在计算出卷积和f(k)的同时,还绘出序列f1(k),f2(k)和f(k)的时域波形图的函数。

4、题四:试用MATLAB 计算如下所示序列f1(k)与f2(k)的卷积和f(k),绘出它们的时域波形,并说明序列f1(k)与f2(k)的时域宽度与序列f(k)的时域宽度的关系。提示:可用上述dconv()的函数来解决。

f1(k)=????

???==-=其它0

110211

k k k

f2(k)=??

?≤≤-其它

221k

源程序: clc;

f1=[1,2,1]; f2=[1,1,1,1,1];

k1=-1:length(f1)+k1(1)-1; k2=-2:length(f2)+k2(1)-1; dconv(f1,f2,k1,k2); 实验结果:

-1

01

00.20.40.60.811.2

1.41.61.82k1

f 1(k 1)

-2

02

00.10.20.3

0.40.50.6

0.70.8

0.91k2

f 2(k 2)

-5

05

00.51

1.52

2.5

3

3.54k

f (k )

分析实验结果:

根据实验结果分析可知,实验所得的数值跟f1(n )与f2(n )所卷积的结果相

同。直接调用已经编好的函数,得到卷积结果及图形。

5、题五:已知某LTI 离散系统,其单位响应h(k)=e(k)-e(k-4),求该系统在激励为f(k)=e(k)-e(k-3)时的零状态响应,并绘出其时域波形图。 提示:可用dconv()的函数来解决。

源程序: clc;

f1=[1,1,1,1]; f2=[1,1,1];

k1=0:length(f1)+k1(1)-1; k2=0:length(f2)+k2(1)-1; dconv(f1,f2,k1,k2);

实验结果:

24

00.10.20.30.40.50.6

0.70.80.91k1

f 1(k 1)

12

00.10.20.30.40.50.6

0.70.80.91k2

f 2(k 2)

5

0.5

1

1.5

2

2.53

k

f (k )

分析实验结果:

根据实验结果分析可知,实验所得的数值跟f1(n )与f2(n )所卷积的结果相同。直接调用已经编好的函数,得到卷积结果及图形。系统的零状态响应就是激励信号与该系统的单位响应的卷积。

(四)心得体会:通过Matlab 的仿真,形象地得出了离散序列相卷积的结果,而对卷积函数conv (x ,y )的使用可以编写函数,然后方便地调用函数得到一些特有的功能。

实验四-使用matlab实现卷积的运算

一 实验目的 1、 学习MATLAB 语言的编程方法及熟悉MATLAB 指令; 2、 深刻理解卷积运算,利用离散卷积实现连续卷积运算; 二 实验内容 1、 完成)(1t f 与)(2t f 两函数的卷积运算 其中:)4()()(), ()(221--==-t u t u t f t u e t f t 在一个图形窗口中,画出)(1t f 、)(2t f 以 及卷积结果。要求每个坐标系有标题、坐标轴名称。 p = ; %定义时间间隔 t= 0:p:10; %定义时间向量 f1=exp(-2*t).*u(t); %将f (t )表示出来 f2=u(t)-u(t-4); f=conv(f1,f2); subplot(1,2,1); plot(t,f1,t,f2); title('f1=e^-2t*u(t)'' / ''f2=u(t)-u(t-4)'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f(t)'); grid on ; subplot(1,2,2); plot(f); title('f=f1*f2'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f') grid on

2、 若系统模型为: )(3)()(4)(4)(' ' ' 't f t f t y t y t y +=++ 其中 )()(t u e t f t -= 求零状态响应,画出波形(函数本身画出一幅图,自己再画出一幅输入波形图)。 零状态响应: a= [1 4 4]; %将y (t )各阶导数的系数放在向量a 中 b= [1 3]; %将f (t )各阶导数的系数放在向量b 中 sys = tf(b, a); %求系统函数sys td = ; %定义时间间隔 t = 0 : td : 10; %定义时间向量 f = exp(-t).*u(t); %将f (t )表示出来 y = lsim(sys, f, t); %求系统的零状态响应y plot(t, y); %绘出零状态响应的波形 xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('y(t)'); % 这行代码是给出y 坐标的标签 grid on

卷积码的编解码Matlab仿真

卷积码的编解码Matlab仿真摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力D随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理o并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论z (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码:码率:约束长度:回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding.An d it has a strong ability to correct e盯ors. As correcting coding theory has a long development,the practice of convolution code is more and more extensive.In由1S由esis,the principle of convolution coding and decoding is introduced simply白rstly. Then由e whole simulation module process of encoding,decoding and the Error Rate Calculation is completed in由is design. Finally,in order to understand 由eir performances of error rate,many changes in parameters of convolution code are calculated in the simulation process.Af ter simulation and me皿UTe,an analysis of test results is presented.Th e following由ree conclusions are draw: (l)Wh en the rate of convolution Code ch皿ges,HER performance of the systemwill change. (2) For a certain rate of convolution code,when由ere is a change in the constraint length of N,BER perfonnance of由e system will change. (3) Re位ospec咀ve length will affect BE R. Key words: convolution code; rate; cons缸aint leng由; retrospective length;

实验1离散时间信号的产生与运算

数字信号处理 实验报告 班级: 学号: 姓名:word文档可自由复制编辑

实验1离散时间信号的产生与运算 一、实验目的 (1)了解离散时间信号的特点。 (2)掌握在计算机中生成及绘制各种常用离散时间信号序列的方法。 (3)掌握序列的加、减、乘、除和平移、反转、尺度变换等基本运算及计算机的 实现方法。 二、实验原理 信号是随时间变化的物理量,而计算机只能处理离散信号。离散信号是在某些不连续的时间上有信号值,而在其它时间点上没有定义的一类信号。离散信号一般可以由连续信号通过模数转换得到。 常用的离散信号有单位脉冲序列、单位阶跃序列、复指数序列、正弦信号序列、随机序列等。 离散信号的基本运算包括信号的加、减、乘、除。离散信号的时域变换包括信号的平移、反转、尺度变换等。 三、实验内容与方法 1、编写程序,生成如下数字信号:sqrt(2*k)u(k错误!未找到引用源。3), δ(k+5)。 (1) f(k)=sqrt(2*k)u(k错误!未找到引用源。3) 代码: k=(1:10); n=3; u=[(k-n)>=0]; a=sqrt(2*k); stem(k,a.*u); title('sqrt(2*k)u(k 3)的图像'); xlabel('时间(k)');ylabel('幅值f(k)'); 运行图: word文档可自由复制编辑

(2) f(k)= δ(k+5) 代码: k1=-10;k2=0;k=k1:k2; n=-5; %单位脉冲出现的位置 f=[(k-n)==0]; stem(k,f,'filled');title('δ(k+5)序列的图像') xlabel('时间(k)');ylabel('幅值f(k)'); 运行图: word文档可自由复制编辑

matlab实现卷积运算

2、试求下列图片的卷积波形12()()f t f t * 2() f t t 1 -1 1() f t t 1 -1 列出编程步骤: p=0.01; k1=0:p:1; f1=ones(1,length(k1)); k2=-1:p:1; f2= (k2+1).*(k2<0)+(-k2+1).*(k2>=0); [f,k]=sconv(f1,f2,k1,k2,p) function [f,k]=sconv(f1,f2,k1,k2,p) 3、试求下列图片的卷积波形12()()f t f t *

1() f t t 1 0.5- 2() f t t 12 1 p=0.01; k1=-0.5:p:1; f1=ones(1,length(k1)); k2=0:p:2; f2= 0.5*k2; [f,k]=sconv(f1,f2,k1,k2,p) 4、试求下列图片的卷积波形12()()f t f t *

1() f t t 2 2 - 2() f t t 3-2 -3 21 p=0.01; k1=-2:p:2; f1= (k1==-2)+(k1==2); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p); 5、试求下列图片的卷积波形12()()f t f t *

1() f t t 5 -5 33 -2() f t t 3 -2 -3 21 p=0.01; k1=-10:p:10; f1=(k1>=-5).*(k1<=-3)+(k1>=3).*(k1<=5); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p);

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

利用MATLAB实现循环卷积.doc

一、实验目的 1.利用MATLAB 实现循环卷积。 2.比较循环卷积与线性卷积的区别。 二、实验条件 PC 机,MATLAB7.0 三、实验内容 1)循环卷积的定义:两个序列的N 点循环卷积定义为: )0()()()]()([1 0N n m n x m h n x n h N k N N <≤-=?∑-= 利用MATLAB 实现两个序列的循环卷积可以分三个步骤完成: (1)初始化:确定循环点数N ,测量输入2个序列的长度。 (2)循环右移函数:将序列x(n)循环右移,一共移N 次(N 为循环卷积的循环次数),最后将每次循环成的新序列组成一个矩阵V 。 (3)相乘:将x(n)移位后组成的矩阵V 与第二个序列h(n)对应相乘,即得循环卷积结果。程序如下: 程序一: clear;close all ; N=10; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1); stem(xxn1,x1); subplot(3,1,2); stem(xxn2,x2); x11=fft(x1,N);

x12=fft(x2,N); y11=x11.*x12; y1=ifft(y11,N); subplot(3,1,3); n=0:length(y1)-1; stem(n,y1,'.'); title('循环卷积的结果'); xlabel('n');ylabel('y1(n)'); 运行后所得图形如下: 观察所得的循环卷积结果发现并没有呈现周期性的序列,因此将程序做下列改变。程序二: clear;close all; N=40; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; x2=[x2,x2,x2,x2]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1);

Matlab中卷积码译码器的误码率分析

长沙理工大学 《通信原理》课程设计报告 郭林 学院计算机与通信工程专业通信工程 班级540802 学号11 学生姓名郭林指导教师龙敏 课程成绩完成日期2008年1月11日

基于Matlab的卷积码译码器的 设计与仿真 学生姓名:郭林指导老师:** 摘要本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出, 并通过Matlab软件进行设计与仿真,并进行误码率分析。在课程设计中,系统开发平台为Windows Vista Ultimate,程序设计与仿真均采用Matlab R2007a(7.4),最后仿真详单与理论分析一致。 关键词课程设计;卷积码译码器;Matlab;Simulink;设计与仿真 1引言 本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出,并通 过Matlab软件进行设计与仿真。卷积码的译码有两种方法——软判决和硬判决,此课程设计采用硬判决的维特比译码。 1.1课程设计目的 卷积码是一种向前纠错控制编码。它将连续的信息比特序列映射为连续的编码器输出符号。这种映射是高度结构化的,使得卷积码的译码方法与分组码译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个特定的应用,采用分组编码还是采用卷积编码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术[1]。 本课程设计便是通过Matlab设计一个硬判决维特比译码输出的完整电路,并进行误码率分析。

1.2 课程设计的原理 卷积码,又称连环码,是由伊莱亚斯(P.elias)于1955年提出来的一种非分组码。 卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。 卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决,编者注);另一种是概率译码(软判决,编者注),概率译码又分为维特比译码和序列译码两种。门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差[2]。 当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。维特比译码算法是1967年由Viterbi提出,近年来有大的发展。目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。 2维特比译码原理 采用概率译码的基本思想是:把已接收序列与所有可能的发送序列做比较,选择其中码距最小的一个序列作为发送序列。如果发送L组信息比特,那么对于(n,k)卷积码来说,可能发送的序列有2kL个,计算机或译码器需存储这些序列并进行比较,以找到码距最小的那个序列。当传信率和信息组数L较大时,使得译码器难以实现。维特比算法则对上述概率译码做了简化,以至成为了一种实用化的概率算法。它并不是在网格图上一次比较所有可能的2kL条路径(序列),而是接收一段,计算和比较一段,选择一段最大似然可能的码段,从而达到整个码序列是一个最大似然值得序列。 下面以图2.1的(2,1,3)卷积码编码器所编出的码为例,来说明维特比解码的方法和运作过程。为了能说明解码过程,这里给出该码的状态图,如图2.2所

离散信号的产生及运算

离散信号的产生及运算

实验一离散信号的产生及运算 一.实验目的: 1.复习和巩固数字信号处理中离散信号的产生和运算 2.学习和掌握用MATLAB 产生离散信号的方法 3.学习和掌握用MATLAB 对离散信号进行运算 二.实验原理 1.用MATLAB 函数产生离散信号 信号是数字信号处理的最基本内容。没有信号,数字信号处理就没了工作对象。MATLAB7.0 内部提供了大量的函数,用来产生常用的信号波形。例如,三角函数(sin,cos), 指数函数(exp),锯齿波函数(sawtooth), 随机数函数(rand)等。 ⑴产生被噪声污染的正弦信号 用随机数函数产生污染的正弦信号。 ⑵产生单位脉冲序列和单位阶跃序列 按定义,单位脉冲序列为 0 0 0 1, ( ) 0,n n n n n n 单位阶跃序列为 。 0 0 0 1, ( ) 0,n n u n n n n ⑶矩形脉冲信号:在MATLAB 中用rectpuls 函数来表示,其调用形式为: y=rectpuls(t,width),用以产生一个幅值为1,宽度为width,相对于t=0 点左右对称的矩形波信号,该函数的横坐标范围由向量t 决定,是以t=0 为中心向左右各展开width/2 的范围,width 的默认值为1。 例:以t=2T(即t-2×T=0)为对称中心的矩形脉冲信号的MATLAB 源程序如下:(取T=1) t=0:0.001:4; T=1; ft=rectpuls(t-2*T,2*T); plot(t,ft);grid on; axis([0 4 –0.5 1.5]); ⑷周期性矩形波(方波)信号在MATLAB 中用square 函数来表示,其调用形式为:y=square(t,DUTY),用以产生一个周期为2π、幅值为±1 的周期性方波信号,其中的DUTY 参数表示占空比,即在信号的一个周期中正值所占的百分比。例如频率为30Hz 的周期性方波信号的MATLAB 参考程序如下: t=-0.0625:0.0001:0.0625; y=square(2*pi*30*t,75); plot(t,y);axis([-0.0625 0.0625 –1.5 1.5]);grid on ; 2.MATLAB 中信号的运算 乘法和加法:离散信号之间的乘法和加法,是指它的同序号的序列值逐项对应相乘和相加。

Matlab的卷积码译码器的仿真要点

基于Matlab的卷积码译码器的 设计与仿真 学生姓名:指导老师:** 摘要本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出, 并通过Matlab软件进行设计与仿真,并进行误码率分析。在课程设计中,系统开发平台为Windows Vista Ultimate,程序设计与仿真均采用Matlab R2007a(7.4),最后仿真详单与理论分析一致。 关键词课程设计;卷积码译码器;Matlab;Simulink;设计与仿真 1引言 本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出,并通 过Matlab软件进行设计与仿真。卷积码的译码有两种方法——软判决和硬判决,此课程设计采用硬判决的维特比译码。 1.1课程设计目的 卷积码是一种向前纠错控制编码。它将连续的信息比特序列映射为连续的编码器输出符号。这种映射是高度结构化的,使得卷积码的译码方法与分组码译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个特定的应用,采用分组编码还是采用卷积编码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术[1]。 本课程设计便是通过Matlab设计一个硬判决维特比译码输出的完整电路,并进行误码率分析。

1.2 课程设计的原理 卷积码,又称连环码,是由伊莱亚斯(P.elias)于1955年提出来的一种非分组码。 卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。 卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决,编者注);另一种是概率译码(软判决,编者注),概率译码又分为维特比译码和序列译码两种。门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差[2]。 当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。维特比译码算法是1967年由Viterbi提出,近年来有大的发展。目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。 2维特比译码原理 采用概率译码的基本思想是:把已接收序列与所有可能的发送序列做比较,选择其中码距最小的一个序列作为发送序列。如果发送L组信息比特,那么对于(n,k)卷积码来说,可能发送的序列有2kL个,计算机或译码器需存储这些序列并进行比较,以找到码距最小的那个序列。当传信率和信息组数L较大时,使得译码器难以实现。维特比算法则对上述概率译码做了简化,以至成为了一种实用化的概率算法。它并不是在网格图上一次比较所有可能的2kL条路径(序列),而是接收一段,计算和比较一段,选择一段最大似然可能的码段,从而达到整个码序列是一个最大似然值得序列。 下面以图2.1的(2,1,3)卷积码编码器所编出的码为例,来说明维特比解码的方法和运作过程。为了能说明解码过程,这里给出该码的状态图,如图2.2所

用matlab实现两个离散序列的卷积(不使用conv函数)

作业2.用matlab实现离散序列的卷积. N=14; n=[1:N-1]; f=1/16; signal1=5*sin(2*pi*n/8); figure(1); subplot(3,1,1) stem(n,signal1);title( ' 信号1' );xlabel( 'n' );ylabel( axis([0 15 -6 6]) long_M=5; signal2=ones(1,long_M); subplot(3,1,2) stem(signal2);title( ' 信号2' );xlabel( 'n' );ylabel( axis([0 6 -2 2]); grid on; long_N=length(signal1); fk=zeros(0,long_N+long_M+10); if (long_N>long_M) for k=1:1:long_N+long_M-1 a=0; if (k<=long_N) for i=1:1:k if (i>long_M) fk(k)=a; else fk(k)=a+signal2(i)*signal1(k-i+1); a=fk(k); end end else for i=1:1:k if (k-long_N+i>long_M) fk(k)=a; else fk(k)=a+signal2(k-long_N+i)*signal1(long_N-i+1); a=fk(k); end end end end end subplot(3,1,3) stem(fk);title( ' 卷积函数的实现' );xlabel( 'n' );ylabel( 'y(n)' ); 'y(n)' ); 幅度' );

基于MATLAB的卷积码的分析与应用

基于MATLAB的卷积码的分析与应用

毕业设计(论文)任务书

基于MATLAB的卷积码的分析与应用 摘要 随着现代通信的发展,特别是在未来4G通信网络中,高速信息传输和高可靠性传输成为信息传输的两个主要方面,而可靠性尤其重要。因为信道状况的恶劣,信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。前者常常受条件限制,不是所有情况都能采用。因此差错控制编码得到了广泛应用。 介绍了多种信道编码方式,着重介绍了卷积码的编码方法和解码方式。介绍了MATLAB的使用方法、编程方法、语句、变量、函数、矩阵等。介绍了TD-SCDMA通信系统和该系统下的卷积码,搭建了系统通信模型。编写卷积码的编码和解码程序。用MATLAB仿真软件对TD-SCDMA系统的卷积码编解码进行仿真。对其纠正错码性能进行验证,并且对误码率进行仿真和分析。卷积码的编码解码方式有很多,重点仿真Viterbi算法。Viterbi算法就是利用卷积码编码器的格图来计算路径度量,选择从起始时刻到终止时刻的惟一幸存路径作为最大似然路径。沿着最大似然路径回溯到开始时刻,所走过的路径对应的编码输出就是最大似然译码输出序列。它是一种最大似然译码方法,当编码约束长度不大、或者误码率要求不是很高的情况下,Viterbi译码器设备比较简单,计算速度快,因而Viterbi译码器被广泛应用于各种领域。 关键词:卷积码;信道编码;TD-SCDMA;MATLAB

目录 毕业设计(论文)任务书 ............................................................................................I 摘要........................................................................................................................... II Abstract......................................................................................... 错误!未定义书签。第1章绪论 . (1) 1.1课题研究的背景和来源 (1) 1.2主要内容 (2) 第2章相关理论介绍 (3) 2.1信道编码 (3) 2.1.1 信道编码的分类 (3) 2.1.2 编码效率 (3) 2.2线性分组码 (3) 2.3循环码 (5) 2.4卷积码 (6) 2.4.1 卷积码简介 (7) 2.4.2 卷积码的编码 (7) 2.4.3 卷积码的解码 (13) 第3章MATLAB应用 (21) 3.1数和算术的表示方法 (21) 3.2向量与矩阵运算 (21) 3.2.1 通过语句和函数产生 (21) 3.2.2 矩阵操作 (22) 3.3矩阵的基本运算 (22) 3.3.1 矩阵乘法 (22) 3.3.2 矩阵除法 (23) 3.4MATLAB编程 (23) 3.4.1 关系运算 (23) 3.4.2 控制流 (25) 第4章卷积码的设计与仿真 (27) 4.1TD-SCDMA系统 (27) 4.1.1 系统简介 (27) 4.1.2 仿真通信系统模型 (27)

实验一--常见离散信号的MATLAB产生和图形显示

实验一 常见离散信号的MATLAB 产生和图形显示 授课课时:2学时 一、实验目的: (1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。 (2)掌握MATLAB 在时域内产生常用离散时间信号的方法。 (3)掌握离散信号的基本运算。 (4)掌握简单的绘图命令。 二、实验原理: (一)信号的表示和产生 ① 单位抽样序列 ? ??=01)(n δ 00 ≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-0 1)(k n δ ≠=n k n 参考程序: 例1-1:)2010(()(<<-=n n n x )δ clear all n1=-10;n2=20;n0=0;%在起点为n1,终点为n2的范围内,于n0处产生冲激。 n=n1:n2;%生成离散信号的时间序列 x=[n==n0];%生成离散信号x(n) stem(n,x);%绘制脉冲杆图

xlabel(' n');ylabel('x(n)');%横坐标和纵坐标的标注说明。 title('Unit Sample Sequence');%图形上方标注图名 axis([-10 20 0 1.2]);%确定横坐标和纵坐标的取值范围 ② 单位阶跃序列 ???=0 1 )(n u 00<≥n n 例1-2:)202((u )(<<-=n n n x ) clear all n1=-2;n2=20;n0=0; n=n1:n2;%生成离散信号的时间序列 x=[n>=n0];%生成离散信号x(n) stem(n,x,'filled'); xlabel('n');ylabel('x(n)'); title('Unit step Sequence'); axis([-2 20 0 1.2]); ③ 正弦序列 )sin()(?+=wn A n x 例1-3:一正弦信号的频率为1HZ ,振幅值幅度A 为1V ,在窗口显示2个周期的信号波形,并对该信号的一个周期进行32点采样获得离散信号并显示该连续信号和离散信号的波形。 参考程序: clear f=1; A=1;nt=2;

基于Matlab实现线性卷积等

线性卷积与循环卷积 一、作品目的 通过matlab的强大功能展示线性卷积和循环卷积过程中方方面面的计算和变化,让大家对这两种卷积有一个更加完美的认识。 二、概念简介 卷积是一种典型的乘累加运算。 1.线性卷积 线性卷积是对线性移不变(LSI)系统的输入输出关系的描述,体现系统的特性。 线性卷积的表达式为 一般情况,现实的系统为因果系统,有k<0时,恒有h(k)=0,则 若x(n)是一个N点序列,h(n)是一个m点序列,则卷积的结果y(n)将是L=N+M-1点的序列。 2.循环卷积

设x1(n) 和x2(n) 是两个长度为L、M的有限长序列,它们的N 点循环卷积x3(n) 定义为: 注意:其中N>=Max{L,M}如果其中一个序列(或者两个序列)的长度没有所求N点循环卷积的长度长,那在该序列后面补零,直到长度达到N。 三、设计思路及程序 1. 线性卷积: (1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。 (2)计算输入序列和脉冲响应的长度。 (3)画出补零后的输入序列和脉冲响应 (4)设计一个循环,在循环中实现反转、位移和计算。并画出反转后的图像变化和卷积图像,将每一次移位结果保存为fig图。(5)最后将上一步所生成的所有fig图合起来生成一张gif图 程序展示: clear; clc; close all; (1)(2)

xn=[5,4,3,2,1]; M=length(xn);%输入任意序列并计算长度M hn=[1,1,1,1]; N=length(hn);%输入任意脉冲响应并计算长度N m=[-(M-1):M+N-2];%设置代换变量的范围以便x(m)翻转和移位(3) xm=[zeros(1,M-1),xn,zeros(1,N-1)];%补零以便与m对应绘图 subplot(2,2,1);stem(m,xm,'r.');%%绘输入序列x(m) ylabel('x(m)'); grid on; title('(a)输入序列x(m)'); hm=[zeros(1,M-1),hn,zeros(1,M-1)];%补零以便与m对应绘图 subplot(2,2,2);stem(m,hm,'r.');%绘脉冲响应 ylabel('h(m)'),grid,title('(b)脉冲响应h(m)');%%加标签网格和标题 yn=zeros(1,2*M+N-2);%卷积输出初始化 (4) for n=0:M+N-2;%逐个计算卷积输出 if n==0; xmfy=[fliplr(xn),zeros(1,M+N-2)];%实现翻转 else for k=M:-1:1;

基于MATLAB对卷积码的性能分析

基于MATLAB对卷积码的性能分析 【摘要】本文对比了在加性高斯白噪声(AWGN)信道下经BPSK调制后的数据不编码与添加卷积编码后接收到的信道输出的误码性能,并通过对比对卷积码性能进行分析。采用MATLAB自编函数对[2,1,8]卷积码以及维特比译码进行仿真,且对其性能进行分析。由于卷积码有性能floor,编码增益随信噪比降低而体现不明显。仿真结果表明:当信噪比等于-1dB时,一个序列通过加性高斯白噪声信道后接收到的信道输出误比特率大于10-1,且该序列运用[2,1,8]卷积码编码,维特比译码(硬判决)后所得的序列误比特率升高。当信噪比为2dB时,一个序列通过加性高斯白噪声信道后接收到的信道输出误比特率约为4*10-2,且该序列运用[2,1,8]卷积码编码,维特比译码后所得的序列误比特率小于10-3,误码率远低于不编码时的误码率。因此卷积码适用于信道输出误码率比较低时候。 【关键词】维特比译码;卷积码;误比特率;马尔科夫性 1.引言 卷积码的编码器是由一个有k位输入、n位输出,且具有m位移位寄存器构成的有限状态的有记忆系统,通常称它为时序网络。[1]编码器的整体约束长度为v,是所有k个移位寄存器的长度之和。具有这样的编码器的卷积码称作[n,k,v]卷积码。对于一个(n,1,v)编码器,约束长度v等于存储级数m。卷积码是由k个信息比特编码成n(n>k)比特的码组,编码出的n比特码组值不仅与当前码字中的k个信息比特值有关,而且与其前面v个码组中的v*k个信息比特值有关。 卷积码有三种译码方式:序列译码、门限译码和概率译码。其中,概率译码根据最大似然译码原理在所有可能路径中求取与接收路径最相似的一条路径,具有最佳的纠错性能,[2]维特比译码是概率译码中极重要的一种方式。 序列译码和门限译码则不一定能找出与接收路径最相似的一条路径。不同于维特比译码,门限译码与序列译码所需的计算量是可变的且对于给定信息分组的最终判决仅仅基于(m+1)个接收分组,而不是基于整个接收序列。[3]与维特比译码所使用的对数似然量度不同,序列译码所使用的量度为Fano量度。在接收序列受扰严重的情况下,序列译码的计算量大于维特比译码所需的固定计算量,虽然序列译码要求的平均计算次数通常小于维特比译码。在采用并行处理的情况下,维特比译码的速度会优于序列译码。在同样码率和存储级数的条件下,门限译码的性能比维特比译码低大约3dB。 维特比译码的数据输出方式有硬判决及软判决两种方式,本文选取生成多项式为561,753的(2,1,8)卷积码对硬判决的性能进行分析,并依据维特比译码的原理以及卷积码的特性,对卷积码编码和维特比译码过程在加性高斯白噪声(AWGN)信道下进行仿真,并且根据仿真结果对维特比译码(硬判决)的结果

离散时间信号表与运算

离散时间信号表与运算

————————————————————————————————作者:————————————————————————————————日期:

实验一 离散时间信号的表示与运算 一 实验目的 1、熟悉MATLAB 的绘图函数; 2、掌握单位取样序列、单位阶跃序列、矩形序列和正余弦序列的产生方法; 3、掌握离散时间信号基本运算的MATLAB 实现; 4、掌握离散时间信号线性卷积和运算的MATLAB 实现。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 1)序列相加和相乘 设有序列)(1n x 和)(2n x ,它们相加和相乘如下: ) ()()()()()(2121n x n x n x n x n x n x ?=+= 注意,序列相加(相乘)是对应序列值之间的相加(相乘),因此参加运算的两个序列必须具有相同的长度,并且保证位置相对应。如果不相同,在运算前应采用zeros 函数将序列左右补零使其长度相等并且位置相对应。在MATLAB 中,设序列用x1和x2表示,序列相加的语句为:x=x1+x2;然而要注意,序列相乘不能直接用x=x1*x2,该式表示两个矩阵的相乘,而不是对应项的相乘。对应项之间相乘的实现形式是点乘“.*”,实现语句为:x=x1.*x2。 2)序列翻转 设有序列:)()(n x n y -=,在翻转运算中,序列的每个值以n=0为中心进行翻转,需要注意的是翻转过程中序列的样值向量翻转的同时,位置向量翻转并取反。MATLAB 中,翻转运算用fliplr 函数实现。设序列)(n x 用样值向量x 和位置向量nx 表述,翻转后的序列 )(n y 用样值向量y 和位置向量ny 描述。 3)序列的移位 移位序列)(n x 的移位序列可表示为:)()(0n n x n y -=,其中,00>n 时代表序列右移 0n 个单位;00

卷积码matlab程序

卷积编码程序: function [output, len_tal] = cnv_encd(secrettext, encodetext) g = [0 0 1 0 0 1 0 0; 0 0 0 0 0 0 0 1; 1 0 0 0 0 0 0 1; 0 1 0 0 1 1 0 1]; k0 = 1; % 读入文本文件并计算文件长度 frr = fopen(secrettext, 'r'); [msg, len] = fread(frr, 'ubit1'); msg = msg'; % check to see if extra zero padding is necessary if rem(length(msg), k0) > 0 msg = [msg, zeros(size(1:k0-rem(length(msg),k0)))]; end n = length(msg)/k0; % 把输入比特按k0分组,n为所得的组数。 % check the size of matrix g if rem(size(g, 2), k0) > 0 error('Error, g is not of the right size.'); end % determine L and n0 L = size(g, 2)/k0; n0 = size(g, 1); % add extra zeros,以保证编码器是从全0开始,并回到全0状态。 u = [zeros(size(1:(L-1)*k0)), msg, zeros(size(1:(L-1)*k0))]; % generate uu, a matrix whose columns are the contents of conv. encoder at % various clock cycles. u1 = u(L*k0: -1 :1); for i = 1:n+L-2 u1 = [u1, u((i+L)*k0:-1:i*k0+1)]; end uu = reshape(u1, L*k0, n+L-1); % determine the output output = reshape(rem(g*uu, 2), 1, n0*(L+n-1)); len_tal = n0*(L + n - 1);

实验1 常见离散信号产生和基本运算

实验项目一 常见离散信号产生和基本运算 1.实验目的 (1)掌握MATLAB 最基本的矩阵运算语句; (2)掌握对常用离散信号的理解与运算实现。 2.实验内容 (1)熟悉MATLAB 的使用环境和方法; (2)练习使用基本的向量生成、矩阵运算、绘图等语句; 利用冒号(:)生成向量: X1=[1 2 3 4 5] X2=[1.000 1.500 2.000 2.500] X3=[5 4 3 2 1] 分别生成3*3,3*4的全0矩阵,全1矩阵和随机矩阵; 分别输入矩阵: 123 456789A = 1.0 1.1 1.22.0 2.1 2.23.0 3.1 3.2 B = 分别计算A+B ,A-B ,A+3,A-4,A*B ,A.*B ,C=inv (A ),A/B,A./B ; 分别计算sin(x1),cos(x1),exp(x1),log(x2),sqrt(x2)。 (3)生成以上五种基本离散信号函数; (4)绘出信号zn e n x =)(,当6)12/1(π j z +-=、6)12/1(π j z +=时、 121=z 、62π j z +=、6π j z =时的信号实部和虚部图; (5)绘出信号)1.0*2sin(5.1)(n n x π=的频率是多少?周期是多少?产生一个数字频率为0.9的正弦序列,并显示该信号,说明其周期并绘图。 3.实验技能要求 掌握并能灵活运用MATLAB 语句对离散时间信号进行基本建立和运算。 4.实验操作要求 在实验操作过程中要注意对基本实验仪器的保护。

5.实验场所 魂芯DSP应用实验室 6.实验课后训练 实验课后训练以实验报告为表现形式,在实验报告中要对实验过程中出现的问题进行分析和思考,对所测得的数据进行数据处理,并根据结果进行总结。

信号与系统卷积介绍

卷积积分与卷积 一、摘要: 近十年来,由于电子技术和集成电路工艺的飞速发展,电子计算机已为信号的处理提供了条件。信号与系统分析理论应用一直在扩大,它不仅应用于通信、雷达、自动控制、光学、生物电子学、地震勘探等多种领域,而且对社会和自然学科也具有重要的指导意义。 卷积运算是线性时不变系统的一个重要工具,随着信号与系统理论研究的深入,卷积运算得到了更广泛的应用。卷积运算有很多种解法,对于一般无限区间而言,可用定义法直接求解。而本文通过图解法、卷积性质法、简易算法对有限区间卷积积分和卷积和分别进行求解,最后进行了相关的比较。 二、关键词: 信号与系统;卷积;图解法;卷积性质法;简易算法 三、正文: 卷积在信号与系统理论分析中,应用于零状态响应的求解。对连续时间信号 的卷积称为卷积积分,定义式为: ∞ f t=f1τf2t?τdτ ?f1(t)?f2(t) ?∞ 对离散时间信号的卷积称为卷积和,定义式为: ∞ f n=f1m f2n?m ?f1(n)?f2(n) m=?∞ 1、卷积积分的解法 (1)图解法 图解法适合于参与卷积运算的两函数仅以波形形式给出,或者已知函数的波形易于画出的情况。利用图解法能够直接观察到许多抽象关系的具体情况,而且容易确定卷积积分的上、下限,是一种极有效的方法。

如果给定f 1 t 和f 2(t ),要求这两个函数的卷积积分f t =f 1(t )?f 2(t ),首先要改变自变量,即将f 1 t 和f 2(t )变成f 1 τ 和f 2(τ),这时函数图形与原来一样,只是横坐标变为了t ,然后再经过以下四个步骤: (1)反褶,即将f 2(τ)进行反褶,变为f 2(?τ); (2)时移,即将f 2(?τ)时移t ,变为f 2 t ?τ =f 2[?(τ?t )],当t >0时,将f 2(?τ)右移t ,而当t <0时,将f 2(?τ)左移t ; (3)相乘,即将f 1 t 与f 2 t ?τ 相乘得到f 1 t f 2 t ?τ ; (4)积分,即将乘积f 1 t f 2 t ?τ 进行积分,积分的关键是确定积分限。一般是将f 1 t f 2 t ?τ 不等于零的区间作为上下限,而当取不同的值时,不为零的区间有所变化,因此要分成不同的区间来求卷积。 例1、已知f 1 t 和f 2(t )的波形如图1-1所示,求f t =f 1(t )?f 2(t )。 图1-1 解:(1)变量代换,将变量f 1 t 和f 2(t )变成f 1 τ 和f 2(τ),此时波形不变; (2)将f 2(τ)进行反褶,变为f 2(?τ),图1-2; (3)时移,即将f 2(?τ)时移t ,图1-3; (4)相乘,即将f 1 t 与f 2 t ?τ 相乘得到f 1 t f 2 t ?τ ,图1-4~8; 图 1-3 图1-2 [τ] [τ]

相关文档
相关文档 最新文档