文档库 最新最全的文档下载
当前位置:文档库 › 小结几何光学基本定律与成像概念

小结几何光学基本定律与成像概念

小结几何光学基本定律与成像概念
小结几何光学基本定律与成像概念

第一章小结(几何光学基本定律与成像概念)

1 、光线、波面、光束概念。

光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。

波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。

光束:与波面对应所有光线的集合称为光束。

2 、几何光学的基本定律(内容、表达式、现象解释)

1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。

2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

3 )反射定律和折射定律(全反射及其应用):

反射定律:1、位于由入射光线和法线所决定的平面内;2、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即I’’=-I。

全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。sinI m=n’/n,其中I m为临界角。

应用:1、用全反射棱镜代替平面反射镜以减少光能损失。(镀膜平面反射镜只能反射90%左右的入射光能)2、光纤

折射定律:1、折射光线位于由入射光线和法线所决定的平面内;2、折射角的正弦和入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。n’sinI’=nsinI。

应用:光纤

4 )光路的可逆性

光从A点以AB方向沿一路径S传递,最后在D点以CD方向出射,若光从D点以CD

方向入射,必原路径S传递,在A点以AB方向出射,即光线传播是可逆的。

5 )费马原理

光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。(光是沿着光程为极值(极大、极小或常量)的路径传播的),也叫“光程极端定律”。

6 )马吕斯定律

光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。

折/反射定律、费马原理和马吕斯定律三者中的任意一个均可以视为几何光学的一个基本定律,而把另外两个作为该基本定律的推论。

3 、完善成像条件(3种表述)

1)、入射波面为球面波时,出射波面也为球面波;

2)、入射光束为同心光束时,出射光束也为同心光束;

3)、物点A1及其像点A k’之间任意二条光路的光程相等。

4 、应用光学中的符号规则(6 条)

1)沿轴线段(L、L’、r):规定光线的传播方向自左至右为正方向,以折射面顶点O为原点。

2)垂轴线段(h):以光轴为基准,在光轴以上为正,以下为负。

3)光线与光轴的夹角(U、U’):光轴以锐角方向转向光线,顺时针为正,逆时针为负。

4)光线与法线的夹角(I、I’):光线以锐角方向转向法线,顺时针为正,逆时针为负。

5)光轴与法线的夹角(φ):光轴以锐角方向转向法线,顺时针为正,逆时针为负。

6)相邻两折射面间隔(d):由前一面的顶点到后一面的顶点,顺光线方向为正,

逆为负。

5 、单个折射球面的光线光路计算公式(近轴、远轴)

6 、单个折射面的成像公式(定义、公式、意义)

垂轴放大率成像特性:

β>0,成正像,虚实相反;β<0,成倒像,虚实相同

|β|>1,放大;|β|<1,缩小。

轴向放大率结论:

折射球面的轴向放大率恒为正,轴向放大率与垂轴放大率不等。

角放大率:表示折射球面将光束变宽变细的能力;只与共轭点的位置有关,与光线的孔径角无关。

7 、球面反射镜成像公式

8 、共轴球面系统公式(过渡公式、成像放大率公式)

第二章小结

(理想光学系统)

1、什么是理想光学系统?

为了系统的讨论物像关系,挖掘出光学系统的基本参量,将物、像与系统件的内在关系揭示出来,可暂时抛开光学系统的具体结构(r,d,n),将一般仅在光学系统的近轴区存在的完善成像,拓展成在任意大的空间中一任意宽的光束都成完善像的理想模型。简单的说就是物像空间满足“点对应点,直线对应直线,平面对应平面”的光学系统。

2、共轴理想光学系统的成像性质是什么?(3大点)

1)位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过光轴的某一个截面内的物点对应的共轭像点必位于该平面的共轭像面内;同时,过光轴的任意截面成像性质都是相同的

2)垂直于光轴的平面物所成的共轭平面像的几何形状完全与物相似。

3)如果已知两共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上两对共轭点的位置,则其他一切物点的像点都可以根据这些已知的共轭面和共轭点来表示。

3、无限远的轴上(外)物点的共轭像点是什么?它发出的光线有何性质?

像方焦点;它发出的光线都与光轴平行。

4、无限远的轴上(外)像点的对应物点是什么?

物方焦点。

5、物(像)方焦距的计算公式为何?

f’=h/tanU’,h为平行光线的高度,U’为像方孔径角。

6、物方主平面与像方主平面的关系为何?

互为共轭。

光学系统的基点及性质?有何用途?

一对主点和主平面,一对焦点和焦平面,称为光学系统的基点和基面。

一束平行光线经过系统后交于像方焦平面上一点,物方焦平面上一点光源发射出的光线经过系统后是一组平行光线。

可用直接表示光学系统,便于推断和计算光路。

7、图解法求像的方法?(可选择的典型光线和可利用的性质5条+1条)

8、解析法求像方法为何?(牛顿公式、高斯公式)

1)牛顿公式:

2)高斯公式:

9、由多个光组组成的理想光学系统的成像公式?(过渡公式)

10、理想光学系统两焦距之间的关系?

11、理想光学系统的放大率?(定义、公式、用途、与单个折射面公式的区别和联系)

12、理想光学系统的组合公式为何?正切计算法?

13、几种典型的光组组合及其特点(组成、特点和应用)?

第三章小结(平面与平面系统)

1、平面光学元件的种类?作用?(4种)

平面反射镜,唯一能成完善像的最简单的光学元件,可用于做光杠杆

平行平板,平行平板是个无光焦度的光学元件,不使物体放大或缩小,

反射棱镜,实现折转光路、转像和扫描等功能。

折射棱镜,改变光线的出射角,可用于放大偏转量。

2、平面镜的成像特点和性质?平面镜的旋转特性?

每一点都能成完善像,并且像与物虚实相反。

平面镜转动α,反射光线转动θ。

奇数次反射成镜像,偶数次反射成一致像。

3、光学杠杆原理和应用?(测小角度和微位移)

从透镜物方焦点发出光线束,经过系统后成平行光束经过微小偏转θ的平面镜后反射,再经过系统汇聚在像方焦平面上,测得垂轴距离y,则y=f’tan2θ=2θf’,测杆支点与光轴距离a,移动量x,θ=tanθ=x/a, so, y=(2f’/a)x=Kx,K为放大倍数。

4、平行平板的成像特性?(3点)近轴区内的轴向位移公式?

平行平板是个无光焦度的光学元件,不使物体放大或缩小,只将像从物位置进行一个轴向平移。近轴区能成完善像,非近轴区不能成完善像。

5、加平面镜、平行平板的成像计算。

6、反射棱镜的种类(4种)、基本用途、棱镜的主截面、成像方向判别、等效作用与展开。

简单棱镜,改变出射角,增加光程

屋脊棱镜,得到与物体一致的像

立方角锥棱镜,出射光线平行于入射光线像与物仅发生一个平行平移

复合棱镜,实现特殊功能,如分光、分色、转像、双像等

成像方向的判断

1)、O'z'坐标轴与光轴出射方向一致

2)、垂直于主界面的坐标轴O'y',若有奇数个屋脊面,则像方向与物方向相反;若有偶数个屋脊面,则方向相同

3)、平行于主界面的坐标轴O'x',(一个屋脊面当两个反射面)若有奇数个反射面,则像坐标系与物坐标系相反;若有偶数个反射面则相同

4)遇到透镜,O'x'、O'y'均转向。

7、折射棱镜的作用?其最小偏向角公式及应用

改变光线的出射角,可用于放大偏转量。

α为棱镜顶角,δ为偏向角。当光线的光路对称与折射棱镜时,偏向角最小。已知α,测的最小偏向角δ,即可求得棱镜的折射率n

8、光楔的偏向角公式及其应用(测小角度和微位移)

δ=2(n-1)αcosφ, φ为两光楔相对旋转的角度。

当φ=90°时可用于测微小位移,单个棱镜的偏向角δ已知,棱镜间距离Δz已知,则垂轴方向的微小位移Δy=Δzδ = (n-1)αΔz

9、棱镜色散、色散曲线、白光光谱的概念。

棱镜色散:同一透明介质对于不同波长的单色光具有不同的折射率,故复合光经过棱镜后能被分解成多种不同颜色的光。

色散曲线:将介质的折射率随波长的变化用曲线表示。

白光光谱:狭缝发射出的白光经过透镜准直为平行光,平行光经过棱镜分解为各色光,经过透镜汇聚在焦平面上排列成各种颜色的狭缝像。

10、常用的光学材料有几类?各有何特点?

光学玻璃,制造工艺成熟,品种齐全,一般能透过波长为0.35~2.5μm的各色

光,超出波段范围的光会被强烈吸收。

光学晶体,透射波段比光学玻璃宽,应用日益广泛

光学塑胶,价格便宜、密度小、重量轻、易于压制成型、成本低、生产效率高和不易破碎等诸多优点,主要缺点是热膨胀系数和折射率的温度系数比光学玻璃大的多,受温度影响大成像质量不稳定。

第四章小结( 光学系统中的光阑与光束限制)

1、什么是光阑?

限制成像光束和成像范围的遮光片称为光阑。

2、什么是孔径光阑(作用)、入瞳、出瞳、孔径角?它们的关系如何?

限制轴上物点孔径角大小,并有选择轴外物点成像光束作用的光阑。

入瞳/出瞳:孔径光阑经前/后光学系统在物/像空间所成的像。

孔径角:光轴上的物体点与透镜的有效直径所形成的角度。

孔径光阑、入瞳和出瞳三者是物像关系。

主光线:通过入瞳中心的光线。

3、什么是视场光阑(作用)、入窗、出窗、视场角?它们的关系如何?

限制成像范围的光阑。

类似于入/出瞳。

视场角:主光线与光轴的夹角

物方视场角:在物空间,入窗边缘对入瞳中心张的角

像方视场角:在像空间,出窗边缘对出瞳中心张的角。

视场光阑、如窗、出窗三者成物像关系

4、什么是渐晕、渐晕光阑、渐晕系数?渐晕光阑和视场光阑的关系如何?

渐晕:由轴外点发出的充满入瞳的光线被其他光孔遮拦的现象

渐晕光阑:为了改善轴外点的成像,有意识的缩小某一二个透镜直径,挡去一部

分成像光线,这种被缩小孔径的透镜或光阑被称为渐晕光阑。

渐晕系数:轴向光束的口径为D,视场角为ω的轴外光束在子午截面内的光束宽度为Dω,这Dω与D之比称为“渐晕系数”,用Kω表示,即Kω=Dω/D

5、系统中光阑的判断方法如何?

根据定义出发,寻找限制入射光束宽度的光阑(孔径光阑),限制成像光束的光阑(视场光阑)

a、做出后光学系统即遮光片经前光学系统的像

b、将物点与所有“像”的边缘连起来,比较“孔径角”,最小的为入瞳,对应的物即为“孔径光阑”

c、从入瞳中心引出过“像”边缘的主光线,比较“视场角”,最小的为入窗,对应的物即为“视场光阑”。

6、照相系统的基本结构怎样?成像关系和光束限制情况?(看第七章)

7、望远系统的基本结构怎样?成像关系和光束限制情况?

8、显微系统的基本结构怎样?成像关系和光束限制情况? 物方远心光路原理与

作用.

远心光路:孔径光阑在物镜像方焦平面上,入瞳位于无穷远处,轴外点主光线平行于光轴。

作用:物即使不在设计位置,所成像调焦不准,但弥散圆中心间距不变,不会产生太大误差。

9、光瞳衔接原则是什么?为什么要遵守该原则?

前面系统的出瞳和后面系统的入瞳重合,使前面得入射光线能全部透过后面的系统。

10、场镜的定义、作用、成像关系?

在一次实像面处所加的起收敛孔径角作用的透镜。

收敛目镜物方孔径角,还能调节出瞳距离。

由于场镜的物(即物镜的像)在镜上,所以像也在镜上。

可消球差、正弦差、像散、位置色差、倍率色差。不能消场曲、畸变。

11、什么是景深、远景景深、近景景深?景深公式和影响因素?

景深:能在景象平面上获得清晰像的物方空间深度范围称为景深

能成清晰像的最远/近的物平面称为远/近景平面,它们距对准平面的距离称远/近景深度。

景深与入瞳孔径有关,孔径角越小,景深越大。(拍照时,调小光圈能获得大的空间深度的清晰像),与景象平面有关,当景象平面与物镜距离p=2a/ε时,可得到距入射光瞳为a/ε处的平面至无限远的整个空间的物体的清晰像。

具体公式看书P68-71.

第六章小结(光线的光路计算及像差理论)

1、光线的光路计算方法。

2、什么是像差?共有几种像差?消像差的基本原则是什么?

实际像与理想像之间的差异叫做像差。7

基本原则:把主要像差消掉。

3、各种像差的定义、影响因素、性质、消像差方法?

4、哪些像差与孔径有关?哪些像差与视场有关?

5、什么是单个折射球面的不晕点(齐明点)?有何性质?

不产生球差的点需满足:

1)L=0,即物点和像点均位于球面顶点

2)sinI-sinI’=0,即I=I’=0,表示物点和像点均位于球面的曲率中心

3)sinI’-sinU=0,即I’=U,可得出L=(n+n’)r/n, L’=(n+n’)r/n’, 该面的垂轴放大率

β=nL’/n’L=(n/n’)2

校正了球差且满足正弦条件的点叫做齐明点或叫不晕点。

或不产生像差的点叫做齐明点或不晕点。

常利用齐明点的特性来制作齐明透镜,以增大物镜的孔径角,用于显微镜或照明系统。

6、了解七种像差的计算方法、级数展开形式。

7、了解七种像差的初级像差的分布式表示式。

第七章(典型光学系统)小结

1、正常眼、近视眼和远视眼的定义和特征是什么?应如何校正非正常眼?调节能力的计算公式是什么(7-1)?人眼的分辨率=?

眼睛的远点在无限远处,即光学系统的后焦点在视网膜上,称为正常眼;

远点位于眼前有限距离,后焦点在视网膜前,称为近视眼,需佩戴一负透镜;

远点位于眼后有限距离,后焦点位于视网膜后,称为远视眼,需佩戴一正透镜。

透镜的焦距为f’,眼睛的远点l r,使佩戴后眼睛的发散度R=1/l r-1/f’。

远点距离l r,近点距离l p,远/近点发散度R=1/l r, P=1/l p,单位为屈光度(D),眼睛的调节能力A=R-P。R表示近视眼或远视眼的程度,称为视度。

人眼具有瞳孔调节和视度调节的能力。

人眼能分辨的物点间最小视角称作视角鉴别率ε,ε≈60″,眼睛的分辨能力或视觉敏锐度=1/ε(ε的单位是分)。

2、什么是视觉放大率?表达式及其意义?它与光学系统的角放大率有何异同?

表示对人眼张角的放大倍率,

角放大率是一对共轭点及其共轭光线所张孔径角的正切比,而视觉放大率是物体经过光学系统所成的像与它本身对眼睛张角的正切比。

3、放大镜的视觉放大率为何?(注意条件)

4、显微镜系统:P140

1)组成(光学结构特点)、成像关系、光束限制(生物显微镜和测量显微镜)物镜(孔径光阑、入瞳),测量时,孔径光阑在物镜像方焦平面上,在物镜像面上放一透明分划板(视场光阑),目镜,物在物镜的物方焦点附近,经物镜成一倒立实像在目镜的物方焦点附近,再经过目镜成一正立的放大的虚像(总的还是倒立的),出瞳对眼睛瞳孔。

2)视觉放大率公式:

3)线视场公式:光学系统在物空间能成清晰像的范围

显微镜的视觉放大率越大,其在物空间的线视场越小。

4)数值孔径、出瞳D':

5)物镜的分辨率:光学系统所成像符合理想时,光学系统能分辨的最小间隔

6)显微镜的有效放大率:

7)物镜的景深:

8)视度调节:

5、临界照明和坷拉照明中的光瞳衔接关系?

(瞳对瞳、窗对窗)(窗对瞳、瞳对窗)P144倒数两段

6、望远系统(开普勒):P145

1)组成(光学结构特点)、成像关系、光束限制

物镜(孔径光阑、入瞳)、视场光阑(在焦平面处)、目镜(渐晕光阑)、出瞳对瞳孔。望远镜一般不用做成像系统,而与眼睛联用,一束平行于光轴的大孔径平行光束经过物镜聚焦在焦平面上,再经过目镜发散为小孔径的平行光束,再经过眼睛聚焦成像在视网膜上。

分辨率:φ=120''/D

有效放大率:Γ=60''/φ=D/2.3

工作放大率:Γ=D

5)开普勒望远镜由两个正透镜组成,成倒像,需在光学系统间加一转像系统(透镜或棱镜),物镜后焦平面上加分划板(视场光阑);伽利略望远镜(物镜是视场光

阑,瞳孔是孔径光阑)由一正一负两透镜组成,成正像,由于其视觉放大率不大,故仅用于剧院观剧使用。

7、摄影系统:P150

1)组成(光学结构特点)、成像关系、光束限制

物镜、光圈(孔径光阑、入瞳)、接收器(视场光阑、出窗)

2)摄影物镜的3个主要参数及其影响作用:

焦距f ’(像的大小)、相对孔径D/f ’(像面照度、分辨率)和视场角2ω(成像的范围)

光学特性:视场,分辨率,像面照度。

以像平面上每毫米内能分辨开的线对数表示4)光圈的定义及其与孔径光阑、分辨率、像面照度、景深的关系:

光圈数:F=f’/D, 光圈↓, F↓, 孔径2a↑,分辨率↑,像面照度↑,景深↓

5)景深公式及其影响因素:2a↑Δ↓, P↑Δ↑, f’↑Δ↓

6)摄影物镜的种类:(5种)

普通、大孔径、广角、远摄、变焦距

8、投影系统:

1)系统的基本要求(像差、照明)

2)主要光学参数(4个:

3)其照明系统的衔接条件(2条)

1)照明系统的拉赫不变量J1要大于投影成像系统的拉赫不变量J2。

2)保证两个系统的光瞳衔接和成像关系。

第九章小结(光学系统的像质评价和像差公差)

1、常用像质评价方法有几种?

瑞利判断、中心点亮度、分辨率、星点检测法、光学传递函数评价

2、了解常用像质评价方法

3、什么是像差公差

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。 解: 则当光在水中,n=时,v= m/s, 当光在冕牌玻璃中,n=时,v= m/s, 当光在火石玻璃中,n =时,v= m/s , 当光在加拿大树胶中,n=时,v= m/s , 当光在金刚石中,n=时,v= m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃板 上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最 小直径应为多少 1mm I 1=90? n 1 n 2 200mm L I 2 x

2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处如果在凹面

第三章 几何光学的基本原理1

第三章 几何光学的基本原理 1 证明反射定律符合费马原理。 证明:设平面Ⅰ为两种介质的分界面,光线从A 点射向界面经反射B 点,在分界面上的入射点为任意的C 点;折射率分别为:n 1、n 2。 (1)过A 、B 两点做界面的垂直平面Ⅱ,两平面相交为直线X 轴,过C 点做X 轴的垂线,交X 轴于C '点,连接ACC '、BCC '得到两个直角三角形,其中:AC 、BC 为直角三角形的斜边,因三角形的斜边大于直角边,根据费马原理,光线由A 点经C 点传播到B 点时,光程应取最小值,所以在分界面上的入射点必为C '点,即证明了入射光线A C '和反射光线B C '共面,并与分界面垂直。 (2)设A 点的坐标为(x 1,y 1),B 点坐标为(x 2,y 2),C 点坐标为(x ,0),入射角为θ,反射角为θ',则光线由A 传播到B 的光程: ))()((2 2222 1211y x x y x x n +-+ +-=? 若使光程取极值,则上式的一阶导数为零,即: 0)()(22 2 2221 2 11=+--- +--=? y x x x x y x x x x dx d 从图中得到:21 2 11)(sin y x x x x +--= θ 22 2 22)(sin y x x x x +--= 'θ 也即:sin θ=sin θ',说明入射角等于反射角,命题得证。 2 根据费马原理可以导出在近轴条件下,从物点这出并会聚到象点所有光线的光程都相等。由此导出薄透镜的物象公式。 解: 3 眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板,平板的厚度d

为30cm ,求PQ 的象P 'Q '与物体之间的距离d 2。 解:方法一 P 'Q '是经过两个平面折射所形成的象 (1)PQ 经玻璃板前表面折射成象: 设PQ 到前表面的距离为s 1,n=1、n '=1.5 由平面折射成象的公式:11s n n s '= ' 得到:112 3s s =' (2)PQ 经玻璃板前表面折射成象: 从图中得到:s 2=s 1+d 、n=1.5、n '=1 根据:22s n n s ' = ' 解出最后形成的象P 'Q '到玻璃板后表面的距离:d s s 3 212+=' 物PQ 到后表面的距离:s=s 1+d 物PQ 与象P 'Q '之间的距离d 2:d 2 = s 2'-s =(3 2 1- )d=10cm 方法二:参考书中例题的步骤,应用折射定律解之。 方法三:直接应用书中例题的结论:d 2 =d (1-1/n )即得。 4 玻璃棱镜的折射角A 为600,对某一波长的光其折射率为1.6,计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角。 解:(1)根据公式:2 sin 2 sin 0A A n += θ 代入数据:A=600,n=1.6 解出最小偏向角:θ0= 46016' (2)因:A i -=102θ 则入射角:53352/)(001'=+=A i θ (3)若能使光线从A 角两侧透过棱镜,则出射角i 1'=900 有:n sini 2'= 1 sin900 = 1 解出:i 2'=38.680 从图中得到:i 2 + i 2'= A 得到:i 2 =21.320

几何光学的基本原理

第三章几何光学 本章重点: 1、光线、光束、实像、虚像等概念; 2、Fermat原理 3、薄透镜的物像公式和任意光线的作图成像法; 4、几何光学的符号法则(新笛卡儿法则); 本章难点: 5、理想光具组基点、基面的物理意义; §3.1 几何光学的原理 几何光学的三个实验定律: 1、光的直线传播定律——在均匀的介质中,光沿直线传播; 2、光的独立传播定律——光在传播过程中与其他光束相遇时,不改变传播方 向,各光束互不受影响,各自独立传播。 3、光的反射定律和折射定律 当光由一介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。 反射定律:入射光线、反射光线和法线在同一平面内,这个平面叫做入射面,入射光线和反射光线分居法线两侧,入射角等于反射角 光的折射定律:入射光线、法线和折射光线同在入射面内,入射光线和折射光线分居法线两侧,介质折射率不仅与介质种类有关,而且与光波长有关。 §3.2 费马原理 一、费马原理的描述:光在指定的两点间传播,实际的光程总是一个极值(最大值、最小值或恒定值)。 二、表达式 ,(A,B是二固定点) Fermat原理是光线光学的基本原理,光纤光学中的三个重要定律——直线传播定律,反射定律和折射定律()——都能从Fermat原理导出。 §3.3 光在平面界面上的反射和折射、光学纤维 一、基本概念:单心光束、实像、虚像、实物、虚物等 二、光在平面上的反射 根据反射定律,可推导出平面镜是一个最简单的、不改变光束单心性的、能成完善像的光学系统. 三、单心光束的破坏(折射中,给出推导) 四、全反射 1、临界角

2、全反射的应用 全反射的应用很广,近年来发展很快的光学纤维,就是利用全反射规律而使光线沿着弯曲路程传播的光学元件。 2、应用的举例(棱镜) §3.4 光在球面上的反射和折射 一、基本概念 二、符号法则(新笛卡儿符号法则) 在计算任一条光线的线段长度和角度时,我们对符号作如下规定: 1、光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负。物点或像点至主抽的距离,在主轴上方为正,在下方为负。 2、光线方向的倾斜角度部从主铀(或球面法线)算起,并取小于π/2的角度。由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负。 3、在图中出现的长度和角度只用正值。 三、球面反射对光束单心性的破坏 四、近轴光线条件下球面反射的物像公式 五、近轴光线条件下球面折射的物像公式(高斯公式) 六、高斯物像公式 七、牛顿物像公式(注意各量的物理意义) 八、例题一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为2cm。若在哑铃左端5cm处的轴上有一物点,试求像的位置和性质。 §3.5 薄透镜 一、基本概念: 凸透镜、凹透镜、主轴、主截面、孔径、厚透镜、薄透镜、物方焦平面、像方焦平面等 二、近轴条件下薄透镜的成像公式 如果利用物方焦距和像方焦距

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

第一章 几何光学基本定律与成像概念习题

一:选择题(可以有多选) 1、下面关于几何光学的几本定律陈述正确的是(BCD ) A、光是沿直线传播方向传播的,“小孔成像”即是运用这一定律的很好例子。 B、不同光源发出的光在空间某点相遇时,彼此不影响各光束独立传播。 C、在反射定律中,反射光线和入射光线位于法线两侧,且反射角与入射角绝对值相等。D:光的全反射中,光线是从光密介质向光疏介质入射。 2、下列关于单个折射面成像,说法错误的是(D ) A、垂轴放大率仅取决于共轴面的位置。 B、折射球面的轴向放大率恒为正。 C、角放大率表示折射球面将光束变宽或是变细的能力。 D、α、γ、β三者之间的关系为γβ=α。 3、一个物体经单个折射球面成像时,其垂轴放大率β>1,且已知n0。 C、像高大于物高。 D、该折射球面能把入射光束变宽。 4.、一个物体经单个反射球面成像时,其垂轴放大率β>0,则(BD ) A、物象位于系统的同侧。 B、物象虚实性质相反。 C、角放大率γ>0。 D、轴向放大率α<0。 二、填空题 1、与平面波对应的光束称为平行光束;与球面波对应的光速称为同心光束;与任意曲面波对应的光束称为像散光束。 2、光学系统成完善像应满足的三个等价条件分别是○1入射波面是球面波时,出射波面也是球面波;。;○2入射光是同心光束时,出射光也是同心光束○3物点及其像点之间任意两条光路的光程相等 3、在子午面内,光线的位置由物方截距,物方孔径角确定。 4、一束平行细光束入射到一半径r=30mm、折射率为1.5的玻璃球上,经左侧球面折射后形成像A’1,则像方截距为30 mm,成像是(填“实像”或“虚像”);经右侧球面再次成像A’2,则像方截距为90 mm,成像是(填“实像”或“虚像”)。 三、简答题 1发生全反射的条件? 1、○1光线从光密介质向光疏介质射入○2入射角大于临界角

第三章__几何光学的基本原理复习课程

第三章__几何光学的 基本原理

第三章几何光学的基本原理 3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(如图所示),平板的厚度d为30cm。求物体PQ的像Q P' '与物体PQ之间的距离2d为多少? 已知:1 = n,5 1. = 'n,cm d30 = 求:? = 2 d 解: 由图可知 1 2i QN Q Q d sin = ' =, 设x QN=,即光线横向的偏移,则 1 2i x d sin =(1) 在入射点A处,有 2 1 i n i n sin sin' = 在出射点B处,有 1 2 i n i n' = 'sin sin,因此可得1 1 i i' = 即出射线与入射线平行,但横向偏移了x。 由图中几何关系可得:()()2 1 2 2 1 i i i d i i AB x- = - =sin cos sin 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 又因为 1i 和2i 很小,所以 12≈i cos , ()2121i i i i -≈-sin 而 21i n ni '= ,所以 1121 i n i n n i '='= 则 ()??? ??'-=-=11211i n i d i i d x ,即 ??? ??'-'=n n di x 11 (2) (2)式代入(1)式得 cm d d n n i i d d 103 1 511511112==??? ??-=??? ??'-'≈ .. 6.高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图。 已知:cm y 5=, cm s 12-=,cm f 10-=' 求:?='s ?='y 作光路图 解:根据 f s s '='+1 11 得601 121101111-=+-=-'='s f s , cm s 60-='∴ 又据 n n s s y y '?'=' ,而 n n -=' 所以得 cm y s s y 25512 60-=?---='-=' 光路图(cm r cm r f 20102 -=∴-== ',Θ )C 为圆心。 7. 一个5cm 高的物体放在球面镜前10cm 处,成1cm 高的虚像。求:(1)此镜的曲率半径;(2)此镜是凸面镜还是凹面镜?

第一章 几何光学基本定律与成像概念

第一章几何光学基本定律与成像概念 1.试由折射定律证明光线的可逆性原理。 2.试对几何光学的每条基本定律提出一个实验来证明它。 3.弯曲的光学纤维可以将光线由一端传至另一端,这是否和光在均匀介质中直线传播 定律相违背? 4.证明光线通过置于空气中的几个平行的玻璃板时,出射光线和入射光线的方向永远 平行。 5.试说明,为什么远处灯火在微波荡漾的湖面形成的倒影拉得更长? 6.弯曲的光学纤维可以将光线由一端传至另一端,这是否和光在均匀介质中直线传播 定律相违背 7.证明光线通过几个平面的玻璃板时,出射光线和入射光线的方向永远平行。 8.太阳的高度恰好使它的光线和水平面成40°角,问镜子需怎样放置,才能使反光镜 的阳光垂直射入井底? 9.水的折射率是1.33,光线从空气射入水中,入射角是30°,问:折射角是多大?如 果光线从正入射连续改变到掠入射时,折射角相应地有多大的改变? 10.光以60°的入射角射到玻璃板上,一部分光被反射,一部分光被折射,若反射光线 和折射光线互成90°,玻璃的折射率是多少? 11.光从水射到某种玻璃时的相对折射率是1.18,从水射到甘油时的相对折射率是1.11, 光线从这种玻璃入射到甘油时的相对折射率是多少? 12.给出水(折射率1.33)和玻璃(折射率1.55)的分界面,求一束光在水中以45°角 入射到分界面上时透射光线的折射角,若现在倒过来光线沿此透射光方向返回从玻璃投射倒分界面上,证明其折射角为45°。 13.有一折射率为1.54的等腰直角棱镜,求入射光线与该棱镜直角边法线成什麽角度时, 光线经斜面反射后其折射光线沿斜边出射。 14.有一个玻璃球,其折射率为1.5163,处于空气中,今有一光线射到球的前表面,若 入射角为60°,求在该表面上此反射光线和折射光线之间的夹角。 15.折射率n1=1.4,n1′=n2=1.6,n2=1的三种介质,被二平行界面分开,试求在第二介 质中发生全反射时,光线在第一分界面上的入射角。 16.一条位于空气中的光学纤维,其芯线和包层的折射率分别为1.62和1.52,试计算该 光学纤维的数值孔径。 17.一个截面为等边三角形的棱镜,用光学玻璃ZF6制成,其折射率nc=1.7473(红光), nD=1.7550(黄光),nh=1.8061(紫光),若D光经第一折射面折射后与截面底边平行,而C光、F光在第一面的入射角与D光相同,求三色光经第二折射面后的折射角各为多少,并用示意图表示出三色光的位置。 18.试利用符号规则查出下列光组及光线的实际位置。(1)r=-30mm,L=-100mm,U=-10°; (2)r=30mm,L=-100mm,U=-10°;(3)r1=100mm,r2=-200mm,d=5mm,L=-200mm,U=-20°;(4)r=-40mm,L′=200MM,U′=-10°;(5)R=-40MM,L=-100mm,U=-10′,L′=-200mm。 19.试用符号规则画出几个图形,以表示公式h=rsinΦ,式中h为光线与球面交点到光轴 的距离(称入射高度),r为折射球面半径,Φ为光线入射点处法线与光轴的夹角。 20.试证明一个垂直于光轴的平面物体,即使用细光束成像,其像仍是一个曲面。 21.当要求允许相对误差为万分之一时,其近轴区的范围为多少? 22.与光轴成U=-3°32′46″的光线,自折射率n=1的介质射到r=100mm、折射率n′=1.6248

第一章 几何光学基本定律

第一章 几何光学基本定律 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2)将第一面镀膜,就相当于凸面镜 像位于第一面的右侧,只是延 长线的交点,因此是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像第二面镀膜,则:

几何光学的基本原理

《几何光学》练习题1 一、填空题 1.若平行平板的厚度为d,折射率为n,则其等效空气板的厚度为:。 2.全反射的条件是大于,光从光密介质射向光疏介质产生全反射。 5.某种透明物质对于空气的临界角为45°,该透明物质的折射率等于。6.半径为r的球面,置于折射率为n的介质中,系统的焦距与折射率关,光焦度与折射率关。 7.共轴球面系统主光轴上,物方无限远点的共轭点定义为;象方无限远的共轭点定义为。 9.光学系统在成象过程中,其β=-1.5,则所成的象为的象。(正立、放大、虚像) 10.在符号法则中(光线从左向右入射)规定:主光轴上的点的距离从量起,左负右正;轴外物点的距离上正下负;角度以为始边,顺时针旋转为正,反之为负,且取小于π/2的角度。 13.主平面是理想光具组的一对共轭平面;节点是理想光具组的一对共轭点。 14.在几何光学系统中,唯一能够完善成象的是系统,其成象规律为。 16.曲率半径为R的球面镜的焦距为,若将球面镜浸入折射率为n的液体内,该系统的焦距为。 17.通过物方主点的光线,必通过象方,其横向放大率为。20.实物位于凹球面镜的焦点和曲率中心之间,象的位置在与之间。 二、选择题 1.玻璃中的气泡看上去特别明亮,是由于 A,光的折射;B,光的反射;C,光的全反射;D,光的散射 2.通过一个厚玻璃观察一个发光点,看到发光点的位置 A,移近了;B,移远了;C,不变;D,不能确定 4.物象共轭点相对于透镜的位置有一种规律

A,物、象点必在透镜的同侧;B,物象点必在透镜的异侧; C,物象分别在F,Fˊ的同侧;D,物象点分别在F,Fˊ的异侧 6.棱镜的顶角为A,折射率为n,当A很小时的最小偏向角为 A,A;B,nA;C,(n-1)A;D,(n+1)A 7.在空气中,垂直通过折射率为n,厚度为d的平板玻璃观察物体,看到的象移近了 A,d/n;B,nd;C,(n-1)d; D.(n-1)d/n 10.空气中,平行光从平面入射到半径为3cm、折射率为1.5的玻璃半球,其象方焦点距离球面顶点为 A,2cm;B,4cm;C,6cm;D,8cm 12.放置于焦距为20cm的发散透镜左侧80cm处的物体的象在 A,透镜右侧16cm;B,透镜左侧16cm处;C,透镜右侧26.7cm;D,透镜左侧26.7cm处 15.双凸透镜的两曲率半径均为10cm,折射率为1.5,若将薄透镜置于水中(n=1.33),薄透镜的光心到镜心之间的距离等于 A,0;B,1cm;C,2cm;D,3cm。 17.曲率半径为10cm的凸球面镜,用s表示物距,能产生实象的虚物位置范围为 A,s>10cm;B,05cm;D,0

第01章 几何光学的基本概念和基本定律

2.解:由v c n =得: 光在水中的传播速度:)/(25.2333 .1)/(1038s m s m n c v =?==水水 光在玻璃中的传播速度:)/(818.165 .1)/(1038s m s m n c v =?==玻璃玻璃 3.一高度为1.7米的人立于离高度为5米的路灯(设为点光源)1.5米处,求其影子长度。 解:根据光的直线传播。设其影子长度为x ,则有 x x +=5.157.1可得x =0.773米 4.一针孔照相机对一物体于屏上形成一60毫米高的像。若将屏拉远50毫米,则像的高度为70毫米。试求针孔到屏间的原始距离。 解:根据光的直线传播,设针孔到屏间的原始距离为x ,则有 x x 605070=+可得x =300(毫米) 5. 有一光线以60°的入射角入射于的磨光玻璃球的任一点上, 其折射光线继续传播到球表面的另一点上,试求在该点反射和折射的光线间的夹角。 解:根据光的反射定律得反射角''I =60°,而有折射定律I n I n sin sin ' '=可得到折射角'I =30°,有几何关系可得该店反射和折射的光线间的夹角为90°。 6、若水面下200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围(圆直径)有多大? 解:已知水的折射率为 1.333,。由全反射的知识知光从水中到空气中传播时临界角为: n n m I 'sin ==333 .11=0.75,可得m I =48.59°,m I tan =1.13389,由几何关系可得被该发光点照亮的范围(圆直径)是2*200*1.13389=453.6(mm)

7、入射到折射率为 的等直角棱镜的一束会聚光束(见图1-3), 若要求在斜面上 发生全反射,试求光束的最大孔径角 解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会 发生全反射了。 由n I m 1sin =,得临界角 26.41=m I 得从直角边出射时,入射角 74.34590180=---=m I i 由折射定律 n U i 1sin sin =,得 5.68U =即 11.362U =

几何光学光学系统_成像与分析(2).

几何光学 光的折射与反射 O435.12006031858对运动镜面上的光反射行为的研究=Study o n the actio n of light r eflectio n o n the mov ement mirr or[刊,中]/朱孟正(淮北煤炭师范学院物理系.安徽,淮北(235000,赵春然淮北煤炭师范学院学报. 2006,27(1. 22 25 利用四维波矢量的洛伦兹变换,对光在运动镜面上的反射行为作了详细的分析,推导出此情形下入射角与反射角、入射光频率与反射光频率之间的关系。图5参 4(严寒 光学系统、成像与分析 TH7032006031859离轴反射式光学系统设计=Desig n o f reflect ive off ax is sy stem[刊,中]/伍和云(安徽建筑工业学院数理系.安徽,合肥(230022,王培纲光电工程. 2006,33(1. 34 37 提出通过光瞳和视场离轴,实现无中心遮拦的离轴反射式光学系统设计方法。在同轴三反射光学系统基础上,将光瞳和视场适当离轴,实现镜间遮拦的消除。分主镜或次镜为系统孔径光阑两种情况,导出同轴三反射光学系统初始像差公式和初始结构参数计算公式。由三反射系统成像性质,进一步总结无焦光路条件。根据设计理论计算离轴三反射系统初始结构,利用Zemax优化得到无中心遮拦的离轴三反射空间观测望远镜。入瞳320nm,视场( 0.3 ( 0.6 ,焦距1800mm。图7表4参5(于晓光 TH7032006031860反射折射多分辨率全向相机设计=Desig n of multi r eso lut ion omni dir ect ional camera based on catadioptric pr inci ple[刊,中]/李青(西安交通大学人工智能与机器人研究所.陕西,西安(710049,郑南宁光电工程. 2006, 33(2. 115 118 为了满足智能车辆自动驾驶的需要,提出了一种真正单视点、多分辨率的反射折射式系统,作为车载全向相机。该系统由光学反射器件和折射器件组成,由于使用了椭圆锥镜面的光学反射器件,故其是真正单视点的,能够为车辆前方场景提供比侧

几何光学基础教材介绍

几何光学基础 可见光,指那引起视觉的电磁波,这部分电磁波的波长范围约770-390纳米之间。光具有波粒二象性,它有时表现为波动,有时也表现为粒子(光子)的线形运动。几何光学就是以光的直线传播性质及光的反射和折射规律为基础,用数学方法研究光传播问题的学科。 几何光学研究的对象为光学仪器,研究一般光学仪器(透镜,凌镜,显微镜,望远镜,照相机)成像与消灭像差的问题,研究特种光学仪器(光谱仪,测距仪)的设计原理。本章仅就几何光学中光线及其传播规律问题做一介绍。 1.光线及光线的种类 在均匀介质中呈直线传播的光,就是光线。就光的传播而言在均匀介质中是呈直线传播的;从其本身而言,均匀均匀介质中的光为一直线。 自发光点发出许多光线,我们任意取围绕一个线传播的一束光线,这一束光线就叫光束。 1.散开光线。又称作发散光线 任何发光点发出光线都是发散的,这些光线总是表现在一定的空间,总是在一定的限度内表现为空间的物理现象,从发光点射向某一方向的光总是以发光点为顶点的锥体向外传播,沿锥体向外传播的光束称为散发光束,常称为发散光线。

人们为了便于理解,又把这立体图形简化为平面图形,但在理解知识的时 后,我们应该时时意设到,光是在空间意义上的光。 2.平行光线 由任何一点发出的光束,经过光学仪器后,光束中的光线的相对方 位改变为无相平行,成为平行光束,即平行光线。平行光线产生见 图1。 图1 通常所说的平行光线是就另外的意义而言,任何光源所发出的光线,如果光距越大,就越趋于平行,当光距无限大时,即可视为平行,这种光线就称为平行光线。在眼屈光学中,对光线的性质又作了人为的规定,并约定:5米及5米以外射来的光线,虽有发散性质,但同平行光线对眼生理光学的影响,差异实在微乎其微,故约定二者均为平行光线。那么,5米以内光源发出的光线即为发散光线。三.集合光线,又称会聚光线

几何光学的基本定律

第一节几何光学的基本定律 1、当半径为r 的不透明圆盘被照亮时,在其后l 处的屏上,得到半径为1 r 的全影和半径为的半影。光源也是圆盘形的而且由其中心到不透明圆盘中心的2r 连线垂且两圆盘和屏面,求光源的尺寸和光源矩被照亮圆盘的距离。 解:距离 ,光源半径r r r rl x 2221?+= r r r r r r y 2) (2112?+?= 2、太阳光球的直径等于1390000千米,太阳与地球之间的距离变化不大,平均为150000000千米,月球中心到地球表面的距离在357000至390000千米之间变动。若月球直径为3480千米,那么何时能有日全蚀?何时能有日环蚀? 解:当月球中心到地球表面的距离小于376000千米时.常发生日全蚀,当距离大于此值时,常发生日环蚀。 3、由光源发出的光通过孔之后,在孔后的屏上成象:试解释为什么当孔小时,成光源的象,而孔大时却成孔的象。 解:(略) 4、太阳光照射到不大的正方形平面镜上,反射后又照射到屏上,屏上照亮的部分是什么形状?它将如何随着平面镜和屏之间的距离的改变而改变? 解:若屏离镜面近,则被照亮的部分为四边形,着屏离镜面远则太阳成椭圆形的象。 5、在竖直的正方形金属网前放一水平的长狭缝。用强的扩展光源照亮狭 缝,光通过缝和网射到远处屏上,试描述在屏上得到什么样的图象,当继绕网平面的垂线旋转90度和45度时,将发生什么现象?研究如图l-a 和图1-b 所示的图。

解:屏上得到水平的明、暗条纹系。将缝旋转90度时,条纹变成竖直的。将其转45度时,在图la 所示格子的情况下,条纹消失,如图1b 所示格子的情况下,呈现与水平成45度角的条纹。在后一种情况下,条纹间距是水平(或竖直)条纹的间距的分之一。在所有情况下,条纹皆与缝平行。 26、上题中,若交换缝和网的位置,屏上图形将发生什么变化?解:图像的特性不变,然而条纹已经变得不很多了。 7、两平面镜彼此倾斜,形成二面角а。光线在垂直于角棱的平面内射到镜上。证明:经两平面镜反射后的光线对原来方向的偏角δ与入射角无关。并求δ。 解:。若计算角和时,按着下面的规则:设光首先由第一个镜αδ2=αδ子反射,然后再由第二个镜子反射,则这个公式对所有情况都是适用的。此时,应将理解为使第一个镜子与第二个镜子重合所应转动的角度。类似地,是这αδ样确定的,即为使光线原来的方向与由第二个镜子所反射的光线重合所需转动的角度。转动的方向是任意的,但在两种情况下,转动方向应相同(例如顺时针或逆时针),在求解其他题目时所进行的类似分析中,都应当注意这个原则。 8、试以矢量形式写出:在两种各向同性的透明介质的交界面上光的反射定

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻 璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n =

66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

第一章几何光学的基本原理试题库

一、 选择题 思考题作业3:选择:光由光疏介质进 )波长变长 (D )频率变大 思考题作业4:选择:光学系统的虚物定入光密介质时,有 (A )光速变大 (B )波长变短 (C 义为 (A )发散的入射同心光束的顶点 (B )会聚的入射同心光束的顶点 (C )发散的出射同心光束的顶点 (D )会聚的出射同心光束的顶点。 二、 作图题: 1.MN 为薄透镜的主轴, AB 和BC 是一对共扼光线.用作图的方法找出透镜的两个主焦点F 、F '的 位置,图示出透镜的性质。 三、 计算题: 1、某玻璃棱镜的折射棱角A 为45o,对某一波长的光,其折射率n=1.6,请计算:(1)此时的最小偏向角;(2)此时的入射角;(3)使光线从A 角两侧透过棱镜的最小入射角。 解:(1)∵2 sin 2 sin α δαm n += , ∴m δ=2arcsin αα-)2sin (n =2arcsin 45)2 45sin 6.1(-?= 4576.372-?=30.5o (2))(21min 1αδ+=i =)455.30(2 1 +=37.75o (3) 1 1sin sin i i n '==22 sin sin i i ' ∴2sin i =n i 2sin '=6 .190sin =6.11,6.11 arcsin 2=i =38.68o=38o41′ 而21 i i -='α=45o-38o41′=6o19′ )sin arcsin(11i n i '==)916sin 6.1arcsin('? ≈10.3o 2、光从水中射入到不与空气的界面,取水的折射率1n =4/3,空气的折射率2n =1,求此时的临界角。 解:c i =arcsin 1 2n n =arcsin 3/41=arcsin 43 ≈49o (光从玻璃棱镜与空气的界面上,玻璃棱镜的折射率为 1n =1.5,空气的折射率2 n =1,则 c i =arcsin 1 2n n =arcsin 13/2=arcsin 2 3≈42o) 3、水面下20cm 处有一点光源,试求出能折射出水面的光束的最大圆半径。 解:由题意可知,当水面下点光源S 射向水面的光线入射角i ≥c i 时,光线不能折射出水面,否则就可以折射出水面。 则折射出水面的光束最大圆半径为AB=AS ×tg c i n 空

1.1_几何光学的基本定律

第一节几何光学的基本定律 ?几何光学是以光线的概念为基础,采用几何的方法研究光在介质中的传播规律和光学系统的成像特性 ?按几何光学的观点,光经过介质的传播问题可归结为四个基本定律:光的直线传播定律、光的独立传播定律、光的反射定律和折射定律 ref: 几何光学的发展 ?先秦时代《墨经》

?330-260BC 欧几里德《反射光学》 ?965-1038AD 阿勒·哈增《光学全书》 ?十七世纪开普勒、斯涅尔、笛卡儿、费马 折射定律的确立,使几何光学理论得到很快的发展。 1.光波、光线、光束 light waves、raysand beams ·光波 光波是一种电磁波,是一定频率范围内的电磁波,波长比一般的无线电波的短 ?可见光:400nm-760nm ?紫外光:5-400nm ?红外光:780nm-40μm ?近红外:780nm-3μm ?中红外:3μm-6μm ?远红外:6μm-40μm

·光源light sources

?光源:任何能辐射光能的的物体 ?点光源:无任何尺寸,在空间只有几何位置的光源 实际中是当光源的大小与其辐射光能的作用距离相比可忽略不计,则视为点光源 ?光学介质optical mediums ?光学介质:光从一个地方传至另一个地方的空间。空气、水、玻璃?各向同性介质:光学介质的光学性质不随方向而改变 ?各向异性介质:单晶体(双折射现象) ?均匀介质:光学介质的不同部分具有相同的光学性质 均匀各向同性介质

·波前wave front ?波前:某一瞬间波动所到达的位置构成的曲面 ?波面:传播过程中振动相位相同的各点所连结成的曲面 在任何的时刻都只能有一个确定的波前;波面的数目则是任意多的?球面波:波面为球面的波,点光源 ?平面波:无穷远光源 ?柱面波:线光源

相关文档
相关文档 最新文档