文档库 最新最全的文档下载
当前位置:文档库 › 反相高效液相色谱(HPLC)技术及其发展

反相高效液相色谱(HPLC)技术及其发展

反相高效液相色谱(HPLC)技术及其发展
反相高效液相色谱(HPLC)技术及其发展

反相高效液相色谱(HPLC)技术及其发展

作者:胡亮

作者单位:江苏省徐州医药高等职业学校,221116

刊名:

中国科技信息

英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION

年,卷(期):2006(9)

被引用次数:5次

本文读者也读过(6条)

1.孙守成气相色谱和高压液相色谱及其与质谱联用技术发展近况[期刊论文]-现代仪器2003,9(1)

2.汪正范.潘甦民.江炜超高压液相色谱技术在2006年HPLC的发展中占据重要地位[期刊论文]-现代仪器

2007,13(3)

3.邹薇.戈扬高效液相色谱法测定穿心莲内酯胶囊的含量[期刊论文]-中国药业2004,13(8)

4.敬永升.胡海廷.张雨HPLC法测定穿心莲内酯滴丸中穿心莲内酯的含量[期刊论文]-河南大学学报(医学版)2009,28(3)

5.王全华薄层扫描法测定感冒康胶囊中穿心莲内酯的含量[期刊论文]-中国药业2003,12(3)

6.张鹏.向轶波.郝俊杰.张桢.肖怀HPLC法分离狐尾葛甾体成分研究[期刊论文]-安徽农业科学2011,39(1)

引证文献(5条)

1.徐桂香.杨婕.陈钟文HPLC法测定知柏地黄丸浓缩丸中马钱苷的含量[期刊论文]-河南中医学院学报 2007(4)

2.管玉霞.蓝基贤反相高效液相色谱测定庆大霉素效价方法的研究[期刊论文]-世界科技研究与发展 2009(4)

3.邢莉丽.管玉霞反相高效液相色谱对生物中ATP和ADP的检测[期刊论文]-科技信息(科学·教研) 2007(34)

4.樊生华.邢莉丽.管玉霞以反相高效液相色谱法测定生物组织及细胞中的能量代谢变化[期刊论文]-中国组织工程研究与临床康复 2008(34)

5.翟焕趁.史怀.宋亚娜.郑伟文反相HPLC法同时测定青梅中的7种有机酸[期刊论文]-福建农业学报 2007(4)

引用本文格式:胡亮反相高效液相色谱(HPLC)技术及其发展[期刊论文]-中国科技信息 2006(9)

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱。正相柱大多以硅胶为柱,或是在硅胶表面键合 -CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

高效液相色谱柱

高效液相色谱柱 怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团(NH2,APS)和氰基团(CN,CPS)的键合相填料。由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有更强的保留。常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料 聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC,氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用,新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行中。 怎样选择填料粒度 目前,商品化的色谱料粒度从1um到超过30um均有销售,而目前分析分离主要用3um、5um

反相高效液相色谱法测定茶叶中咖啡因的含量

实验一反相高效液相色谱法测定茶叶中咖啡因的含量 一.实验目的 1. 熟悉液相色谱仪的基本构造和操作方法 2. 学会利用外标法对物质进行色谱定量分析 二.仪器与试药 仪器: 高效液相色谱仪(日本岛津10AVP型)、溶剂过滤器、样品溶液过滤器、微量进样器 试药:甲醇、乙腈、超纯水、咖啡因对照品 三、色谱条件 色谱柱:C18(250×4.6,5um) 流动相:甲醇-乙腈-水=45:10:45 (v/v) 检测器及检测波长:紫外检测器280nm 流速:0.6ml/min 四、实验操作 1.对照品溶液的配制:准确称取咖啡因对照品适量,用乙腈:水(1:1)混合溶剂配制成1.0mg/mL 咖啡因储备液;分别移取10μL、20μL、30μL、40μL咖啡因储备液,用超纯水定容至5mL,配制成浓度为2.0μg/mL、4.0μg / mL、6.0μg /mL、8.0 μg/mL的一系列对照品溶液,备用。 2. 样品溶液的配制:准确称取0.035g茶叶, 加乙腈:水(1:1)混合溶剂8mL,超声提取10min,用超纯水定容至10mL,过滤并稀释20倍,备用。 3. 调用或创建咖啡因测定方法并运行方法 4. 测定:待基线平稳后,分别吸取25μL对照品溶液和样品溶液进样。 五、数据处理及计算 以对照品溶液峰面积与对应含量绘制工作曲线,根据样品溶液峰面积在曲线上查出其进样时含量,并计算得到茶叶中咖啡因的百分含量。 六、思考题 1.液相色谱与气相色谱相比较有哪些不同? 2. 如果用液相色谱法测定可乐中咖啡因,样品应该如何处理?

附:岛津10AVP型高效液相色谱仪操作 一、开机 1.打开计算机。 2.开启高效液相色谱仪各部件电源开关(脱气机→A泵→B泵→检测器→柱温箱→主控器)。 3.待高效液相色谱仪各部件自检完毕,在计算机上启动化学工作站ClassVP 并点击Instrument ,输入用户名和密码,点击确定。 二、实验参数的设置 在Method下,进行操作: 1.单击溶剂瓶图标,设置所用溶剂瓶中溶剂量后,点击OK;单击高压泵图标,设置泵流速0.6mL·min-1,梯度洗脱溶剂B(水)0%,最高柱压设为2.0×107 Pa。 2.单击色谱柱图标,设置柱温箱温度为25℃。 3.单击检测器图标,设置检测波长为280nm,,数据采集时间7min。 四、运行样品 1.打开Purge阀。 2.运行Instrument菜单下System On命令启动系统(或单击各图标的on图标启动系统)。 3.待废液管中无气泡流出,关闭Purge阀。 4.待基线稳定之后,单击single run, 进行样品信息编辑。 5. 用微量进样器进样后,扳动手动进样阀至Inject位置,仪器自动开始纪录。 6.待测物出峰完全后,按F8停止采集数据。 五、实验数据处理 1.定性、定量分析参数的设定 (1)一级校正表的建立 ①在Data Analysis界面下,点击File菜单下的Load Signal,调用低浓度标样的实验结果。 ②优化谱图:打开Graphics菜单,选择Signal Options选项,进入Signal Option编辑框,在Range选择中选择Use Range,输入适当的参数。 ③优化积分:在Data Analysis 界面下,单击Integration菜单,选择Integration Event,选择适当的参数,编辑积分项目。

怎样选择色谱柱

怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但 是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团 (NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品 中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。 正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。 反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。 样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有 更强的保留。 常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料

聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~ 14均可使用。 相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白 质等样品的分离非常有效。 现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的 用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基 键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基 键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由 于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC, 氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。 但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用, 新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应 用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难 度,其重要用途与优势尚在进行中。

影响反相高效液相色谱分离的因素

实验二 影响反相高效液相色谱分离的因素 一、实验目的 1. 了解高效液相色谱仪器结构; 2. 熟悉溶质结构、溶剂组成和固定相对溶质保留值的影响; 3. 了解影响反相高效液相色谱分离的因素。 二、实验原理 1. 反相色谱保留机制:疏溶剂理论 溶质的疏水性、流动相的极性(表面张力)和固定相的烷基链长影响溶质的保留。 2. 影响溶质分离的因素 n :柱长、柱效 α:流动相组成与性质、固定相性质、柱温等 k :流动相组成与性质、固定相性质、柱温等 三、实验条件 色谱柱:C18(150 mm×4.6mm ;250 mm×4.6mm ) 流动相:甲醇-水(100,95/5,90/10);流速:1.0(0.8,0.6,)mL·min -1 检测:UV 254 nm 样品:苯、萘、蒽 四、操作步骤 1. 流动相组成对分离的影响 在C18(150 mm×4.6mm )和1.0 mL·min -1流速下,依次更换流动相,在每个体系中,均注入 2. 流动相流速对分离的影响 在C18(150 mm×4.6mm )和甲醇-水(90/10)下,依次更换流动相流速,在每个体系中,均 ??? ??+??? ? ??-= k k ααR ,,11n 4 11212

注入5 μL苯-甲苯-萘混合样品,记录色谱图,计算对应的n、k和R。 3. 柱长对分离的影响 更换色谱柱,在甲醇-水(90/10,v=1.0 mL·min-1)体系中,注入5 μL苯-甲苯-萘混合样品, 、α和R。 记录色谱图,计算对应的k 五、数据处理 1.根据操作步骤1,绘制lgk~CH3OH%曲线。 2.根据操作步骤1、2和3,说明流动相组成、流速和柱长对k和R的影响。 六、思考题 1.根据本实验的主要结论,指出下列各组物质在反相色谱中的洗脱顺序。 (1)苯、苯酚和萘;(2)苯酚、邻甲酚和2,4-二甲酚;(3)正丁醇、仲丁醇和叔丁醇 2. 在反相柱上欲分离三个相邻的组分,初试未达到完全分离。如何实现完全分离?

实验十二 反相高效液相色谱法分析尼泊金乙酯综述

实验十二反相高效液相色谱法分析尼泊金乙酯 预习提示 1.液相色谱仪的基本结构及操作技术 2.什么是反相液相色谱,反相高效液相色谱的分离特点是什么。 3.色谱分析外标定量法的操作要点。 一、目的要求 1.熟悉高效液相色谱仪器操作技术; 2.掌握HPLC保留值定性方法和外表定量方法。(了解定制报告编辑方法)。 二、基本原理 尼泊金酯(对羟基苯甲酸酯)混合物中含有尼泊金甲、乙、丙、丁酯,均属于强极性化合物,可用反相HPLC进行分析,选用非极性的C18烷基键合固定相,甲醇水溶液作流动相。 外标定量法:配制系列标准浓度溶液,在一定色谱条件下进样得到对应的色谱峰面积,绘制标准曲线;在相同色谱条件下进样测得试样中被测组分色谱峰面积,据此在标准曲线上得到被测组分含量。 三、仪器、试剂 1.恒流泵Series Ⅲ 2. 500型紫外检测器 3. 高压六通进样阀(20ul) 4.分析之星色谱数据工作站 5.超声波发生器、过滤器 6.进样器1ml 7.10ug/ml对羟基苯甲酸甲、乙、丙、丁酯甲醇溶液;备测试样。 四、实验条件 1.色谱柱:250mm×4.6mm i.d 固定相:C18烷基键合相5um 2.流动相:甲醇:水(85:15)1ml/min 3.检测器:紫外光度监测器,254nm,灵敏度0.02 4.进样量20ul 五、实验步骤 1.将过滤配好的85%甲醇开盖置于超声波发生器脱器15min。 2.按仪器操作规程打开数据工作站,据给定仪器条件启动HPLC至基线平直。 3.用甲醇清洗进样注射器、进样阀(10ml容量瓶取甲醇适量,用干净的1ml注射器操作)。 4.取干净10ml 容量瓶5只,分别取10ug/ml的对羟基苯甲酸乙酯-甲醇标准溶液配制系列标准 溶液:

常用高效液相色谱柱SOP

常用高效液相色谱柱SOP 1 目的: 色谱柱的使用和保养:液相色谱仪由高压液体泵、检测器及液相色谱柱等三部分组成,其中液相色谱柱的正确安装和使用,是液相色谱工作的关键;也是液相色谱工作者获得正确可靠的实验数据的必经之路。 建立高效液相色谱柱日常维护与保养规程,保证能正常使用。 2 适用范围: 本规程适用高效液相色谱柱的维护与保养。 3 责任人: 液相色谱柱使用者。 4 液相色谱柱的安装: 4.1 液相色谱柱的结构: 4.1.1 液相色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝(封头)与柱填料等组成。 柱管:多用不锈钢制成,若果使用时柱压不高于70 kg/cm2时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。用于柱填料的装填。空柱各组件均为不锈钢材质,能耐受一般的溶剂作用。但由于含氯化物的溶剂对其有一定的腐蚀性,故使用时要注意,柱及连接管内不能长时间存留此类溶剂,以避免腐蚀。 压帽:即色谱柱两端套合于柱管端外壁的塑性圆柱帽,中部有小孔,多为聚四氟乙烯制成,用于固定筛板。 密封环:位于接头螺旋环内壁的弹性环,多为聚四氟乙烯制成,用于色谱柱两端压帽与柱外壁的密封。 4.1.2柱填料: 液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。 正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3-10 μm的范围内。另一类正相填料是硅胶表面键合-CN,-NH2等官能团即所谓的键合相硅胶。

反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。 常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3-10 μm之间。 4.2色谱柱的安装: 4.2.1拆开柱包装盒,确认色谱柱的类型、尺寸、出厂日期以及柱内贮存的溶剂。 4.2.2拧下柱两端接头的密封堵头放回包装盒供备用。 4.2.3 按柱管上标示的流动相流向,将色谱柱的入口端通过连接管与进样阀出口相连接(如条件允许,建议在柱前使用保护柱);柱的出口与检测器连接。连接管是外径为1.57 mm、内径为0.1-0.3 mm的不锈钢管。连接管的两端均有空心螺钉及密封用压环。在接管时一定要设法降低柱外死体积。连接管通过空心螺钉、压环后尽量用力插到底,然后顺时针拧紧空心螺钉,直到拧不动为止。 5 液相色谱柱的使用: 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。 5.1样品的前处理: 5.1.1最好使用流动相溶解样品。 5.1.2使用予处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 5.1.3使用0.45 μm的过滤膜过滤除去微粒杂质。 5.2 流动相的配制: 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点: 5.2.1流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。

反相高效液相色谱法测定雪碧中的苯甲酸

分析化学实验报告 实验名称:反相高效液相色谱法测定雪碧中的苯甲酸 专业:化学教育 班级:11化学班 姓名: 指导教师:郭老师 日期:2013.9.7

一、实验目的 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定苯甲酸的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 一、实验原理 苯甲酸为具有苯或甲醛的气味的鳞片状或针状结晶,具有苯或甲醛的臭味。熔点122.13℃,沸点249℃,相对密度1.2659(15/4℃)。在100℃时迅速升华,它的蒸气有很强的刺激性,吸入后易引起咳嗽。微溶于水,易溶于乙醇、乙醚等有机溶剂。苯甲酸是弱酸,比脂肪酸强。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。抑菌的最适pH值为2.5~4.0,一般以低于pH值4.5~5.0为宜。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。 用高效液相色谱法将饮料中的苯甲酸与其它组分(如:柠檬酸(钠)、蔗糖等)分离后,将已配制的浓度不同的苯甲酸标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R和峰面积A后,可直接用t R定性,用峰面积A作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的苯甲酸含量。 三、仪器和试剂 1、Agilent 1220高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm。 3、流动相:75%甲醇(色谱纯)+25%PH=3.3的磷酸缓冲溶液(过三次)。 4、苯甲酸标准贮备溶液:准确称取0.0109g含量99.5%苯甲酸,用过三次的蒸馏水溶解,定量至50mL容量瓶中,并稀释至刻度。标样浓度217μg·mL-1。 4、测饮料试液:雪碧 四、实验内容

高效液相色谱法测定邻苯二甲酸酯实验报告

高效液相色谱法测定邻苯二甲酸酯 1553607 胡艺蕾 实验时间:2017年4月1日实验温度:19.0℃ 一、实验目的 1、了解高效液相色谱仪的组成及其工作原理和基本操作。 2、对邻苯二甲酸酯进行分离和测定。 3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。 4、了解液相色谱法定量测定的原理。 二、实验原理 1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。固体相为非极性分子,如十八烷基键合相,流动相为极性分子。 2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。本次实验为邻苯二甲酸酯,其分子官能团都相同,但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP(邻苯二甲酸二乙酯)>DBP.(邻苯二甲酸二丁酯)。 3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。通常选择二元混合溶剂作为流动相。 4、定量分析中,定量峰与其他峰之间的分离程度称为分离度R: 通常用塔板数n来描述色谱的柱效: 三、实验仪器与试剂 1、仪器

Agilent1260高效液相色谱仪: 脱气机:真空室内半透膜管路,对流动相进行脱气 四元泵:二元泵各控制一种溶剂 可设置的流速范围:0.001–10 mL/min 0.001 mL/min步进 UV检测器:用于检测通过样品后的紫外光 类型:双光束光路设计 光源:氘灯波长范围:190 –600 nm 手动进样器:进样20μL 色谱柱:填料:十八烷(适合中性、弱酸碱) 4.6 ×100mm, 3.5μm 2、试剂 流动相:纯水、甲醇、乙腈 样品:DMP、DEP、DBP 四、实验步骤 1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。 2、预先脱气(直到导管中无气泡),设定波长:220nm。 3、设定流速、流动相比例等参数,选择合适的流动相。 4、进样阀柄置于“LOAD”,进样针用乙醇洗涤2-3次,取样,进样,将进样阀扳至“INJECT”。 5、保存并处理数据。 五、实验结果 1、样品:DMP1:20水溶液20μL 流动相的比例为:高纯水:30% 乙腈:70% 流速:1.00ml/min

反相高效液相色谱法

反相高效液相色谱法 鬼针草为菊科植物鬼针草属多种植物的全草,药材资源丰富,广泛分 布于热带及温带地区,遍布全国各地,极易采集。根据文献报道,鬼 针草属多种植物含有槲皮素成分[1];槲皮素具有抗肿瘤、抗炎、抗菌、抗病毒、镇痛、抗血小板聚集、扩张冠状动脉等作用[2~4]。《中国药典》尚未收载鬼针草药材的质量标准。《贵州中药材标准》 收载三叶鬼针草BidenspoilsaL.、鬼针草BidensbipinataLinn.的干 燥全草,《湖南中药材标准》收载三叶鬼针草BidenspoilsaL.的干燥 地上部分,《甘肃中药材标准》1995年收载鬼针草BidensbipinataLinn.,《广西中药材标准》1990年收载三叶鬼针草BidenspoilsaL.、白花鬼针草BidenspoilsaL.var.radiataSch.-Bip. 的干燥全草,河南中药材标准1991年收载三叶鬼针草BidenspoilsaL.、鬼针草BidensbipinataLinn.、金盏银盘 Bidensbiternata(Lour.)Merr.EtSherff.的干燥全草,《上海中药材 标准》收载鬼针草BidensbipinataLinn.(婆婆针)的干燥地上部分[5]。从国内地方标准收载情况能够看出全国各地均有广泛的应用, 入药部位为全草或地上部分,本实验拟采用RP-HPLC法建立鬼针草属 药材中槲皮素的含量测定方法并比较鬼针草不同药用部位和不同种中 槲皮素的含量,为该类药材的传统入药部位是否准确和质量评价提供 参考依据。 1仪器与材料 美国waters2695高效液相色谱仪,VWD检测器;鬼针草采自云南红河州、广西,经刘圆副教授和戴斌教授鉴定为菊科鬼针草属植物狼杷草BidenstriparticaLinn.,白花鬼针草 BidenspilosaL.var.ratiataSch-Bip.,婆婆针BidensbipinataLinn.,三叶鬼针草BidenspilosaLinn.的干燥全草;槲皮素(批号081-9304,中国药品生物制品检定所,含量测定用);甲醇为色谱纯;水为二次 重蒸水;其余试剂均为分析纯。

色谱柱选择

氰基柱与C18柱都是以球形硅胶微粒(通过无孔硅胶聚集成)为基质,只不过氰基柱键合的有机分子中含有极性基团,吸附活性较空白硅胶低,常用于正相操作。氰基柱能与某些含有双键的化合物发生选择性相互作用,因而对双键异构体或含有不等量双键的环状化合物有更好的分离能力。所以在选择极性键合相的柱子中,氰基柱是首选。 氰基柱可用于非极性、弱极性和中等极性化合物分析,在反相模式下,其保留性弱于C18,但对强极性化合物的保留强于C18(C18基本不保留强极性化合物)。氰基柱还可用于正相模式。 所以C18与氰基柱能够分析的化合物有一定的重合,但是两者的选择性有很大不同。C18是目前适用范围最广的色谱柱,适用于非极性、弱极性和中等极性化合物分析,某些强极性化合物配合离子对流动相也可以用C18分析,C18为纯反相柱。通常来说,化合物在正辛醇-水中的分配系数有一定差异,C18就能很好的分离它们。氰基柱上有极性基团,所以它对化合物的极性相互作用的强弱是分离化合物的基础,一般,化合物上极性基团的种类、数量或位置有差异,往往就能在氰基柱上较好分离。 氨基和氰基柱的使用和保养 氰基柱的使用和保养 CN基柱作反相色谱,操作和维护和C18柱完全相同。CN柱用于反相条件时,CN键会水解,尤其是在pH1.5-7.0范围以外,在极端酸性和碱性条件下柱寿命会下降很快,如果在这个条件下使用,需要清洗一下,也需要用10倍柱体积溶液冲洗,如下:95%水/5%乙腈、THF 四氢呋喃、95%乙腈/5%水并保持95%乙腈/5%水继续冲洗,以低流速0.2-0.5mL/min过夜冲洗。在pH1.5-7.0条件时,也比较伤柱子,使用完以后要注意冲洗,可以参照上述方法,时间不需要那么长,可适当减少。柱子使用一定时间后,柱效下降,老化,也可如正相时清洗一下柱子恢复柱性能,清洗时用10倍柱体积的下列溶液冲洗:95%水/5%乙腈THF四氢呋喃95%乙腈/5%水再走流动相即可。 CN柱用于正相使用时没什么问题,当柱子使用一定时间后,柱效下降,柱子老化,可清洗一下恢复柱性能。清洗时用10倍柱体积的下列溶液冲洗:氯仿、异丙醇、二氯甲烷再走流动相即可。 如果在pH 2.0-5.0条件时用流动相平衡一下即可,这是最理想的pH范围。 CN柱子不使用时,可用异丙醇或正己烷保存,两端封好。流动相改变时要注意过渡,比如缓冲盐过渡到有机相时需要先用水冲洗再走有机相。

高效液相色谱柱的选择

现代高效液相色谱中,分离效果好坏的一个重要指标是色谱填料的选择。但是色谱填料的选择范围很宽,因此,要做合适的选择,必须对此有一定的认识和了解。 一、硅胶基质填料 1、正相色谱正相色谱用的固定相通常为硅胶(Silica)以及其他具有极性官能团胺基团,如(NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反向色谱反向色谱用的填料常是以硅胶为基质,表面键合有极性相对较弱官能团的键合相。反向色谱所使用的流动相极性较强,通常为水、缓冲液与甲醇、乙腈等的混合物。样品流出色谱柱的顺序是极性较强的组分最先被冲洗出,而极性弱的组分会在色谱柱上有更强的保留。 常用的反向填料有:C18(ODS)、C8(MOS)、C4(Butyl)、C6H5(Phenyl)等。 二、聚合物填料聚合物填料多为聚苯乙烯—二乙烯基苯或聚甲基丙烯酸脂等,其重要优点是在PH值为1—14均可使用。相对于硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物对蛋白质等样品的分离非常有效。现有的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其它无机填料其它HPLC的无机填料色谱柱也已经商品化由于其特殊的性质,一般仅限于特殊的用途。如,石墨化碳黑正逐渐成为反向色谱柱填料。这种填料的分离不同于硅胶基质烷基键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性。该柱填料一般比烷基键合相硅胶或多孔聚合物填料的保留能力更强。石墨化碳可用于分离某些几何异构体,由于在HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可以用于HPLC。氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可以在PH高达12的流动相中使用。但由于氧化铝与碱性化合物的作用也很强,应用范围受到一定限制,所以未能广泛应用。新型色谱氧化锆基质填料也可用于HPLC。商品化的只有聚合物涂层的多孔氧化锆微球色谱柱,应用PH1-14,温度可达100℃。由于氧化锆填料是最近几年才开始研究,加之面临的实验难度,其重要用途与优势尚在进行之中。 怎样选择填料粒度目前,商品化的色谱填料粒度从1um到超过30um均有销售,而目前分析分离主要用3和5um填料进行。填料的粒度主要影响填充柱的两个参数,即柱效和背压。粒度越小,柱压越大,柱压的增加限制了粒度小于3um的填料应用。在相同选择性条件下,提高柱效可提高分离度,但不是唯一的因素。如果固定相选择是正确,但是分离度不够,那么选用更小的粒度的填料是很有用的。3um填料填充柱的柱效比相同条件下的5um 填料的柱效提高近30%;然而,3um的色谱柱的背压却是5um的2倍。与此同时,柱效提高意味着在相同条件下可以选用更短的色谱柱,即相同的塔板数或分离能力,但是柱长更短,以缩短分析时间。另外,可以采用低粘度的溶剂做流动相或增加色谱柱的使用温度,比如用乙腈代替甲醇,以降低色谱柱的压力。 色谱柱维护 防止色谱柱堵塞

反相高效液相色谱法测定化妆品中的24种防腐剂

反相高效液相色谱法测定化妆品中的24种防腐剂 建立了同时检测化妆品中24种防腐剂含量的反相高效液相色谱法(RP2HPLC)。采用KromasilC18(4.6mm×250mm,5μm)色谱柱,以磷酸盐缓冲溶液(pH=4.26)为流动相,梯度洗脱。样品经甲醇超声提取,然后采用RP2HPLC2二极管阵列检测法测定,对样品前处理和色谱条件进行研究和优化。 1引言化妆品中的防腐剂是为了使化妆品在生产、使用和保存过程中免受微生物污染的一类化妆品添加剂。但大多数防腐剂对人的皮肤会产生不同程度的刺激。因此,化妆品中防腐剂的用量必须以安全性作为前提。我国《化妆品卫生规范》对化妆品中防腐剂的使用浓度和范围做了相关的规定。目前,国内外对化妆品中防腐剂的测定一般多采用高效液相色谱法、气相色谱法、气相色谱质谱法、胶束电动色谱法、毛细管电泳法和伏安法等,而同时测定的防腐剂一般仅为4~8种,最多可同时测定18种,采用的方法均为气相色谱-质谱法。 本实验研究了化妆品中的24种常用防腐剂的样品前处理方法和HPLC分离条件,建立了化妆品中24种常用防腐剂同时检测的HPLC法。结果表明,本方法简便、快速、准确,应用于实际化妆品中防腐剂的测定,结果满意。 2实验部分2.1仪器与试剂高效液相色谱仪(美国Agilent1100系列),由四元低压泵、柱温箱、二极管阵列检测器及自动进样器组成;KQ-600型超声波清洗仪器(昆山市超声仪器有限公司)。 对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯、对羟基苯甲酸丁酯、水杨酸、5-氯-2-甲基-4-异噻唑啉-3-酮、2-甲基-4-异噻唑啉-3-酮、苯甲醇、苯氧基乙醇、4-氯-3-甲苯酚、三氯生及三氯卡班(Sigma公司);苯甲酸甲酯、苯甲酸乙酯、苯甲酸苯酯及溴硝丙醇(AcrosOrgnics公司);2,4-二氯-3,5-二甲酚、对羟基苯甲酸异丙酯、2-苯酚、4-氯-3,5-二甲酚、对羟基苯甲酸异丁酯及2-苄基-4-氯酚(东京化成工业株式会社);苯甲酸、山梨酸(国家标准物质中心)。乙腈为色谱纯,甲醇为优级纯;无水乙醇、四氢呋喃等试剂均为国产分析纯;Millipore超纯水。 2.2标准品混合溶液和供试品溶液的制备分别准确称取一定量的24种防腐剂标准品,用甲醇溶液定容,配制成2g/L的标准储备液。分别移取一定体积的上述标准储备液至100mL 容量瓶中,用甲醇定容至刻度,配成混合标准储备液。准确称取化妆品0.2g(精确到0.001g)于50mL锥形瓶中,加入10mL甲醇,超声提取30min,取部分溶液放入离心管中,在离心机上以5000r/min高速离心10min后,取上清液经0.22μm滤膜过滤,滤液供RP-HPLC检测。 2.3色谱条件色谱柱:伊利特KromasilC18色谱柱(4.6mm×250mm,5μm);流动相:A.甲醇,B.0.025mol/LNaH2PO4溶液,pH4.26。线性梯度洗脱条件见表1。流速:1.0mL/min;柱温:25℃;检测波长:程序可变波长扫描;进样量:10μL。 3结果与讨论3.1流动相的选择3.1.1缓冲溶液pH的选择在24种防腐剂中,受pH影响的只有苯甲酸、山梨酸和水杨酸。因此,着重考察了不同pH值(2.5~5.5)对以上3种酸分离情况的影响。发现在pH4.26时,苯甲酸、山梨酸和水杨酸能与溴硝丙醇、苯甲醇、苯氧基乙醇和对羟基苯甲酸甲酯达到很好的分离,峰形良好。 3.1.2NaH2PO4浓度的选择在考察了0.01、0.025和0.05mol/LNaH2PO4溶液对分离的影响后,发现0.025mol/LNaH2PO4可达到较好的分离,且峰形良好。 3.2检测波长的选择通过全波长扫描可得到24种物质各自的吸收图谱。综合各物质在不同波长下的响应值和不同波长对基线的影响,最终确定采用程序可变波长进行扫描,即根据不同组分的出峰顺序,在不同时间段,分别用各组分的最佳吸收波长进行检测,从而提高检测的灵敏度,达到最佳的扫描效果。

如何选择色谱柱

如何选择色谱柱,比较一下C-18及C-8柱的硅烷基质 C-18和C-8硅烷色谱柱是高效液相色谱(HPLC)中最常使用的色谱柱,而且,在美国市场上有多于100种C-18和C-8色谱柱出售。面对这么多可供选择的色谱柱,分析工作者很难从中选出适当的色谱柱来具体使用,同时更难选择出一根合适的替换柱。 对于非极性样品(如小分子芳烃)或弱极性样品(如对羟基苯甲酸酯),C-18和C-8色谱柱是最容易选择的。对于这类样品,色谱柱之间的主要差异在于保留因子(k);而在选择性方面却只有微小的差异。但对于极性和中等极性样品色谱柱的选择却相当困难。例如含氨基或酸性基团的药物化合物。分析工作者会发现极性样品在保留时间、选择性和峰形都有很大的差别。 色谱柱的选择性和峰形受到担体硅胶的影响远大于键合相的影响。另外,有研究报道在反相色谱中表面硅烷醇、硅酸及金属杂质的影响。在特殊情况下,选择性的差异可由填料制备时使用的键合过程决定的。 通常情况下,色谱工作者选择HPLC色谱柱是通过比较由色谱柱供应商所提供的填料介质的规格来决定的。这些规格内容包括:表面积、末端封尾、含碳量、颗粒形状、颗粒尺寸、孔径、孔容积、装填密度和键合度。含碳量和键合度仅由色谱制造商提供,没有这些规格使用者不可能计算出碳的克数,也不可能计算出一根色谱柱中键合相的微分子数。分析工作者可使用这两个数据来估计一根色谱柱的疏水性质。然而,即使制造商提供所有上述规格数据,使用者也不可能精确地预测出色谱柱对含有极性官能团的化合物的选择性。 由于色谱的保留时间是基于分析物和填充基质之间许多微妙的相互作用,我们建议使用混合物测试来比较填充基质的规格与性能。Engelhardt 和他的同伴回顾了硅烷反相色谱的特性,并且提出用溶解物试验来描述固定相的疏水性和亲硅基醇特性。另外有一些人也改进了测试条件和方法来解释那些色谱数据,但他们只测试了很少的商品色谱柱,并且在他们的测试混合物中没有羧酸。在本文中,我们使用了一个含有羧酸的测试混合物来收集了86根C-18和C-8硅烷色谱柱(见表1)的数据。我们将测试结果详细描述如下。表1:研究中所使用的色谱柱的生产商(略)。 在我们的比较中,我们使用了含有6种物质的测试混合物,此6种物质列于图1。每一种物质在测试混合物中都起特殊的作用。尿嘧啶是用于产生空体积。甲苯是测试色谱柱的疏水性。吡啶和N,N-二甲基苯胺是用来测试硅醇基对碱性物质的活性的碱性胺类物质。苯酚是一种弱酸,用于与吡啶联合起来确定活性担体硅的数量。4-正丁基苯甲酸是一种用于测试硅醇基对酸性物质的活性羧酸,此方面是色谱柱制造者开发碱性去活色谱柱来作胺类物质分析时经常忽略的。 我们使用的流动相是含有65%的乙腈和35%的浓度为0.05M的磷酸钾混合溶液,pH值为3.2。pH=3.2的缓冲溶液可使4-正丁基苯甲酸质子化,同时可提高吡啶和N,N-二甲基苯胺的保留时间的重现性。我们发现使用没有加缓冲溶液的流动相,如65%乙腈和35%水,即使我们使用同一瓶流动相,也无法得到重现性较好的保留时间和峰形。高离子强度的缓冲溶液,如本次测试所使用的0.05M的缓冲溶液,会抑制一些硅醇基的活性(2,5),但对于将胺从一些非碱性去活的反相色谱柱中洗脱下来,有一些抑制作用是必要的。 我们测试过另外两种缓冲溶液,但它们的作用均少于pH=3.2的0.05M磷酸钾溶液。0.01M 磷酸钾缓冲溶液在pH=3.2时,胺类化合物在有些色谱柱中产生前移峰。0.05M磷酸钾缓冲溶液在pH=7时,胺类物质产生的峰形比在pH=3.2时更好。吡啶和N,N-二甲基苯胺的pKa 均大约为5.2;因此,这些组分在pH=7时未质子化并且呈中性,同时并不与强酸性的硅醇基发生离子交换作用。 液相色谱柱原理

高效液相实验报告

篇一:高效液相色谱实验报告 高效液相色谱实验报告 一、实验目的 1 了解液相色谱的发展历史及最新进展2学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过hplc 分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离 的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微 小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最 大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在 已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸 点及热稳定性差的有机化合物。 80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应 用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色 谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合hplc 要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大, 因此需要高压泵输送流动相。2进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证 柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、 进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的 hplc 微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换 树脂)等的粒度通常在3μ m、 5μ m、7μ m、以及 10μ m。采用的固定相粒度甚至可以达到1μ m,而制备色谱所采用的固定相粒度通常大于10μ m。 hplc 填充柱效的理论值可以达到50000/m~ 160000/m 理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。 由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的 死体积。 4 检测系统: hplc 检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物 (包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介电常数检 测器、电导检测器和磁光旋转检测器。这类检测器适用范围广,但是对于流动相有响应, 受温度变化、流动相流速和组成变化的影响,检测灵敏度低,不能用于梯度洗脱的分离模式。 专用型检测器对样品中组分的某种物理或化学性质敏感,可用于测量被分离组分某类特性的 变化。这类检测器包括紫外检测器、荧光检测器、质谱检测器、放射性检测器。 5 数据处理系统: 数据处理系统可以分为数据处理系统和专用智能处理系统两类,前者可以完成一般的色谱数 据处理任务,有些软件可以实现部分仪器的控制功能。前者即一般的色谱工作站,后者通常 称之为专家系统。 五、实验数据

相关文档
相关文档 最新文档