文档库 最新最全的文档下载
当前位置:文档库 › 图像预处理的主要方案

图像预处理的主要方案

图像预处理的主要方案
图像预处理的主要方案

图像预处理的主要方案

1引言模拟世界的影像要为计算机系统所处理和理解一般要经过图像采集、图像预处理、特征取样、匹配分析等阶段。由于获取图像的工具或手段的影响成像系统获取的图像即原始图像由于受到种种条件限制和随机干扰往往不能直接使用必须在视觉信息处理的早期阶段对原始图像进行灰度校正、噪声过滤等图像预处理使获取图像无法完全体现原始图像的全部信息。因此对图像进行预处理就显得非常重要。预处理的目的是改善图像数据抑制不需要的变形或者增强某些对于后续处理来说比较重要的图像特征。

图1图像处理的输入输出简图在图像分析中对输入图像进行特征抽取、分割和匹配前所进行的处理。图像预处理的主要目的是消除图像中无关的信息恢复有用的真实信息增强有关信息的可检测性和最大限度地简化数据从而改进特征抽取、图像分割、匹配和识别的可靠性。预处理过程一般有数字化、几何变换、归一化、平滑、复原和增强等步骤。

2数字化一幅原始照片的灰度值是空间变量位置的连续值的连续函数。在M ×N点阵上对照片灰度采样并加以量化归为2b个灰度等级之一可以得到计算机能够处理的数字图像。为了使数字图像能重建原来的图像对M、N和b值的大小就有一定的要求。在接收装置的空间和灰度分辨能力范围内M、N和b的数值越大重建图像的质量就越好。当取样周期等于或小于原始图像中最小细节周期的一半时重建图像的频谱等于原始图像的频谱因此重建图像与原始图像可以完全相同。由于M、N和b三者的乘积决定一幅图像在计算机中的存储量因此在存储量一定的条件下需要根据图像的不同性质选择合适的M、N和b值以获取最好的处理效果。

3几何变换用于改正图像采集系统的系统误差和仪器位置的随机误差所进行的变换。对于卫星图像的系统误差如地球自转、扫描镜速度和地图投影等因素所造成的畸变可以用模型表示并通过几何变换来消除。随机误差如飞行器姿态和高度变化引起的误差难以用模型表示出来所以一般是在系统误差被纠正后通过把被观测的图和已知正确几何位置的图相比较用图中一定数量的地面控制点解双变量多项式函数组而达到变换的目的。

4归一化使图像的某些特征在给定变换下具有不变性质的一种图像标准形式。图像的某些性质例如物体的面积和周长本来对于坐标旋转来说就具有不变的性质。在一般情况下某些因素或变换对图像一些性质的影响可通过归一化处理得到消除或减弱从而可以被选作测量图像的依据。例如对于光照不可控的遥感图片灰度直方图的归一化对于图像分析是十分必要的。灰度归一化、几何归一化和变换归一化是获取图像不变性质的三种归一化方法。

5平滑消除图像中随机噪声的技术。对平滑技术的基本要求是在消去噪声的同时不使图像轮廓或线条变得模糊不清。常用的平滑方法有中值法、局部求平均法和k近邻平均法。局部区域大小可以是固定的也可以是逐点随灰度值大小变化的。此外有时应用空间频率域带通滤波方法。

6复原校正各种原因所造成的图像退化使重建或估计得到的图像尽可能逼近于理想无退化的像场。在实际应用中常常发生图像退化现象。例如大气流的扰动光学系统的像差相机和物体的相对运动都会使遥感图像发生退化。基本的复原技术是把获取的退化图像gxy看成是退化函数hxy和理想图像fxy的卷积。它们的傅里叶变换存在关系GuvHuvFuv。根据退化机理确定退化函数后就可从此关系式求出Fuv再用傅里叶反变换求出fxy。通常把称为反向滤波器。实际应用时由

于Huv随离开uv平面原点的距离增加而迅速下降为了避免高频范围内噪声的强化当u2v2大于某一界限值W娿时使Muv等于1。W0的选择应使Huv在u2v2≤W 娿范围内不会出现零点。图像复原的代数方法是以最小二乘法最佳准则为基础。寻求一估值弮使优度准则函数值最小。这种方法比较简单可推导出最小二乘法维纳滤波器。当不存在噪声时维纳滤波器成为理想的反向滤波器。

7增强对图像中的信息有选择地加强和抑制以改善图像的视觉效果或将图像转变为更适合于机器处理的形式以便于数据抽取或识别。例如一个图像增强系统可以通过高通滤波器来突出图像的轮廓线从而使机器能够测量轮廓线的形状和周长。图像增强技术有多种方法反差展宽、对数变换、密度分层和直方图均衡等都可用于改变图像灰调和突出细节。实际应用时往往要用不同的方法反复进行试验才能达到满意的效果。图像对比度处理是空间域图像增强的一种方法。由于图像灰度范围狭窄会使图像的对比度不理想可用对比度增强技术来调整图像灰度值的动态范围。

图像增强技术主要有两种方法空间域法和频率域法空间域方法主要是在空间域内对图像像素直接运算处理频率域方法就是在图像的某种变换域对图像的变换值进行运算如先对图像进行付立叶变换再对图像的频谱进行某种计算如滤波等最后将计算后的图像逆变换到空间域本章首先讨论直方图修正方法然后介绍各种滤波技术。

7.1直方图修正许多图像的灰度值是非均匀分布的其中灰度值集中在一个小区间内的图像是很常见的。直方图均衡化是一种通过重新均匀地分布各灰度值来增强图像对比度的方法。经过直方图均衡化的图像对二值化阈值选取十分有利一般来说直方图修正能提高图像的主观质量因此在处理艺术图像时非常有用。

直方图修正的一个简单例子是图像尺度变换把在灰度区间ba内的像素点映射到zzk1区间一般情况下由于曝光不充分原始图像灰度区间ba常常为空间zzk1的子空间此时将原区间内的像素点z映射成新区间内像素点z的函数表示为zzzbazazk1171上述函数的曲线形状见图51a上述映射关系实际上将ba区间扩展到区间zzk1上使曝光不充分的图像黑的更黑白的更白。

如果图像的大多数像素灰度值分布在区间ba则可以使用7.2式所示的映射函数bzzazzbzazazabzzzkk11172若要突出图像中具有某些灰度值物体的细节而又不牺牲其它灰度上的细节可以采用分段灰度变换使需要的细节灰度值区间得到拉伸不需要的细节得到压缩以增强对比度当然也可以采用连续平滑函数进行灰度变换。

这一方法存在的问题是当直方图被延伸后所得到的新直方图并不均匀也就是说各灰度值所对应的像素数并不相等因此更好的方法应该是既能扩展直方图又能使直方图真正地呈现均匀性如果预先设定灰度值分布那么就可以用下面的方法假定pi是原直方图中在灰度级zi上的像素点的数目iq是要得到的直方图在灰度级zi上的像素点的数目从原直方图的左边起找到灰度值k1使得111111kiikiipqp73灰度级1211...kzzz上的像素点将映射到新图像的灰度级为z1的像素点上现在求灰度值k2使得2212111kiikiipqqp74下一区间像素值121...kkzz被映射到灰度级z2上重复这一过程直到原始图像的所有灰度值都得到处理在那里原始图像对比度很弱原因是灰度值分布在一小区间内直方图均衡化通过映射灰度值来逼近均匀分布从而改善了对比度但是这一方法在均衡化后的直方图中仍然留下了间隙除非输入图像中具有同一灰度级的像素点在输出图中被延伸至几个灰度级如果直方图被延伸则在原始图像中具有相同灰度值的像

素点在新的图像中可能会被延伸成不同的灰度值最简便的方法就是为相同灰度值的每一个像素点分配一个随机的输出值为了把像素点均匀地分布在n个输出值11...nkkkqqq的范围内假定使用一个随机数发生器其产生的随机数均匀地分布在01内输出的像素点标号可以由随机数r通过计算公式rnk得到换句话说对每一次决策抽出一个随机数乘以区间内的输出值数目n后四舍五入取整最后将这一偏移量加到最低标号k上7.2图像线性运算许多图像处理系统都可以用一个线性系统作为模型输入线性系统输出xygxy对于线性系统当系统输入是一个中心在原点的脉冲xy时输出gxy就是系统的脉冲响应此外如果系统响应与输入脉冲的中心位置无关则该系统称为空间不变系统对于线性系统当系统输入是一个中心在原点的脉冲xy时输出gxy就是系统的脉冲响应此外如果系统响应与输入脉冲的中心位置无关则该系统称为空间不变系统输入空间不变线性系统输出00yyxx00yyxxg线性空间不变系统LinearSpaceInvariantLSI完全能用其脉冲响应来描述输入LSI系统输出fxygxyhxy其中fxy和hxy是输入和输出图像上面的系统必须满足关系式2121yxhbyxhayxfbyxfa其中fxy1和fxy2是输入图像hxy1和hxy2是对应于fxy1和fxy2的输出图像a和b是常系数比例因子对这样的系统其输出hxy可以用输入fxy与其脉冲响应gxy的卷积来定义.ydxdyyxxgyxfyxgyxfyxh75图像域的卷积对应于频率域的乘积因此对于图像域中非常费时的大滤波器卷积若使用快速付立叶变换fastfouriertransformFFT可以大大地提高计算效率FFT是许多图像处理应用领域里十分重要的方法但是在机器视觉中由于大多数算法是非线性的或空间可变的因此不能使用付立叶变换方法对于视觉模型为线性的、空间不变的系统由于滤波尺度很小使用快速付立叶变换几乎得不到什么益处因此在视觉预处理阶段通常使用线性滤波器如平滑滤波器等来完成图像时域卷积73线性滤波器图像常常被强度随机信号也称为噪声所污染一些常见的噪声有椒盐SaltPepper噪声、脉冲噪声、高斯噪声等椒盐噪声含有随机出现的黑白强度值而脉冲噪声则只含有随机的白强度值正脉冲噪声或黑强度值负脉冲噪声与前两者不同高斯噪声含有强度服从高斯或正态分布的噪声高斯噪声是许多传感器噪声的很好模型例如摄像机的电子干扰噪声ab图2被高斯噪声所污染的图像a原始图像b高斯噪声线性平滑滤波器去除高斯噪声的效果很好且在大多数情况下对其它类型的噪声也有很好的效果。线性滤波器使用连续窗函数内像素加权和来实现滤波。特别典型的是同一模式的权重因子可以作用在每一个窗口内也就意味着线性滤波器是空间不变的这样就可以使用卷积模板来实现滤波。如果图像的不同部分使用不同的滤波权重因子且仍然可以用滤波器完成加权运算那么线性滤波器就是空间可变的。任何不是像素加权运算的滤波器都属于非线性滤波器。非线性滤波器也可以是空间不变的也就是说在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化。下面主要介绍两种线性滤波器均值滤波器和高斯滤波器。

7.4非线性滤波均值滤波和高斯滤波运算的主要问题是有可能模糊图像中的尖锐不连续部分两种非线性滤波算法中值滤波和边缘保持滤波算法可以避免以上问题。

8结论在图像的各个领域中如医学影像、生物识别、视频监控等图像预处理都是必需的。事实上图像预处理算法的灵活度、复杂度、对图像处理芯片资源的占用度以及处理时间的长度将直接对整个系统运行产生举足轻重的影响。因此图像预处理是一项艰巨而又关键的任务直接决定了后续图像处理与分析的准确性和便捷性。

数字图像处理实验报告

实验一灰度图像直方图统计 一、实验目的 掌握灰度图像直方图的概念和计算方法,了解直方图的作用和用途。提高学生编程能力,巩固所学知识。 二、实验内容和要求 (1)用Photoshop显示、了解图像平均明暗度和对比度等信息; (2)用MatLab读取和显示一幅灰度图像; (3)用MatLab编写直方图统计的程序。 三、实验步骤 1. 使用Photoshop显示直方图: 1)点击文件→打开,打开一幅图像; 2)对图像做增强处理,例如选择图像→调整→自动对比度对图像进行灰度拉伸,观察图像进行对比度增强前后的视觉变化。 3)利用统计灰度图像直方图的程序分别针对灰度拉伸前后的灰度图像绘制其灰度直方图,观察其前后的直方图变化。 2.用MatLab读取和显示一幅灰度图像; 3. 绘制图像的灰度直方图; function Display_Histogram()

Input=imread('timg.jpg'); figure(100); imshow(uint8(Input)); title('原始图像'); Input_Image=rgb2gray(Input); figure(200); imshow(uint8(Input_Image)); title('灰度图像'); sum=0; His_Image=zeros(1,256); [m,n]=size(Input_Image); for k=0:255 for I=1:m for j=1:n if Input_Image(I,j)==k His_Image(k+1)=His_Image(k+1)+1; end end end end figure(300); plot(His_Image); title('图像的灰度直方图'); 4.显示图像的灰度直方图。

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

遥感图像预处理实验报告

实验前准备:遥感图像处理软件认识 1、实验目的与任务: ①熟悉ENVI软件,主要是对主菜单包含内容的熟悉; ②练习影像的打开、显示、保存;数据的显示,矢量的叠加等。 2、实验设备与数据 设备:遥感图像处理系统ENVI4.4软件; 数据:软件自带数据和河南焦作市影响数据。 3、实验内容与步骤: ⑴ENVA软件的认识 如上图所示,该软件共有12个菜单,每个菜单都附有下拉功能,里面分别包含了一些操作功能。 ⑵打开一幅遥感数据 选择File菜单下的第一个命令,通过该软件自带的数据打开遥感图像,可知,打开一幅遥感影像有两种显示方式。一种是灰度显示,另一种是RGB显示。 Gray(灰度显示)RGB显示 ⑶保存数据 ①选择图像显示上的File菜单进行保存; ②通过主菜单上的Save file as进行保存

⑷光谱库数据显示 选择Spectral > Spectral Libraries > Spectral Library Viewer。将出现Spectral Library Input File 对话框,允许选择一个波谱库进行浏览。点 击“Open Spectral Library”,选择某一所需的 波谱库。该波谱库将被导入到Spectral Library Input File 对话框中。点击一个波谱库的名称, 然后点击“OK”。将出现Spectral Library Viewer 对话框,供选择并绘制波谱库中的波谱曲线。 ⑸矢量化数据 点选显示菜单下的Tools工具栏,接着选择下面的第四个命令,之后选择第一个命令,对遥感图像进行矢量化。点击鼠标左键进行区域选择,选好之后双击鼠标右键,选中矢量化区域。 ⑹矢量数据与遥感影像的叠加与切割 选择显示菜单下的Tools工具,之后点选第一个 Link命令,再选择其下面的第一个命令,之后 OK,结束程序。 选择主菜单下的Basic Tools 菜单,之后选择 其中的第二个命令,在文件选择对话框中,选择 输入的文件(可以根据需要构建任意子集),将 出现Spatial Subset via ROI Parameters 对 话框通过点击矢量数据名,选择输入的矢量数 据。使用箭头切换按钮来选择是否遮蔽不包含在 矢量数据中的像元。 遥感图像的辐射定标 1、实验目的与任务: ①了解辐射定标的原理; ②使用ENVI软件自带的定标工具定标; ③学习使用波段运算进行辐射定标。 2、实验内容与步骤: ⑴辐射定标的原理 辐射定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等

图像处理实验报告

实验报告 实验课程名称:数字图像处理 班级:学号:姓名: 注:1、每个实验中各项成绩按照10分制评定,每个实验成绩为两项总和20分。 2、平均成绩取三个实验平均成绩。 2016年 4 月18日

实验一 图像的二维离散傅立叶变换 一、实验目的 掌握图像的二维离散傅立叶变换以及性质 二、实验要求 1) 建立输入图像,在64?64的黑色图像矩阵的中心建立16?16的白色矩形图像点阵, 形成图像文件。对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。 2) 调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中 心化)都显示于屏幕上,比较变换结果。 3) 调整输入图像中白色矩形的尺寸(40?40,4?4),再进行变换,将原始图像及变 换图像(三维、中心化)都显示于屏幕上,比较变换结果。 三、实验仪器设备及软件 HP D538、MATLAB 四、实验原理 傅里叶变换作为分析数字图像的有利工具,因其可分离性、平移性、周期性和共轭对称性可以定量地方分析数字化系统,并且变换后的图像使得时间域和频域间的联系能够方便直观地解决许多问题。实验通过MATLAB 实验该项技能。 设),(y x f 是在空间域上等间隔采样得到的M ×N 的二维离散信号,x 和y 是离散实变量,u 和v 为离散频率变量,则二维离散傅里叶变换对一般地定义为 ∑∑ -=-=+-= 101 )],( 2ex p[),(1 ),(M x N y N yu M xu j y x f MN v u F π,1,0=u …,M-1;y=0,1,…N-1 ∑∑-=-=+=101 )],( 2ex p[),(),(M x N y N uy M ux j v u F y x f π ,1,0=x …,M-1;y=0,1,…N-1 在图像处理中,有事为了讨论上的方便,取M=N ,这样二维离散傅里叶变换对就定义为 ,]) (2ex p[),(1 ),(101 ∑∑ -=-=+- = N x N y N yu xu j y x f N v u F π 1,0,=v u …,N-1 ,]) (2ex p[ ),(1 ),(101 ∑∑-=-=+= N u N v N vy ux j v u F N y x f π 1,0,=y x ,…,N-1 其中,]/)(2exp[N yv xu j +-π是正变换核,]/)(2exp[N vy ux j +π是反变换核。将二维离散傅里叶变换的频谱的平方定义为),(y x f 的功率谱,记为 ),(),(|),(|),(222v u I v u R v u F v u P +== 功率谱反映了二维离散信号的能量在空间频率域上的分布情况。 五、实验步骤、程序及结果: 1、实验步骤: (1)、编写程序建立输入图像; (2)、对上述图像进行二维傅立叶变换,观察其频谱 (3)、改变输入图像中白框的位置,在进行二维傅里叶变换,观察频谱;

数字图像处理第三版第五章答案

第五章 一个带通滤波通过从相应的带阻滤波而获得: 然后: (a)理想带通滤波: (b)巴特带通滤波: (c)高斯带通滤波:

带阻滤波器公式可以通过带通滤波器的公式得到。两者的和为1. ),(1),(v u H v u H np nr -= 然后: (a) 理想带阻滤波: { 01),(= v u H 2.巴特带阻滤波: 我不想输这个公式了,这个就是下面的巴特带通滤波的公式中1减的后面那个式子 (b) 巴特带通滤波: 3.高斯带阻滤波: 我不想输这个公式了,这个就是下面的高斯带通滤波的公式中1减的后面中括号那个式子 (c)高斯带通滤波:

二维连续余弦函数的傅里叶变换 dxdy e y v x u A dxdy e v u f v u F vy ux j vy ux j )(200)(2)cos(),(),(+-+-????+==ππ 余弦的变换 )(2 1cos θθ θj i e e -+= 带入得到 ] [2][2][2 ),()(2)2/2/(2)(2)2/2/(2) (2)()(00000000??????+-+-+-++-+-+--=+- =dxdy e e A dxdy e e A dxdy e e e A v u F vy ux j y v x u j vy ux j y v x u j vy ux j y v x u j y v x u j πππππππππ 这些都是傅里叶变换的功能 并且 结果变换成 )]2,2()2,2([2),(0000π πδππδv v u u v v u u A v u F ++---- =即可

指纹图像预处理及特征提取算法的研究与实现

2012年1月 内蒙古科技与经济 Januar y 2012 第1期总第251期 Inner M o ngo lia Science T echnolo gy &Economy N o .1T o tal N o .251 指纹图像预处理及特征提取算法的研究与实现 X 张松宇1,杨文斌2 (1.内蒙古机电职业技术学院;2.内蒙古灵奕信息技术有限责任公司,内蒙古呼和浩特 010070) 摘 要:提出了一套完整的基于方向特性的指纹预处理算法,包括前景/背景分割、方向滤波、二值化、细化4部分。特征提取采用8邻域方法提取纹线中的两种细节特征——端点和分叉点。实验结果表明,指纹图像经过预处理算法后提取出了纹线,并且很好地保留了纹线的关键信息,对特征提取奠定了良好的基础。指纹图像经过特征提取后,准确有效地定位了两类特征点。 关键词:指纹;预处理;特征提取 中图分类号:T P391.41 文献标识码:A 文章编号:1007—6921(2012)01—0083—02 自动指纹识别技术大多是依靠指纹的细节特征提取实现指纹的匹配的。准确地提取细节特征是自动指纹识别系统获得高识别率的前提和基础。指纹的细节特征主要指脊线端点和分叉点。在实践中,由于手指本身的因素和采集条件的限制,采集到的指纹图像会不同程度地受到各种噪声的干扰。这种干扰最终会影响系统的识别率。因此,在提取指纹特征前必须对输入的指纹图进行预处理。预处理的目的是:去除原图像中的噪声,把它变成一幅清晰的二值点线细化图,以便于提取正确的细节特征。笔者提出了一套较完善的指纹预处理算法,包括图像分割、方向滤波增强、二值化、细化等步骤,并准确有效地提取出了指纹的细节特征点。1 预处理算法 1.1 规格化和图像分割 规格化的主要目的在于消除指纹采集过程中由于传感器自身的噪声以及因为手指压力不同而造成的灰度差异,将不同的指纹图像的对比度和灰度调整到一个固定的级别上。图像分割是把指纹前景区与背景区分开。前景区域中指纹脊和谷的灰度差是比较大的,因而其灰度统计特性中局部灰度方差是很大的,而对于图像背景区域,这一值是很小的。基于这一特性,我们可以利用图像的局部方差对指纹图像进行分割。规格化与图像分割后的指纹图像见图1。 1.2 方向图滤波 方向图是指纹图像的一种变换表示方式,即用纹线的方向来表示该纹线。方向图有点方向图和块方向图两种,点方向图表示指纹图像中每一像素点脊线的方向,而块方向图则表示指纹图像中每一块 脊线的大致方向。 图1 原始图像的规格化与分割 方向滤波器是一系列与像素点方向有关的滤波器模板,使用时根据方向特性,从中选择一个对应的滤波器进行滤波。笔者使用的方向滤波器有8个滤波器模板组成,滤波时,指纹图中每一点的灰度值由其周围48个点的灰度值及相应的模板系数共同决定(即灰度值与相应的模板系数相乘并把结果相加,然后赋给中心像素点,作为其灰度值)。方向滤波增强后的指纹图像见图2 。 图2 方向滤波后指纹图像 1.3 二值化和细化 二值化的目的是把灰度指纹图像变成0和1的二值图像。笔者采用局部自适应阈值法中的动态阈值法对图像二值化,它可以根据局部灰度值的变化情况调整阈值大小,实验证明该方法效果较好。 二值化后的图像脊线仍具有一定的宽度,为了提高获取特征点精度,需要把脊线细化成为一个像 ? 83?X 收稿日期:2011-11-28

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

东北大学图像处理实验报告

计算机图像处理实验报告 哈哈哈哈哈哈实验台31 1.应用MATLAB语言编写显示一幅灰度图像、二值图像、索引图像及 彩色图像的程序,并进行相互之间的转换 1)彩色图像转换为灰度图像、索引图像、二值图像 A=imread('F:\colorful.jpg'); subplot(221);imshow(A);title('彩色图像'); I1=rgb2gray(A); subplot(222);imshow(I1);title('灰度图像'); [X1,map]=rgb2ind(A,256); subplot(223);imshow(X1);title('索引图像'); BW=im2bw(A); subplot(224);imshow(BW);title('二值图像'); 彩色图像灰度图像 索引图像二值图像

2)灰度图像转换为索引图像、二值图像 clear A=imread('F:\colorful.jpg'); B=rgb2gray(A); subplot(131);imshow(B);title('灰度图像'); [X2,map]=gray2ind(B,128); subplot(132);imshow(X2);title('索引图像'); BW2=im2bw(B); subplot(133);imshow(BW2);title('二值图像'); 灰度图像索引图像二值图像 3)索引图像转为灰度图像、二值图像、彩色图像 clear A=imread('F:\colorful.jpg'); [X,map]=rgb2ind(A,256); subplot(221);imshow(X);title('索引图像'); I3=ind2gray(X,map); subplot(222);imshow(I3);title('灰度图像'); BW3=im2bw(X,map,0.5); subplot(223);imshow(BW3);title('二值图像'); RGB=ind2rgb(X,map); subplot(24);imshow(RGB);title('还原彩色图像'); 索引图像灰度图像 二值图像还原彩色图像

图像目标提取及特征计算

摘要 对图像进行研究和应用时,人们往往对图像中的某些部分感兴趣,这些部分常被称为目标或对象 目标或对象特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 本课设需要解决的问题是,利用阈值分割方法,对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。 关键词:阈值分割,边缘检测,像素点

1 绪论 目标的特征提取是图像处理和自动目标识别(ATR)中的一个重要的研究课题,是解决图像识别问题的难点和关键。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。

2 设计原理 2.1 常用的特征提取的方法 提取图像空间关系特征可以有两种方法:一种方法是首先对图像进行自动分割,划分出图像中所包含的对象或颜色区域,然后根据这些区域提取图像特征,并建立索引;另一种方法则简单地将图像均匀地划分为若干规则子块,然后对每个图像子块提取特征,并建立索引。 本课程设计是采用的第一种方法,即先对该图像进行分割,得到提取那个目标后的二值图像,计算该目标的面积、周长、中心坐标等三个参数。阈值分割采用的是全局阈值分割方法,而面积、周长的计算则是先通过将图像转换成二值图像,在通过计算二值图像像素点的方式求取。其中计算周长时,先需要对二值图像进行边缘检测,然后再统计其像素点。 2.2 阈值分割原理 图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。 2.2.1 阈值分割思想和原理 阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图

图像处理实验报告

武汉大学新闻与传播学院实验教学中心实验报告 专业:网络传播专业2010年10 月25 实验名称图像处理指导教师洪杰文 姓名华滢年级08 学号2008300710123 成绩 一、预习部分 1、实验目的 2、实验基本原理 3、主要仪器设备(含必要的元器件、工具) 1、实验目的:(1)熟悉和掌握数字图像的基本概念和技术指标,掌握色彩模式、图像分辨率、图像深度、图像文件格式与图像的显示效果、文件容量的关系。 (2)了解和掌握数字图像压缩的概念,观察不同的压缩比对图像的影响。 (3)了解和掌握图像中色彩的确定及选取方法,掌握前景色和背景色的概念及调整方法,掌握色彩填充的基本概念及应用。 (4)了解和掌握图像处理软件Photoshop的基本功能和基本使用方法,熟练掌握图层与选择区的基本使用方法。 (5)通过创造性的构图和对布局及色彩等的巧妙处理,一幅好的图画可以将一个主题以含蓄而又深刻的方式予以提示,并往往具有比单纯的语言文字更强的表现力。在掌握图像处理基本概念和Photoshop基本使用方法的基础上,对已有的数字图像做一些基本的创意设计和编辑处理。 2、实验基本原理:基于photoshop软件的图像处理。 3、主要仪器设备(含必要的元器件、工具):Adobe Photoshop 二、实验操作部分 1、实验操作过程 2、实验数据、观察到的实验现象 1、实验操作过程: 1.图像的基本变换 (1)自选一幅不小于400×400pixel的彩色数字图像。在Photoshop中打开该图像,记录其技术参数:文件格式、文件容量,图像尺寸(pixel和cm)、分辨率、色彩模式等。

文件格式:JPEG 图像;文件容量:59.7kb;图像尺寸(pixel和cm):600×600pixel;分辨率:72像素/英寸;色彩模式:RGB模式。 (2)对该图像重采样,要求采样后的图像分辨率为150dpi,图像尺寸为300×300pixel。色彩模式分别变换成灰度、Indexed和RGB模式,按BMP格式分别保存成不同名称的图像文件;重新打开并观察变换后的显示效果,并记录各个文件的容量。 灰度:容量大小为:88.9kb Indexed;容量大小为:88.9kb

数字图像处理实验报告.doc

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名: XX学号: 2XXXXXXX实验日期:2017年4月26日 1. 实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2. 实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在 同一窗口中显示。 3)使用函数 imfilter时,分别采用不同的填充方法(或边界选项,如零填 充、’ replicate ’、’ symmetric ’、’ circular ’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示 : 利用 fspecial 函数的’ average ’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2.锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 81;1,1, 1] 对其进行滤波。 2) 编写函数 w = genlaplacian(n) ,自动产生任一奇数尺寸n 的拉普拉斯算子,如 5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15 和 25×25 大小的拉普拉斯算子对blurry_moon.tif

图像预处理的主要方案

图像预处理的主要方案 1引言模拟世界的影像要为计算机系统所处理和理解一般要经过图像采集、图像预处理、特征取样、匹配分析等阶段。由于获取图像的工具或手段的影响成像系统获取的图像即原始图像由于受到种种条件限制和随机干扰往往不能直接使用必须在视觉信息处理的早期阶段对原始图像进行灰度校正、噪声过滤等图像预处理使获取图像无法完全体现原始图像的全部信息。因此对图像进行预处理就显得非常重要。预处理的目的是改善图像数据抑制不需要的变形或者增强某些对于后续处理来说比较重要的图像特征。 图1图像处理的输入输出简图在图像分析中对输入图像进行特征抽取、分割和匹配前所进行的处理。图像预处理的主要目的是消除图像中无关的信息恢复有用的真实信息增强有关信息的可检测性和最大限度地简化数据从而改进特征抽取、图像分割、匹配和识别的可靠性。预处理过程一般有数字化、几何变换、归一化、平滑、复原和增强等步骤。 2数字化一幅原始照片的灰度值是空间变量位置的连续值的连续函数。在M ×N点阵上对照片灰度采样并加以量化归为2b个灰度等级之一可以得到计算机能够处理的数字图像。为了使数字图像能重建原来的图像对M、N和b值的大小就有一定的要求。在接收装置的空间和灰度分辨能力范围内M、N和b的数值越大重建图像的质量就越好。当取样周期等于或小于原始图像中最小细节周期的一半时重建图像的频谱等于原始图像的频谱因此重建图像与原始图像可以完全相同。由于M、N和b三者的乘积决定一幅图像在计算机中的存储量因此在存储量一定的条件下需要根据图像的不同性质选择合适的M、N和b值以获取最好的处理效果。 3几何变换用于改正图像采集系统的系统误差和仪器位置的随机误差所进行的变换。对于卫星图像的系统误差如地球自转、扫描镜速度和地图投影等因素所造成的畸变可以用模型表示并通过几何变换来消除。随机误差如飞行器姿态和高度变化引起的误差难以用模型表示出来所以一般是在系统误差被纠正后通过把被观测的图和已知正确几何位置的图相比较用图中一定数量的地面控制点解双变量多项式函数组而达到变换的目的。 4归一化使图像的某些特征在给定变换下具有不变性质的一种图像标准形式。图像的某些性质例如物体的面积和周长本来对于坐标旋转来说就具有不变的性质。在一般情况下某些因素或变换对图像一些性质的影响可通过归一化处理得到消除或减弱从而可以被选作测量图像的依据。例如对于光照不可控的遥感图片灰度直方图的归一化对于图像分析是十分必要的。灰度归一化、几何归一化和变换归一化是获取图像不变性质的三种归一化方法。 5平滑消除图像中随机噪声的技术。对平滑技术的基本要求是在消去噪声的同时不使图像轮廓或线条变得模糊不清。常用的平滑方法有中值法、局部求平均法和k近邻平均法。局部区域大小可以是固定的也可以是逐点随灰度值大小变化的。此外有时应用空间频率域带通滤波方法。 6复原校正各种原因所造成的图像退化使重建或估计得到的图像尽可能逼近于理想无退化的像场。在实际应用中常常发生图像退化现象。例如大气流的扰动光学系统的像差相机和物体的相对运动都会使遥感图像发生退化。基本的复原技术是把获取的退化图像gxy看成是退化函数hxy和理想图像fxy的卷积。它们的傅里叶变换存在关系GuvHuvFuv。根据退化机理确定退化函数后就可从此关系式求出Fuv再用傅里叶反变换求出fxy。通常把称为反向滤波器。实际应用时由

数字图像处理实验报告_图像边缘检测和特征提取

华南师范大学实验报告 一、实验目的 1、.掌握边缘检测的Matlab实现方法 2、了解Matlab区域操作函数的使用方法 3、了解图像分析和理解的基本方法 4、了解纹理特征提取的matlab实现方法 二、实验平台 计算机和Matlab软件环境 三、实验内容 1、图像边缘检测 2、图像纹理特征提取 四、实验原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。 导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 f x ? ? 与 f y ? ? 是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率, 而方向α上的灰度变化率可以用下面式子计算:

图像预处理方法

预处理就是在图像分析中,对输入图像进行特征抽取等前所进行的处理。输入图像 由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声, 对比度不够等缺点。另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和 位置不确定。为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对 图像进行预处理。图像预处理的主要目的是消除图像中无关的信息,滤除干扰、噪声, 恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征 抽取的可靠性? 人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。人脸 扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅 在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。归一化工作的目标是 取得尺寸一致,灰度取值范围相同的标准化人脸图像 ⑷。 2.1几何规范化 由于图像在提取过程中易受到光照、 表情、姿态等扰动的影响,因此在识别之前需要 对图像做归一化的预处理⑷,通常以眼睛坐标为基准点,通过平移、旋转、缩放等几何仿射 变换对人脸图像进行归一化。因为人脸虽然是柔性的三维曲面,同一人脸因表情变化会有 差异,但相对而言人的两眼之间的距离变化不会很大,因此双眼的位置及眼距,就成为人脸 图像归一化的依据。 定位眼睛到预定坐标,将图像缩放至固定大小。通过平移、旋转、缩放等几何仿射变 换,可以对人脸图像做几何规范化处理,仿射变换的表达式为: 其中(u,v)表示输入图像中像素的坐标(x,y)表示输出图像中像素的坐标。将上式展开 可得 x a^u a ?1v a 31 y a^u a ?2v a 32 平移变换就是给图像中的所有点的坐标都加上 u 和v ,其变换表达式为 a ii a 12 0 [x,y,1] [u,v,1][a 2i a 31 a 22 0] a 32 1 (2-1) (2-2)

图像处理实验报告

2016年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:图像处理与分析 学生所在院(系):理学院数学系 学生所在学科:计算数学 学生姓名: 学号: 导师: 学生类别: 考核结果阅卷人

第 1 页(共 27 页) 1 实验目的 过MATLAB 软件编程熟悉MATLAB 图像处理的一般过程,例如图像的导入,对源图像进行手动加各种噪声(高斯噪声、瑞丽噪声、伽马噪声、指数噪声、椒盐噪声),通过热传导方程,热传导逆方程,PM 模型,TV 模型,LAPLACE 模型,P_LAPLACE 模型,P(x)_LAPLACE 模型,在对图像进行处理的过程中引入Signal_Noise_Ratio (信噪比SNR )、Peak_Signal_Noise_Ratio (峰值信噪比PSNR )、Mean_Absolute_Error (绝对均差MAE )对处理后的图像质量进行评判。 2实验原理 2.1热传导方程模型 Tikhonov 和Arsenin 提出如下模型:能量泛函 22min ()||||2u E u u dx u f dx λ Ω Ω =?+ -?? 其对应的Euler_Lagrange 方程 0() |0dE u v d εεε =+= 由最速下降法求解可转化为如下的线性方程: (),(,)(0,)(,0),0,(,)(0,)du u u f x t T dt u x f x du x t T d n λ?=?--∈Ω??? =∈Ω ???=∈?Ω?? 注意:在用最速下降法推导方程的过程中左端项应该为: 0(),(,)(0,)(,0),0,(,)(0,)u u f x t T u x f x du x t T d n λ? ?=?--∈Ω?? =∈Ω ???=∈?Ω??

数字图像处理实验报告 (2)

数字图像处理试验报告 实验二:数字图像得空间滤波与频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26日 1、实验目得 1、掌握图像滤波得基本定义及目得. 2、?理解空间域滤波得基本原理及方法。 3、掌握进行图像得空域滤波得方法。 4、?掌握傅立叶变换及逆变换得基本原理方法。 5、?理解频域滤波得基本原理及方法。 6、掌握进行图像得频域滤波得方法。 2、实验内容与要求 1、?平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同 一图像窗口中。 2)?对加入噪声图像选用不同得平滑(低通)模板做运算,对比不同模板所形成得效果, 要求在同一窗口中显示。 3) 使用函数 imfilter时,分别采用不同得填充方法(或边界选项,如 零填充、’replicate'、'symmetric’、’circular')进行低通滤波,显 示处理后得图像. 4)运用for循环,将加有椒盐噪声得图像进行10 次,20 次均值滤波,查瞧其特点,显示均值处理后得图像(提示:利用fspecial函数得’average’ 类型生成均值滤波器)。 5)?对加入椒盐噪声得图像分别采用均值滤波法,与中值滤波法对有噪声得图像做处理, 要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后得图像。 2、锐化空间滤波 1)?读出一幅图像,采用3×3得拉普拉斯算子 w = [ 1, 1, 1;1– 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 得拉普拉斯算子, 如 5 ×5得拉普拉斯算子 w =[ 1 1 1 1 1 1 1 1 1 1 1 1 —24 1 1 1 1 1 1 1 1 1 1 1 1] 3)?分别采用5×5,9×9,15×15与25×25大小得拉普拉斯算子对blurry_moon、tif

图像预处理方法

图像预处理方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

预处理就是在图像分析中,对输入图像进行特征抽取等前所进行的处理。输入图像由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声,对比度不够等缺点。另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和位置不确定。为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对图像进行预处理。图像预处理的主要目的是消除图像中无关的信息,滤除干扰、噪声,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进特征抽取的可靠性. 人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。归一化工作的目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像[4]。 几何规范化 由于图像在提取过程中易受到光照、表情、姿态等扰动的影响,因此在识别之前需要对图像做归一化的预处理[4],通常以眼睛坐标为基准点,通过平移、旋转、缩放等几何仿射变换对人脸图像进行归一化。因为人脸虽然是柔性的三维曲面,同一人脸因表情变化会有差异,但相对而言人的两眼之间的距离变化不会很大,因此双眼的位置及眼距,就成为人脸图像归一化的依据。 定位眼睛到预定坐标,将图像缩放至固定大小。通过平移、旋转、缩放等几何仿射变换,可以对人脸图像做几何规范化处理,仿射变换的表达式为: ]100][1,,[]1,,[323122 211211 a a a a a a v u y x = (2-1) 其中(u,v)表示输入图像中像素的坐标(x,y)表示输出图像中像素的坐标。将上式展开可得 32221231 2111u a x a v a u a y a v a ++=++= (2-2) 平移变换就是给图像中的所有点的坐标都加上u ?和v ? ,其变换表达式为 ]1 u 0100 01][1,,[]1,,[v v u y x ??= (2-3) 将图像中的所有点相对于坐标原点逆时针旋转θ角的变换表达式为 ]1 000cos sin 0sin cos ][1,,[]1,,[θθ θθ -=v u y x (2-4) 缩放变换既是将图像按给定的比例r 放大或缩小,当1>r 时图像被放大,当10<

数字图像处理实验报告

数字图像处理实验 报告 学生姓名:学号: 专业年级: 09级电子信息工程二班

实验一常用MATLAB图像处理命令 一、实验内容 1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 实验结果如右图: 代码如下: Subplot (1,3,1) i=imread('E:\数字图像处理\2.jpg') imshow(i) title('RGB') Subplot (1,3,2) j=rgb2gray(i) imshow(j) title('灰度') Subplot (1,3,3) k=im2bw(j,0.5) imshow(k) title('二值') 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (3,2,1) i=imread('E:\数字图像处理 \16.jpg') x=imresize(i,[250,320]) imshow(x) title('原图x') Subplot (3,2,2) j=imread(''E:\数字图像处理 \17.jpg') y=imresize(j,[250,320]) imshow(y) title('原图y') Subplot (3,2,3) z=imadd(x,y) imshow(z)

title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果') Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果') Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果') 3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (2,2,1) i=imread('E:\数字图像处理 \23.jpg') imshow(i) title('原图') Subplot (2,2,2) J = imadjust(i,[],[],3); imshow(J) title('变暗') Subplot (2,2,3) J = imadjust(i,[],[],0.4) imshow(J) title('变亮') Subplot (2,2,4) J=255-i Imshow(J) title('变负') 二、实验总结 分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。 解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像X、Y的大小类型相同,但是图像减运算imsubtract()有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。 乘运算实际上是对两幅原始图像X、Y对应的像素点进行点乘(X.*Y),将结果输出到矩阵Z中,若乘以一个常数,将改变图像的亮度:若常数值大于1,则乘运算后的图像将会变亮;叵常数值小于是,则图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。 除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进行点(X./Y), imdivide()同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。 加法运算的一个重要应用是对同一场景的多幅图像求平均值 减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的分离。

相关文档
相关文档 最新文档