文档库 最新最全的文档下载
当前位置:文档库 › gcc编译详解

gcc编译详解

gcc编译详解
gcc编译详解

Gcc编译流程解析

如本章开头提到的,Gcc的编译流程分为了4个步骤,分别为:

? 预处理(Pre-Processing);

? 编译(Compiling);

? 汇编(Assembling);

? 链接(Linking)。

下面就具体来查看一下Gcc是如何完成4 个步骤的。

首先,有以下hello.c源代码:

#include

int main()

{

printf("Hello! This is our embedded world!\n");

return 0;

}

(1)预处理阶段

在该阶段,编译器将上述代码中的stdio.h编译进来,并且用户可以使用Gcc的选项“-E”进行查看,该选项的作用是让Gcc在预处理结束后停止编译过程。

注意

Gcc指令的一般格式为:Gcc [选项] 要编译的文件[选项] [目标文件]

其中,目标文件可缺省,Gcc默认生成可执行的文件,命为:编译文件.out

《嵌入式Linux应用程序开发详解》——第3章、Linux下的C编程基础

[root@localhost Gcc]# Gcc –E hello.c –o hello.i

在此处,选项“-o”是指目标文件,由表3.6 可知,“.i”文件为已经过预处理的C 原始程序。以下列出了hello.i文件的部分内容:

typedef int (*__gconv_trans_fct) (struct __gconv_step *,

struct __gconv_step_data *, void *,

__const unsigned char *,

__const unsigned char **,

__const unsigned char *, unsigned char **,

size_t *);

# 2 "hello.c" 2

int main()

{

printf("Hello! This is our embedded world!\n");

return 0;

}

由此可见,Gcc确实进行了预处理,它把“stdio.h”的内容插入到hello.i文件中。

(2)编译阶段

接下来进行的是编译阶段,在这个阶段中,Gcc 首先要检查代码的规范性、是否有语法错误等,以确定代码的实际要做的工作,在检查无误后,Gcc 把代码翻译成汇编语言。用户

可以使用“-S”选项来进行查看,该选项只进行编译而不进行汇编,生成汇编代码。

[root@localhost Gcc]# Gcc –S hello.i –o hello.s

以下列出了hello.s的内容,可见Gcc已经将其转化为汇编了,感兴趣的读者可以分析一

下这一行简单的C语言小程序是如何用汇编代码实现的。

.file "hello.c"

.section .rodata

.align 4

.LC0:

.string "Hello! This is our embedded world!"

.text

.globl main

.type main, @function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

addl $15, %eax

addl $15, %eax

shrl $4, %eax

sall $4, %eax

subl %eax, %esp

subl $12, %esp

pushl $.LC0

call puts

addl $16, %esp

movl $0, %eax

leave

ret

.size main, .-main

.ident "GCC: (GNU) 4.0.0 20050519 (Red Hat 4.0.0-8)"

.section .note.GNU-stack,"",@progbits

(3)汇编阶段

汇编阶段是把编译阶段生成的“.s”文件转成目标文件,读者在此可使用选项“-c”就可看到汇编代码已转化为“.o”的二进制目标代码了。如下所示:

[root@localhost Gcc]# Gcc –c hello.s –o hello.o

(4)链接阶段

在成功编译之后,就进入了链接阶段。在这里涉及到一个重要的概念:函数库。

读者可以重新查看这个小程序,在这个程序中并没有定义“printf”的函数实现,且在预

编译中包含进的“stdio.h”中也只有该函数的声明,而没有定义函数的实现,那么,是在哪里实现“printf”函数的呢?最后的答案是:系统把这些函数实现都被做到名为libc.so.6的库文件中去了,在没有特别指定时,Gcc 会到系统默认的搜索路径“/usr/lib”下进行查找,也

就是链接到libc.so.6库函数中去,这样就能实现函数“printf”了,而这也就是链接的作用。函数库一般分为静态库和动态库两种。静态库是指编译链接时,把库文件的代码全部加

入到可执行文件中,因此生成的文件比较大,但在运行时也就不再需要库文件了。其后缀名一般为“.a”。动态库与之相反,在编译链接时并没有把库文件的代码加入到可执行文件中,而是在程序执行时由运行时链接文件加载库,这样可以节省系统的开销。动态库一般后缀名为“.so”,如前面所述的libc.so.6就是动态库。Gcc在编译时默认使用动态库。

完成了链接之后,Gcc就可以生成可执行文件,如下所示。

[root@localhost Gcc]# Gcc hello.o –o hello

运行该可执行文件,出现正确的结果如下。

《嵌入式Linux应用程序开发详解》——第3章、Linux下的C编程基础

[root@localhost Gcc]# ./hello

Hello! This is our embedded world!

3.4.2 Gcc编译选项分析

Gcc 有超过100 个的可用选项,主要包括总体选项、告警和出错选项、优化选项和体系

结构相关选项。以下对每一类中最常用的选项进行讲解。

(1)总体选项

Gcc的总结选项如表3.7 所示,很多在前面的示例中已经有所涉及。

表3.7 Gcc总体选项列表

后缀名所对应的语言

-c 只是编译不链接,生成目标文件“.o”

-S 只是编译不汇编,生成汇编代码

-E 只进行预编译,不做其他处理

-g 在可执行程序中包含标准调试信息

-o file 把输出文件输出到___________file里

-v 打印出编译器内部编译各过程的命令行信息和编译器的版本

-I dir 在头文件的搜索路径列表中添加dir目录

-L dir 在库文件的搜索路径列表中添加dir目录

-static 链接静态库

-llibrary 连接名为library的库文件

对于“-c”、“-E”、“-o”、“-S”选项在前一小节中已经讲解了其使用方法,在此主要讲解

另外两个非常常用的库依赖选项“-I dir”和“-L dir”。

“-I dir”

正如上表中所述,“-I dir”选项可以在头文件的搜索路径列表中添加dir 目录。由于Linux 中头文件都默认放到了“/usr/include/”目录下,因此,当用户希望添加放置在其他位置的头文件时,就可以通过“-I dir”选项来指定,这样,Gcc就会到相应的位置查找对应的目录。比如在“/root/workplace/Gcc”下有两个文件:

/*hello1.c*/

#include

int main()

{

printf("Hello!!\n");

return 0;

}

/*my.h*/

#include

这样,就可在Gcc命令行中加入“-I”选项:

[root@localhost Gcc] Gcc hello1.c –I /root/workplace/Gcc/ -o hello1

这样,Gcc就能够执行出正确结果。

小知识

在include语句中,“<>”表示在标准路径中搜索头文件,““””表示在本目录中搜索。故在上

例中,可把hello1.c的“#include”改为“#include “my.h””,就不需要加上“-I”选项了。

“-L dir”

选项“-L dir”的功能与“-I dir”类似,能够在库文件的搜索路径列表中添加dir 目录。

例如有程序hello_sq.c需要用到目录“/root/workplace/Gcc/lib”下的一个动态库libsunq.so,则只需键入如下命令即可:

[root@localhost Gcc] Gcc hello_sq.c –L /root/workplace/Gcc/lib –lsunq –o hello_sq

需要注意的是,“-I dir”和“-L dir”都只是指定了路径,而没有指定文件,因此不能在

路径中包含文件名。

另外值得详细解释一下的是“-l”选项,它指示Gcc去连接库文件libsunq.so。由于在Linux 下的库文件命名时有一个规定:必须以l、i、b 3 个字母开头。因此在用-l选项指定链接的库文件名时可以省去l、i、b 3个字母。也就是说Gcc在对“-lsunq”进行处理时,会自动去链接名为libsunq.so的文件。

(2)告警和___________出错选项

Gcc的告警和出错选项如表3.8 所示。

表3.8 Gcc总体选项列表

选项含义

-ansi 支持符合ANSI标准的C程序

-pedantic 允许发出ANSI C标准所列的全部警告信息

续表

选项含义

-pedantic-error 允许发出ANSI C标准所列的全部错误信息

-w 关闭所有告警

-Wall 允许发出Gcc提供的所有有用的报警信息

-werror 把所有的告警信息转化为错误信息,并在告警发生时终止编译过程

下面结合实例对这几个告警和出错选项进行简单的讲解。

如有以下程序段:

#include

void main()

《嵌入式Linux应用程序开发详解》——第3章、Linux下的C编程基础

{

long long tmp = 1;

printf("This is a bad code!\n");

return 0;

}

这是一个很糟糕的程序,读者可以考虑一下有哪些问题?

? “-ansi”

该选项强制Gcc生成标准语法所要求的告警信息,尽管这还并不能保证所有没有警告的

程序都是符合ANSI C标准的。运行结果如下所示:

[root@localhost Gcc]# Gcc –ansi warning.c –o warning

warning.c: 在函数“main”中:

warning.c:7 警告:在无返回值的函数中,“return”带返回值

warning.c:4 警告:“main”的返回类型不是“int”

可以看出,该选项并没有发现“long long”这个无效数据类型的错误。

? “-pedantic”

允许发出ANSI C标准所列的全部警告信息,同样也保证所有没有警告的程序都是符合ANSI C标准的。其运行结果如下所示:

[root@localhost Gcc]# Gcc –pedantic warning.c –o warning

warning.c: 在函数“main”中:

warning.c:5 警告:ISO C90不支持“long long”

warning.c:7 警告:在无返回值的函数中,“return”带返回值

warning.c:4 警告:“main”的返回类型不是“int”

可以看出,使用该选项查看出了“long long”这个无效数据类型的错误。

? “-Wall”

允许发出Gcc能够提供的所有有用的报警信息。该选项的运行结果如下所示:

[root@localhost Gcc]# Gcc –Wall warning.c –o warning

warning.c:4 警告:“main”的返回类型不是“int”

warning.c: 在函数“main”中:

warning.c:7 警告:在无返回值的函数中,“return”带返回值

warning.c:5 警告:未使用的变量“tmp”

使用“-Wall”选项找出了未使用的变量tmp,但它并没有找出无效数据类型的错误。

另外,Gcc 还可以利用选项对单独的常见错误分别指定警告,有关具体选项的含义感兴

趣的读者可以查看Gcc手册进行学习。

(3)优化选项

Gcc可以对代码进行优化,它通过编译选项“-On”来控制优化代码的生成,其中n是一

个代表优化级别的整数。对于不同版本的Gcc 来讲,n 的取值范围及其对应的优化效果可能

并不完全相同,比较典型的范围是从0变化到2或3。

不同的优化级别对应不同的优化处理工作。如使用优化选项“-O”主要进行线程跳转(Thread Jump)和延迟退栈(Deferred Stack Pops)两种优化。使用优化选项“-O2”除了完成

所有“-O1”级别的优化之外,同时还要进行一些额外的调整工作,如处理器指令调度等。选项“-O3”则还包括循环展开和其他一些与处理器特性相关的优化工作。

虽然优化选项可以加速代码的运行速度,但对于调试而言将是一个很大的挑战。因为代

码在经过优化之后,原先在源程序中声明和使用的变量很可能不再使用,控制流也可能会突

然跳转到意外的地方,循环语句也有可能因为循环展开而变得到处都有,所有这些对调试来讲都将是一场噩梦。所以笔者建议在调试的时候最好不使用任何优化选项,只有当程序在最终发行的时候才考虑对其进行优化。

(4)体系结构相关选项

Gcc的体系结构相关选项如表3.9 所示。

表3.9 Gcc体系结构相关选项列表

选项含义

-mcpu=type 针对不同的CPU使用相应的CPU指令。可选择的type有i386、i486、pentium及i686等

-mieee-fp 使用IEEE标准进行浮点数的比较

-mno-ieee-fp 不使用IEEE标准进行浮点数的比较

-msoft-float 输出包含浮点库调用的目标代码

-mshort 把int类型作为16位处理,相当于short int

-mrtd 强行将函数参数个数固定的函数用ret NUM返回,节省调用函数的一条指令

这些体系结构相关选项在嵌入式的设计中会有较多的应用,读者需根据不同体系结构将

对应的选项进行组合处理。在本书后面涉及到具体实例会有针对性的讲解。

gcc编译器使用简明指南

gcc编译器使用简明指南 gcc对文件的处理需要经过预处理->编译->汇编->链接的步骤,从而产生一个可执行文件,各部分对应不同的文件类型,具体如下: file.c c程序源文件 file.i c程序预处理后文件 file.cxx c++程序源文件,也可以是https://www.wendangku.net/doc/6f11365070.html, / file.cpp / file.c++ file.ii c++程序预处理后文件 file.h c/c++头文件 file.s 汇编程序文件 file.o 目标代码文件 gcc [选项]文件列表 -ansi 强制完全ANSI一致 -c 仅编译或汇编,生成目标代码文件,将.c、.i、.s等文件生成.o文件,其余文件被忽略 -S 仅编译,不进行汇编和链接,将.c、.i等文件生成.s文件,其余文件被忽略 -E 仅预处理,并发送预处理后的.i文件到标准输出,其余文件被忽略 -o file 创建可执行文件并保存在file中,而不是默认文件a.out -g 产生用于调试和排错的扩展符号表,用于GDB调试,切记-g和-O通常不能一起使用 -w 取消所有警告 -W 给出更详细的警告 -O [num]优化,可以指定0-3作为优化级别,级别0表示没有优化 -x language 默认为-x none,即依靠后缀名确定文件类型,加上-x lan确定后面所有文件类型,直到下一个-x出现为止 -D macro[=]类似于源程序里的#define,在-D macro中的macro可被源程序识别,例如gcc -D NUM -D FILE=\"bbs.txt\" hello.c -o hello,第一个-D选项定义宏NUM,在程序中可以使用#ifdef来检查是否被设置,第二个-D定义宏FILE,在源程序中可用 -U macro 类似于源程序开头定义#undef macro,也就是取消源程序中的某个宏定义

常见gcc 编译错误整理

常见gcc 编译错误整理(开始)1 1 error: expected expression before 'else' else之前无表达式。 2 error: lvalue required as left operand of assignment 左值问题。 3 error: invalid storage class for function 'XXXXXX' 在文件的某个地方,丢失了一个大括号‘}’。 常见gcc编译警告整理(开始) 1、warning: no newline at end of file 在文件最后一行加上回车键 解释:在《Rationale for the C99 standard》一文中,有C99的相关信息: A backslash immediately before a newline has long been used to continue string literals, as well as preprocessing command lines. In the interest of easing machine generation of C, and of transporting code to machines with restrictive physical line lengths, the C89 Committee generalized this mechanism to permit any token to be continued by interposing a backslash/newline sequence. c/c++代码的每一行后面有一个“结束符”,也就是newline。避免当被include的文件展开后,前一个文件的最后一行与后一个文件的第一行直接被连接成一行从而造成错误。 2、warning: comparison between pointer and integer 解释:integer与pointer比较

GCC常见错误解析

GCC常见错误解析 一、错误类型 第一类∶C语法错误 错误信息∶文件source.c中第n行有语法错误(syntex errror)。 这种类型的错误,一般都是C语言的语法错误,应该仔细检查源代码文件中第n行及该行之前的程序,有时也需要对该文件所包含的头文件进行检查。 有些情况下,一个很简单的语法错误,gcc会给出一大堆错误,此时要保持清醒的头脑,不要被其吓倒,必要的时候再参考一下C语言的基本教材。 第二类∶头文件错误 错误信息∶找不到头文件head.h(Can not find include file head.h)。 这类错误是源代码文件中的包含头文件有问题,可能的原因有头文件名错误、指定的头文件所在目录名错误等,也可能是错误地使用了双引号和尖括号。 第三类∶档案库错误 错误信息∶连接程序找不到所需的函数库,例如∶ld: -lm: No such file or directory. 这类错误是与目标文件相连接的函数库有错误,可能的原因是函数库名错误、指定的函数库所在目录名称错误等,检查的方法是使用find命令在可能的目录中寻找相应的函数库名,确定档案库及目录的名称并修改程序中及编译选项中的名称。第四类∶未定义符号 错误信息∶有未定义的符号(Undefined symbol)。 这类错误是在连接过程中出现的,可能有两种原因∶一是使用者自己定义的函数或者全局变量所在源代码文件,没有被编译、连接,或者干脆还没有定义,这需要使用者根据实际情况修改源程序,给出全局变量或者函数的定义体;二是未定义的符号是一个标准的库函数,在源程序中使用了该库函数,而连接过程中还没有给定相应的函数库的名称,或者是该档案库的目录名称有问题,这时需要使用档案库维护命令ar检查我们需要的库函数到底位于哪一个函数库中,确定之后,修改gcc 连接选项中的-l和-L项。 排除编译、连接过程中的错误,应该说这只是程序设计中最简单、最基本的一个步骤,可以说只是开了个头。这个过程中的错误,只是我们在使用C语言描述一个算法中所产生的错误,是比较容易排除的。我们写一个程序,到编译、连接通过为止,应该说刚刚开始,程序在运行过程中所出现的问题,是算法设计有问题,说得更玄点是对问题的认识和理解不够,还需要更加深入地测试、调试和修改。一个程序,稍为复杂的程序,往往要经过多次的编译、连接和测试、修改。 二、常见错误信息解析与处理 1

1、GCC编译器的使用

linux下gcc编译器的使用 1、文件后缀名 .c C 源程序 .C C++ 源程序 .cc C++ 源程序 .cxx C++ 源程序 .m Objective –C源程序 .i 预处理过的c源程序 .ii 预处理过的C++源程序 .s 组合语言源程序 .S 组合语言源程序 .h 头文件 .o 目标文件 .a 存档文件 2、GCC常用选项 -c 通知GCC取消链接步骤,即编译源码并在最后生成目标文件; -Dmacro定义指定的宏,使它能够通过源码中的#ifdef进行检验 #define -static 指定程序编译时采用静态编译的方法; -E 不经过编译预处理程序的输出而输送至标准输出; -g获得有关调试程序的详细信息,它不能与-o选项联合使用; -Idirectory在包含文件搜索路径的起点处添加指定目录; -llibrary提示链接程序在创建最终可执行文件时包含指定的库; -O、-O2、-O3将优化状态打开,该选项不能与-g选项联合使用; -S要求编译程序生成来自源代码的汇编程序输出; -v启动所有警报; -Wall发生警报时取消编译操作,即将警报看作是错误; -Werror在发生警报时取消编译操作,即把报警当作是错误; -w 禁止所有的报警。 目前Linux下最常用的C语言编译器是GCC(GNU Compiler Collection),它是GNU项目中符合ANSI C标准的编译系统,能够编译用C、C++和Object C等语言编写的程序。GCC不仅功能非常强大,结构也异常灵活。最值得称道的一点就是它可以通过不同的前端模块来支持各种语言,如Java、 Fortran、Pascal、Modula-3和Ada等。开放、自由和灵活是Linux的魅力所在,而这一点在GCC上的体现就是程序员通过它能够更好地控制整个编译过程。

gcc语言编译原理_CompilingBinaryFilesUsingACompiler

Making plain binary?les using a C compiler(i386+) Cornelis Frank April10,2000 I wrote this article because there isn’t much information on the Internet concerning this topic and I needed this for the EduOS project. No liability is assumed for incidental or consequential damages in connection with or arising out of use of the information or programs contained herein. So if you blow up your computer because of my bad“English”that’s your problem not mine. 1Which tools do you need? An i386PC or higher. A Linux distribution like Red Hat or Slackware. GNU GCC compiler.This C compiler usually comes with Linux.To check if you’re having GCC type the following at the prompt: gcc--version This should give an output like: 2.7.2.3 The number probably will not match the above one,but that doesn’t really matter. The binutils for Linux. NASM Version0.97or higher.The Netwide Assembler,NASM,is an80x86assembler designed for portability and modularity.It supports a range of object?le formats,including Linux‘a.out’and ELF,NetBSD/FreeBSD,COFF,Microsoft16-bit OBJ and Win32.It will also output plain binary?les.Its syntax is designed to be simple and easy to understand, similar to Intel’s but less complex.It supports Pentium,P6and MMX opcodes,and has macro capability. Normally you don’t have NASM on your system.Download it from: https://www.wendangku.net/doc/6f11365070.html,/pub/Linux/devel/lang/assemblers/ A text editor like pico or emacs.

GCC编译选项

Linux中gcc,g++常用编译选项 -x language filename 设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定,C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀名是. pig 哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。可以使用的参数有下面的这些: `c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `a ssembler-with-cpp'. 看到英文,应该可以理解的。 例子用法: cd.. gcc -x c hello.pig -x none filename 关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型 例子用法: gcc -x c hello.pig -x none hello2.c -c 只激活预处理,编译,和汇编,也就是他只把程序做成obj文件 例子用法: gcc -c hello.c 他将生成.o的obj文件 -S 只激活预处理和编译,就是指把文件编译成为汇编代码。 例子用法 gcc -S hello.c 他将生成.s的汇编代码,你可以用文本编辑器察看 -E 只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面. 例子用法: gcc -E hello.c > pianoapan.txt gcc -E hello.c | more 慢慢看吧,一个hello word 也要预处理成800行的代码 -o 制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈 例子用法 gcc -o hello.exe hello.c (哦,windows用习惯了) gcc -o hello.asm -S hello.c -pipe 使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题 gcc -pipe -o hello.exe hello.c

arm-linux-gcc 常用参数讲解 gcc编译器使用方法

arm-linux-gcc常用参数讲解gcc编译器使用方法 我们需要编译出运行在ARM平台上的代码,所使用的交叉编译器为arm-linux-gcc。下面将arm-linux-gcc编译工具的一些常用命令参数介绍给大家。 在此之前首先介绍下编译器的工作过程,在使用GCC编译程序时,编译过程分为四个阶段: 1. 预处理(Pre-Processing) 2. 编译(Compiling) 3. 汇编(Assembling) 4. 链接(Linking) Linux程序员可以根据自己的需要让GCC在编译的任何阶段结束,以便检查或使用编译器在该阶段的输出信息,或者对最后生成的二进制文件进行控制,以便通过加入不同数量和种类的调试代码来为今后的调试做好准备。和其它常用的编译器一样,GCC也提供了灵活而强大的代码优化功能,利用它可以生成执行效率更高的代码。 以文件example.c为例说明它的用法 0. arm-linux-gcc -o example example.c 不加-c、-S、-E参数,编译器将执行预处理、编译、汇编、连接操作直接生成可执行代码。 -o参数用于指定输出的文件,输出文件名为example,如果不指定输出文件,则默认输出 a.out 1. arm-linux-gcc -c -o example.oexample.c -c参数将对源程序example.c进行预处理、编译、汇编操作,生成example.0文件 去掉指定输出选项"-o example.o"自动输出为example.o,所以说在这里-o加不加都可以 2.arm-linux-gcc -S -o example.sexample.c -S参数将对源程序example.c进行预处理、编译,生成example.s文件 -o选项同上 3.arm-linux-gcc -E -o example.iexample.c -E参数将对源程序example.c进行预处理,生成example.i文件(不同版本不一样,有的将预处理后的内容打印到屏幕上) 就是将#include,#define等进行文件插入及宏扩展等操作。 4.arm-linux-gcc -v -o example example.c 加上-v参数,显示编译时的详细信息,编译器的版本,编译过程等。 5.arm-linux-gcc -g -o example example.c -g选项,加入GDB能够使用的调试信息,使用GDB调试时比较方便。 6.arm-linux-gcc -Wall -o example example.c -Wall选项打开了所有需要注意的警告信息,像在声明之前就使用的函数,声明后却没有使用的变量等。 7.arm-linux-gcc -Ox -o example example.c -Ox使用优化选项,X的值为空、0、1、2、3 0为不优化,优化的目的是减少代码空间和提高执行效率等,但相应的编译过程时间将较长并占用较大的内存空间。 8.arm-linux-gcc -I /home/include -o example example.c -Idirname: 将dirname所指出的目录加入到程序头文件目录列表中。如果在预设系统及当前目录中没有找到需要的文件,就到指定的dirname目录中去寻找。 9.arm-linux-gcc -L /home/lib -o example example.c

常见gcc编译警告整理以及解决方法【收藏】

常见gcc编译警告整理以及解决方法【收藏】 1、warning: no newline at end of file ? ?在文件最后一行加上回车键 ? ?解释:在《Rationale for the C99 standard》一文中,有C99的相关信息: ? ?A backslash immediately before a newline has long been used to continue string literals, as well as preprocessing command lines. In the interest of easing machine generation of C, and of transporting code to machines with restrictive physical line lengths, the C89 Committee generalized this mechanism to permit any token to be continued by interposing a backslash/newline sequence. ? ?c/c++代码的每一行后面有一个结束符,也就是newline。避免当被include 的文件展开后,前一个文件的最后一行与后一个文件的第一行直接被连接成一行从而造成错误。 ? ?2、warning: comparison between pointer and integer ? ?解释:integer与pointer比较 ? ?3、warning: assignment discards qualifiers from pointer target type ?

最新GCC编译器选项及优化提示

G C C编译器选项及优 化提示

GCC编译器选项及优化提示 GCC编译器选项及优化提示2010-08-01 19:41很多弟兄可能都很关心如何优化编译自己的程序,虽然本人不赞成"骨灰"玩法,却也不得不承认这是掌握gcc的绝佳途径; 因此献上此帖,以供各位玩家参考,绝对原创噢 = 大多数程序和库在编译时默认的优化级别是"2"(使用gcc选项:"-O2")并且在Intel/AMD平台上默认按照i386处理器来编译。 如果你只想让编译出来的程序运行在特定的平台上,就需要执行更高级的编译器优化选项,以产生只能运行于特定平台的代码。 一种方法是修改每个源码包中的Makefile文件,在其中寻找CFLAGS和CXXFLAGS变量(C和C++编译器的编译选项)并修改它的值。 一些源码包比如binutils,gcc,glibc等等,在每个子文件夹中都有Makefile文件,这样修改起来就太累了! 另一种简易做法是设置CFLAGS和CXXFLAGS环境变量。大多数configure 脚本会使用这两个环境变量代替Makefile文件中的值。 但是少数configure脚本并不这样做,他们必须需要手动编辑才行。 为了设置CFLAGS和CXXFLAGS环境变量,你可以在bash中执行如下命令(也可以写进.bashrc以成为默认值): export CFLAGS="-O3-march="&&CXXFLAGS=$CFLAGS 这是一个确保能够在几乎所有平台上都能正常工作的最小设置。

"-march"选项表示为特定的cpu类型编译二进制代码(不能在更低级别的cpu上运行), Intel通常是: pentium2,pentium3,pentium3m,pentium4,pentium4m,pentium- m,prescott,nocona 说明:pentium3m/pentium4m是笔记本用的移动P3/P4;pentium-m是迅驰I/II代笔记本的cpu; prescott是带SSE3的P4(以滚烫到可以煎鸡蛋而闻名);nocona则是最新的带有EMT64(64位)的P4(同样可以煎鸡蛋) AMD通常是:k6,k6-2,k6-3,athlon,athlon-tbird,athlon-xp,athlon-mp,opteron,athlon64,athlon-fx 用AMD的一般都是DIYer,就不必解释了吧。 如果编译时没有抱怨"segmentation fault,core dumped",那么你设定的"-O"优化参数一般就没什么问题。 否则请降低优化级别("-O3"-"-O2"-"-O1"-取消)。 个人意见:服务器使用"-O2"就可以了,它是最安全的优化参数(集合);桌面可以使用"-O3"; 不鼓励使用过多的自定义优化选项,其实他们之间没什么明显的速度差异(有时"-O3"反而更慢)。 编译器对硬件非常敏感,特别是在使用较高的优化级别的时候,一丁点的内存错误都可能导致致命的失败。 所以在编译时请千万不要超频你的电脑(我编译关键程序时总是先降频然的)。

vi编辑器及GCC编译器的使用

实验三vi编辑器及GCC编译器的使用 【实验目的】 一、掌握文本编辑器vi的使用方法 二、了解GNU gcc编译器 三、掌握使用GCC编译C语言程序的方法 【实验内容】 一、vi的三种工作模式: 1、命令模式:执行相关文本编辑命令 2、输入模式:输入文本 3、末行模式:实现查找、替换、保存、多文件操作等等功能 二、进入vi,直接在Shell提示符下键入vi [文件名称],如果该文件在当前目录不存在,则vi创建之。 三、退出vi 1、在命令模式下输入“:wq”,保存文件并退出vi 2、若不需要保存文件,输入“:q” 3、若文件已修改,但不保存,输入“:q!”强制退出vi 4、其它一些不常用的方法在此省略。 四、命令模式下的常用编辑命令 1、启动vi后,进入的是vi的命令模式 2、按i键,进入输入模式,可以进行文本的编辑,在输入模式下,按esc 键,可切换回命令模式 i:光标位置不变,可在光标左侧插入正文 a:光标位置向后退一格,可在光标左侧插入正文 o:在光标所在行的下一行增添新行 O:在光标所在行的上一行增添新行 I:光标跳到当前行的开头 A:光标跳到当前行的末尾 3、光标的移动 k、j、h、l分别等同于上、下、左、右箭头键 Ctrl+b,向上翻一页 Ctrl+f,向下翻一页 nH,将光标移到屏幕的第n行 nL,将光标移到屏幕的倒数第n行 4、删除文本 nX,删除光标所指向的前n个字符 D,删除光标右侧的所有字符(包括光标所指向的字符) db,删除光标左侧的全部字符 ndd,删除当前行和当前行以后的n行内容 5、粘贴和复制 p,将缓冲区的内容粘贴到当前字符的右侧

P,将缓冲区的内容粘贴到当前字符的左侧 yy,复制当前行到内存缓冲区 nyy,复制n行内容到内存缓冲区 6、搜索字符串 /str1,正向搜索字符串str1 n,继续搜索 ?str2,反向搜索字符串str2 7、撤销和重复 u,撤销前一条命令的执行结果 .,重复最后一条命令 五、末行模式下的命令 :n,将光标移动到第n行 :nw file,将第n行写入file文件 :n,mw file,将第n行至第m行写入file文件 :w,将编辑的内容写入原始文件 :wq,将编辑的内容写入原始文件并退出编辑程序 :w file,将编辑的内容写入file文件,保持原有文件的内容不变 :f file,将当前文件重命名为file :e file,编辑新文件file代替原有内容 :f,打印当前文件的状态,如文件的行数,光标所在的行号等 :!<命令>,执行相应shell命令 六、三种工作模式的切换 1、在Linux shell下,键入vi或vi <文件名>进入命令模式 2、在命令模式下,键入:进入末行模式 3、在命令模式下,键入文本编辑命令如i,a,o等进入文本输入模式 4、在文本输入模式下,按esc键进入命令模式 5、在末行模式下,按backspace键或del键进入命令模式 6、在末行模式下,键入q或wq,退出vi,饭后到Linux shell下 GCC编译器的使用 一、使用vi或其它文本编辑器,输入C语言程序,并保存为test.c 二、在Linux shell下,输入命令gcc –o test test.c 三、编译正确后,输入命令./test运行程序,观察程序运行结果 四、若编译错误,根据提示信息,进入程序查错,再回到第二步,直至程序 语法无误。 附:GCC使用方法和常用选项 使用GCC编译C程序生成可执行文件需要经历4个步骤: 1、预处理,这一步需要分析各种命令,如#define、#include、#ifdef 等。Gcc调用cpp程序来进行预处理 2、编译,这一步将根据输入文件产生汇编语言,gcc调用ccl进行编 译工作

linux系统下C编译器GCC入门

linux系统下C编译器— gcc 入门 <一>gcc简介 Linux系统下的gcc(GNU C Compiler)是GNU推出的功能强大、性能优越的多平台编译器,是GNU的代表作品之一。gcc是可以在多种硬体平台上编译出可执行程序的超级编译器,其执行效率与一般的编译器相比平均效率要高20%~30%。gcc编译器能将C、C++语言源程序、汇程式化序和目标程序编译、连接成可执行文件,如果没有给出可执行文件的名字,gcc将生成一个名为 a.out的文件。在Linux系统中,可执行文件没有统一的后缀,系统从文件的属性来区分可执行文件和不可执行文件。而gcc则通过后缀来区别输入文件的类别,下面我们来介绍gcc所遵循的部分约定规则。 .c为后缀的文件,C语言源代码文件; .a为后缀的文件,是由目标文件构成的档案库文件; .C,.cc或.cxx 为后缀的文件,是C++源代码文件; .h为后缀的文件,是程序所包含的头文件; .i 为后缀的文件,是已经预处理过的C源代码文件; .ii为后缀的文件,是已经预处理过的C++源代码文件; .m为后缀的文件,是Objective-C源代码文件; .o为后缀的文件,是编译后的目标文件; .s为后缀的文件,是汇编语言源代码文件; .S为后缀的文件,是经过预编译的汇编语言源代码文件。 <二>gcc的执行过程 虽然我们称gcc是C语言的编译器,但使用gcc由C语言源代码文件生成可执行文件的过程不仅仅是编译的过程,而是要经历四个相互关联的步骤∶预处理(也称预编译,Preprocessing)、编译(Compilation)、汇编(Assembly)和连接(Linking)。命令gcc首先调用cpp进行预处理,在预处理过程中,对源代码文件中的文件包含(include)、预编译语句(如宏定义define等)进行分析。接着调用cc1进行编译,这个阶段根据输入文件生成以.o为后缀的目标文件。汇编过程是针对汇编语言的步骤,调用as进行工作,一般来讲,. S为后缀的汇编语言源代码文件和汇编,.s为后缀的汇编语言文件经过预编译和汇编之后都生成以.o为后缀的目标文件。当所有的目标文件都生成之后,gcc就调用ld来完成最后的关键性工作,这个阶段就是连接。在连接阶段,所有的目标文件被安排在可执行程序中的恰当的位置,同时,该程序所调用到的库函数也从各自所在的档案库中连到合适的地方。 <三>gcc的基本用法和选项 在使用gcc编译器的时候,我们必须给出一系列必要的调用参数和文件名称。g cc编译器的调用参数大约有100多个,其中多数参数我们可能根本就用不到,这里只介绍其中最基本、最常用的参数。

gcc编译器 CFLAGS 标志参数说明

gcc编译器 CFLAGS 标志参数说明2012-11-14 15:10:28 分类:LINUX CFLAGS = -g -O2 -Wall -Werror -Wno-unused 编译出现警告性错误unused-but-set-variable,变量定义但没有使用,解决方法: 增加CFLAGS 或CPPFLAGS参数如下: CPPFLAGS=" -Werror -Wno-unused-but-set-variable" || exit 1 Gcc总体选项列表 后缀名所对应的语言 -S只是编译不汇编,生成汇编代码 -E只进行预编译,不做其他处理 -g在可执行程序中包含标准调试信息 -o file把输出文件输出到file里 -v打印出编译器内部编译各过程的命令行信息和编译器的版本 -I dir在头文件的搜索路径列表中添加dir目录 -L dir在库文件的搜索路径列表中添加dir目录 -static链接静态库 -llibrary连接名为library的库文件 ·“-I dir” 正如上表中所述,“-I dir”选项可以在头文件的搜索路径列表中添加dir目录。由于Linux 中头文件都默认放到了“/usr/include/”目录下,因此,当用户希望添加放置在其他位置的头文件时,就可以通过“-I dir”选项来指定,这样,Gcc就会到相应的位置查找对应的目录。 比如在“/root/workplace/Gcc”下有两个文件: #include int main() { printf(“Hello!!\n”); return 0; } #include

这样,就可在Gcc命令行中加入“-I”选项: [root@localhost Gcc] Gcc hello1.c –I /root/workplace/Gcc/ -o hello1 这样,Gcc就能够执行出正确结果。 小知识 在include语句中,“<>”表示在标准路径中搜索头文件,““”” 表示在本目录中搜索。故在上例中,可把hello1.c的“#include” 改为“#include “my.h””,就不需要加上“-I”选项了。 ·“-L dir” 选项“-L dir”的功能与“-I dir”类似,能够在库文件的搜索路径列表中添加dir目录。 例如有程序hello_sq.c需要用到目录“/root/workplace/Gcc/lib”下的一个动态库 libsunq.so,则只需键入如下命令即可: [root@localhost Gcc] Gcc hello_sq.c –L /root/workplace/Gcc/lib –lsunq –o hello_sq 需要注意的是,“-I dir”和“-L dir”都只是指定了路径,而没有指定文件,因此不能在 路径中包含文件名。 另外值得详细解释一下的是“-l”选项,它指示Gcc去连接库文件libsunq.so。由于在Linux 下的库文件命名时有一个规定:必须以lib三个字母开头。因此在用-l选项指定链接的库 文件名时可以省去lib三个字母。也就是说Gcc在对”-lsunq”进行处理时,会自动去链接 名为 libsunq.so的文件。 (2)告警和出错选项 Gcc的告警和出错选项如表3.8所示。 Gcc总体选项列表 选项含义 -ansi 支持符合ANSI标准的C程序 -pedantic 允许发出ANSI C标准所列的全部警告信息 -pedantic-error 允许发出ANSI C标准所列的全部错误信息 -w 关闭所有告警 -Wall 允许发出Gcc提供的所有有用的报警信息 -werror 把所有的告警信息转化为错误信息,并在告警发生时终止编译过程 下面结合实例对这几个告警和出错选项进行简单的讲解。 如有以下程序段: #include void main() { long long tmp = 1; printf(“This is a bad code!\n”);

linux下编写c源程序并编译运行

姓名:雨田河南大学rjxy 班级:XXXX 实验二Linux基本操作 实验二Linux基本操作 编写c源程序并用编译运行 【需求】 ◆在当前目录下创建新文件t.c,用vi编辑器一段简单代码,代码要求在屏幕上输出 文字“Hello Linux!”; ◆用gcc编译t.c文件,并运行,查看输出结果,若结果错误,请根据提示修改;【系统及软件环境】 操作系统:Virtualbox,Fedora 13 【实验配置文件及命令】 1.配置文件: 2.命令:touch、rpm、gcc、./等

进入Linux操作系统,应用程序-> 系统工具-> 终端,输入命令:su 输入密码切换到root超级用户。 1.在当前目录建立一个新的目录test:$ mkdir test 在test目录下建立文件t.c :$touch t.c 3编辑程序源代码:vi t.c 首先按下键盘的“i”键,字符界面下方出现“insert”提示字符,此时输入以下代码: #include "stdio.h" int main() { printf("Hello Linux!\n"); return 0; } 4 保存退出:先按下“Esc”键,然后按下“shift”和“:”键,界面上出现冒号,然后输入“xq!”或者“x”对代码保存退出。 5 由于系统默认没有安装C语言编译程序,下面进行安装gcc 程序; 此处不再赘述,以下引用实验指导书: 1.gcc的安装 (1)查看gcc是否安装 rpm –q gcc (2)指定安装源 在“系统-分配光驱”里选择“Fedora-13-i386-DVD.iso” (3)查看安装源挂载位置 df命令,可查看到虚拟光驱挂载点 返回结果为:/media/Fedora 13 i386 DVD (4)使用安装源 安装的文件为RPM安装包,所在位置为安装光盘中的“Packages”目录下,可用“cd”命令进入此目录 cd /media/ Fedora 13 i386 DVD/Packages ★由于“Fedora 13 i386 DVD”名字中有空格,若直接输入,则会提示找不到此目录,可用“tab”键自动补全 【方法】cd /media/F)/P() 则可返回如下结果: cd /media/Fedora\ 13\ i386 \DVD\ /Packages (5)查看当前目录下是否有gcc安装包

gcc编译器使用说明

要想读懂本文,你需要对C语言有基本的了解,本文将介绍如何使用gcc编译器。首先,我们介绍如何在命令行方式下使用编译器编译简单的C源代码。然后,我们简要介绍一下编译器究竟作了那些工作,以及如何控制编译过程。我们也简要介绍了调试器的使用方法。 GCC rules 你能想象使用封闭源代码的私有编译器编译自由软件吗?你怎么知道编译器在你的可执行文件中加入了什么?可能会加入各种后门和木马。Ken Thompson是一个著名的黑客,他编写了一个编译器,当编译器编译自己时,就在'login'程序中留下后门和永久的木马。请到这里阅读他对这个杰作的描述。幸运的是,我们有了gcc。当你进行 configure; make; make install 时, gcc在幕后做了很多繁重的工作。如何才能让gcc为我们工作呢?我们将开始编写一个纸牌游戏,不过我们只是为了演示编译器的功能,所以尽可能地精简了代码。我们将从头开始一步一步地做,以便理解编译过程,了解为了制作可执行文件需要做些什么,按什么顺序做。我们将看看如何编译C程序,以及如何使用编译选项让gcc按照我们的要求工作。步骤(以及所用工具)如下:预编译 (gcc -E),编译 (gcc),汇编 (as),和连接 (ld)。 开始... 首先,我们应该知道如何调用编译器。实际上,这很简单。我们将从那个著名的第一个C程序开始。(各位老前辈,请原谅我)。 #include int main() { printf("Hello World!\n"); } 把这个文件保存为 game.c。你可以在命令行下编译它: gcc game.c 在默认情况下,C编译器将生成一个名为 a.out 的可执行文件。你可以键入如下命令运行它:a.out Hello World 每一次编译程序时,新的 a.out 将覆盖原来的程序。你无法知道是哪个程序创建了 a.out。

GCC编译器选项及优化提示12页word

GCC编译器选项及优化提示 GCC编译器选项及优化提示2010-08-01 19:41很多弟兄可能都很关心如何优化编译自己的程序,虽然本人不赞成"骨灰"玩法,却也不得不承认这是掌握gcc的绝佳途径; 因此献上此帖,以供各位玩家参考,绝对原创噢 大多数程序和库在编译时默认的优化级别是"2"(使用gcc选项:"-O2")并且在Intel/AMD平台上默认按照i386处理器来编译。 如果你只想让编译出来的程序运行在特定的平台上,就需要执行更高级的编译器优化选项,以产生只能运行于特定平台的代码。 一种方法是修改每个源码包中的Makefile文件,在其中寻找CFLAGS和CXXFLAGS变量(C和C++编译器的编译选项)并修改它的值。 一些源码包比如binutils,gcc,glibc等等,在每个子文件夹中都有Makefile文件,这样修改起来就太累了! 另一种简易做法是设置CFLAGS和CXXFLAGS环境变量。大多数configure脚本会使用这两个环境变量代替Makefile文件中的值。 但是少数configure脚本并不这样做,他们必须需要手动编辑才行。 为了设置CFLAGS和CXXFLAGS环境变量,你可以在bash中执行如下命令(也可以写进.bashrc以成为默认值): export CFLAGS="-O3-march="&&CXXFLAGS=$CFLAGS 这是一个确保能够在几乎所有平台上都能正常工作的最小设置。 "-march"选项表示为特定的cpu类型编译二进制代码(不能在更低级别的cpu上运行), Intel通常是: pentium2,pentium3,pentium3m,pentium4,pentium4m,pentium- m,prescott,nocona 说明:pentium3m/pentium4m是笔记本用的移动P3/P4;pentium-m 是迅驰I/II代笔记本的cpu; prescott是带SSE3的P4(以滚烫到可以煎鸡蛋而闻名);nocona则是最新的带有EMT64(64位)的P4(同样可以煎鸡蛋)

gcc 编译多个源文件

一. 常用编译命令选项 假设源程序文件名为test.c。 1. 无选项编译链接 用法:#gcc test.c 作用:将test.c预处理、汇编、编译并链接形成可执行文件。这里未指定输出文件,默认输出为a.out。 2. 选项-o 用法:#gcc test.c -o test 作用:将test.c预处理、汇编、编译并链接形成可执行文件test。-o选项用来指定输出文件的文件名。 3. 选项-E 用法:#gcc -E test.c -o test.i 作用:将test.c预处理输出test.i文件。 4. 选项-S 用法:#gcc -S test.i 作用:将预处理输出文件test.i汇编成test.s文件。 5. 选项-c 用法:#gcc -c test.s 作用:将汇编输出文件test.s编译输出test.o文件。 6. 无选项链接 用法:#gcc test.o -o test 作用:将编译输出文件test.o链接成最终可执行文件test。 7. 选项-O 用法:#gcc -O1 test.c -o test 作用:使用编译优化级别1编译程序。级别为1~3,级别越大优化效果越好,但编译时间越长。 二. 多源文件的编译方法 如果有多个源文件,基本上有两种编译方法: [假设有两个源文件为test.c和testfun.c] 1. 多个文件一起编译 用法:#gcc testfun.c test.c -o test 作用:将testfun.c和test.c分别编译后链接成test可执行文件。 2. 分别编译各个源文件,之后对编译后输出的目标文件链接。

用法: #gcc -c testfun.c //将testfun.c编译成testfun.o #gcc -c test.c //将test.c编译成test.o #gcc -o testfun.o test.o -o test //将testfun.o和test.o链接成test 以上两种方法相比较,第一中方法编译时需要所有文件重新编译,而第二种方法可以只重新编译修改的文件,未修改的文件不用重新编译。 3. 如果要编译的文件都在同一个目录下,可以用通配符gcc *.c -o 来进行编译。 你是否会问,如果是一个项目的话,可能会有上百个文件,这样的编译法,人不是要累死在电脑前吗,或者等到你编译成功了,岂不是头发都白了,呵呵,所以我们要把上述的编译过程写进以下一个文本文件中: Linux下称之为makefile #这里可以写一些文件的说明 MyFirst: MyFirst.o hello.o g++ MyFirst.o hello.o -o MyFirst Hello.o:Hello.cpp g++ -c Hello.cpp -o Hello.o MyFirst.o:MyFirst.cpp g++ -c MyFirst.cpp -o MyFirst.o makefile 编写规则: (1)以“#”开始的行为注释 (2)文件依赖关系为: target:components rule 存盘为MyFirst,在终端输入:make MyFist,程序出现了错误可是所有程序员共同的敌人,在编写程序时我们应该尽量的去避免错误的出现,不过编写的时候再怎么都不可避免的出现这样那样的错误,对程序进行必要的调试是一个好主意,那我们怎么来调试程序呢,看下面:gdb ./文件名////////////////在这里我修改下要想下面可以调试,在上面编译的时候必须加上参数g,g++ -g hello.cpp -o hello 以下为调试状态下的可以用到的命令(可以仅输入单词的输入,如break可简为b),尖括号中为说明 list <显示源代码> break 行号<设置断点> run <运行程序> continue <继续从断点处执行> print 变量<调试时查看变量的值> del 行号<删除断点> step <单步执行,可跟踪到函数内部> next <单步执行,不可跟踪到函数内部> quit <退出> makefile 的编写不是件容易的事情,因为自己写的makefile可能不能在所有的unix/linux 类操作系统下通用。因此在很多项目中都用automake.autoconf或者是Cmake等工具。

相关文档