文档库 最新最全的文档下载
当前位置:文档库 › 初二年级几何证明例题精讲

初二年级几何证明例题精讲

初二年级几何证明例题精讲
初二年级几何证明例题精讲

初二年级几何证明例题精讲

【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形. 证明:∵∠BCE=90°∠ACD=90° 在△ECB 和△ACD 中 ∠BCE=∠BCA+∠ACE BE=AD ∠ACD=∠ACE+∠ECD ∠

BCE=∠ACD ∴∠ACB=∠ECD EC=CD

∵△ECD 为等边三角形 ∴△ECB ≌△DCA( HL ) ∴∠ECD=60° CD=EC ∴BC=AC 即ACB==60° ∵∠ACB=60°

∴△ABC 是等边三角形

【例2】、如图,已知BC > AB ,AD=DC 。BD 平分∠ABC 。求证:∠A+∠C=180°.

证明:在BC 上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE ∵BD 平分∠BAC ∵AD=DC ∴∠ABD = ∠EBD ∴DE=DC

在△ABD 和△EBD 中 得 ∠DEC=∠C

AB=EB ∵∠BED+∠DEC=180° ∠ABD = ∠EBD ∴∠A+∠C=180° BD=BD

△ABD ≌ △EBD (SAS )

1、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。 ①倍长中线

【例. 3】如图,已知在△ABC 中,90C ?∠=,30B ?∠=,AD 平分BAC ∠,交BC 于点D .

求证:2BD CD =

证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60° AD=AE ∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA ∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC

第3题 D C

B A

图6

C

B

E

A

∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°

∴DB=DA ∠ADE=60°

【例4.】 如图,D 是ABC ?的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ?的中线。求证:2AC AE =。

证明:延长AE 到点F,使得EF=AE 联结DF

在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDA

BE =DE ∵∠ABE=∠FDE

∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD

∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC

∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE

【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 证明:延长AE 到点F,使得EF=AE 联结DF

在△ACE 和△FDE 中 ∴∠ADB=∠ACD+∠CDA CE =DE ∵∠ACE=∠FDE

∠AEC=∠FED ∴∠ADB=∠ADC+∠FDE

AE=FE 即 ∠ADB = ∠ADF

∴△ACE ≌ △FDE (SAS ) 在△ADF 和△ADB 中 ∴AC=FD ∠ACE=∠FDE AD=AD

∵DB=AC ∠ADF = ∠ADB ∴DB = DF D F =DB

∵∠ADB=∠ACD+∠CAD ∴△ ADF ≌ ADB(SAS) ∵ AC=DC ∴∠FAD=∠BAD ∴ ∠CAD=∠CDA ∴AD 平分∠DAE

【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

A

F

O

E

B

【变式练习】:如图所示,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AC=BF 。 求证:AE=EF 。

证明:延长AD 至点G ,使得DG=AD ,联结BD 在△ADC 和△GDB 中 ∴BG= BF

AD=GD ∴ ∠BFG=∠BGF ∠ADC=∠GDB ∵∠CAD =∠BGD BD=DC ∴∠BFG= ∠CAD ∴△ADC ≌△GDB (SAS ) ∵∠BFG=∠AFE 得 AC= BG ∠CAD =∠BGD ∴∠AFE=∠FAE ∵AC=BF ∴AE =AF ②、借助角平分线造全等

【例5】如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD

证明:在AC 上截取AF=AE ,联结OF 在△AOE 和△AOF

在△ABC 中,∠B+∠BAD+∠ACB=180° AE=AF ∵∠B =60 ° ∠EAO=∠FAO ∴∠BAD+∠ACB=120° AO = AO

∵AD 平分∠BAC ∴△AOE ≌△AOF (ASA ) 在△COD 和 △COF 中

∴∠BAC= 2∠OAC ∴∠AOE=∠AOE OE=OF ∠DCO =∠FCO

∵CE 平分∠ACB ∵∠AOE=60° CO=CO

G

F

∴∠ACB= 2∠ACO ∠AOE+∠AOE+∠

FOC=180°∠DOC=∠FOC

∴2∠OAC+2∠ACO=120°∠FOC=6O°

∴△COD ≌△COF(ASA)

∴∠OAC+∠ACO=60°∵∠AOE=∠COD ∴OD =OF

∵∠AOE=∠OAC+∠ACO ∴∠COD=60°

∵OE=OF

∴∠AOE=60°

∴OE=OD

【例6】.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,

BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于

BD=2CE.

证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,

∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,

∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

【小结】解题后的思考:

①_x0001_于角平行线的问题,常用两种辅助线;

②见中点即联想到中位线。

③旋转

【例7】正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,D

E

B

D

A

求∠EAF的度数.

∴∠GAE=∠FAE

延长EB到点G,使得BG =BE ∠DAF+∠BAF=90°

先证明△ADF ≌△ABE ∠GAB =∠FAD

可得到 AF =AG ∠ DAF = ∠GAB ∴∠GAF = 90°

∵EF =BE +DF ∴∠EAF = 45°

∴ EF = BE+BG =GE

∴△GAE ≌△FAE

G

【例8】. 将一张正方形纸片按如图的方式折叠,,

BC BD为折痕,则CBD

的大

___90°;

小为

【例9】.如图,已知∠ABC=∠DBE=90°,DB=BE,AB=BC.(1)求证:AD=CE,

AD⊥CE (2)若△DBE绕点B旋转到△ABC外部,其他条件不变,则(1)中结论

是否仍成立?请证明

提示:∠ABC=∠DBE =90°∴∠ECB+∠AHB=90°

∴∠ABC-∠DBC=∠DBE -∠DBC ∴∠ECB+∠CHF=90°

即∠ABD=∠CBE ∴∠HFC=90°

∴△ABD ≌△CBE ∴AD⊥CE H

AD=CE

∠BAD=∠ECB

∵∠BAD+∠AHB=90°

【例10】.如图在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. (1)写出O点

到△ABC三个顶点A、B、C的距离关系(不要求证明) (2)如果M、N分别在

线段AB、AC上移动,在移动过程中保持AN=BM,请判断△O M N的形状,并证

明你的结论.

F E

D

C

B

A

联结OA

则△OAC 和△OABD 都为等腰直角三角形 ∴OA=0B=0C

△ANO ≌ △BMO (∠NOA=∠OBM ) 可得ON=OM ∠ NOA=∠MOB 可得到∠NOM=∠AOB=90°

【例11】如图,已知ABC ?为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ?也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;

(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程. AE=BF =CD AF=BD =CE

ABC ?等边三角形 DEF ?也是等边三角形 得到∠EFD=60° ∠ABC=60° ∵∠AFD=∠FBD+∠FDB ∠AFD=∠AFE+∠EFD ∴∠AFE=∠BDF ∴△AEF ≌ △BFD 同理:△AEF ≌ △CDE

④、截长补短

【例12】、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC

【例13】如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD

C

D

B

A

E

D

C

B

A

【例14】如图,已知在ABC V 内,0

60BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 证明:如图(1),过O 作OD ∥BC 交AB 于D , ∴∠ADO=∠ABC=180°-60°-40°=80°, 又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,

又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO , ∴OD=OQ ,AD=AQ , 又∵OD ∥BP , ∴∠PBO=∠DOB , 又∵∠PBO=∠DBO , ∴∠DBO=∠DOB ,

∴BD=OD ,

又∵∠BPA=∠C+∠PAC=70°, ∠BOP=∠OBA+∠BAO=70°,

∴∠BOP=∠BPO , ∴BP=OB , ∴

AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ 。

【例15】.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .

方法同【例5】

P

Q

C

B

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

八年级下册几何证明题审批稿

八年级下册几何证明题 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

八年级下册几何证明题精选 1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE = 2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的角平分线,试证明:四边形MNKL 是矩形 3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相 交于E ,请判断四边形DOCE 的形状,并说明理由 4、 如图,△ABC 中,B ACB ∠?=∠,90的平分线交高CD 于点E ,交AC 于 F , G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形 5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别 与边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,的中点,求 证:四边形ENFM 是平行四边形 6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并 且DM CH BF AE ===,求证:四边形EFHM 是正方形 7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥AN 交BC 于点E ,试证明:NE AM = 8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分 线,求证:四边形EBCD 是等腰梯形 9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,?=∠90A ,CD 〉AD , 将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。(1)求证:四边形ADEF 是正方形;(2)取线

八年级下册几何证明题

_D _C _B_C _A_B _A_B _E _A _B 四边形试题 1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。 2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60?,E、F分别为梯形的腰AB、DC的中点,求:EF的长。 3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。 4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。 5、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60?,梯形的周长是20cm, 求:AB的长。

_ A _ B _B _ C _B _ F _ B _ C _ F _ B _A _ E 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。 7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

八年级下册几何证明题精选

八年级下册几何证明题精选 1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE = 2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的 角平分线,试证明:四边形MNKL 是矩形 3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相 交于E ,请判断四边形DOCE 的形状,并说明理由 4、 如图,△ABC 中,B ACB ∠?=∠,90的平分线交高CD 于点E ,交AC 于F , G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形 5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与 边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA , 的中点,求证:四B

边形ENFM是平行四边形 6、已知,如图,点M H F E, , ,分别是正方形ABCD的四条边上的点,并且DM CH BF AE= = =,求证:四边形EFHM是正方形 F B 7、如图,在梯形ABCD中,N M,分别为梯形两腰AB,CD的中点,ME∥AN交BC于点E,试证明:NE AM= 8、如图,在△ABC中,AC AB=,CE BD,分别为ACB ABC∠ ∠, 的平分线, 求证:四边形EBCD是等腰梯形 9、如图,在直角梯形纸片ABCD中,AB∥DC,? = ∠90 A,CD〉AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E,折痕为DF,连结EF并展开纸片。(1)求证:四边形ADEF是正方形;(2)取线段AF的中点G,连结EG,结果CD BG=,试说明四边形GBCE是等腰梯形

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD.

11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

初中一年级数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD 解:延长 A D到 E,使AD=DE ∵D是 BC中点 A ∴BD=DC 在△ ACD和△ BDE中 AD=DE ∠BDE=∠ADC B C D BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE<AB+BE ∵AB=4 即 4-2<2AD<4+2 1<AD<3 ∴AD=2 2、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2 A 2 1 B E C F D 证明:连 接BF和 EF ∵BC=ED,CF=DF∠, BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S) 第1页 共22 页

∴BF=EF,∠CBF=∠DEF B E 连接 在△ BEF中,BF=EF ∴∠EBF=∠BEF。 ∵∠ABC=∠AED。 ∴∠ABE=∠AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=D,E EF//AB,求证: EF=AC A 2 1 F C D E B 点G C作 CG∥EF交 AD的延长线于 过 CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+B,D求证:∠B=2∠C A 共22 页 第2页

初中经典几何证明练习题(含标准答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形 3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN

初二数学几何证明初步经典练习题(答案)

一、选择题(本大题共6小题,每小题2分,满分12分) 1.下列条件不能推出两个直角三角形全等的是--------------------------() (A)两条直角边对应相等(B)一个锐角和一条直角边对应相等 (C)一条直角边和斜边对应相等 (D)两个锐角对应相等 2.下列命题中, 逆命题正确的是--------------------------------------() (A)对顶角相等 (B)直角三角形两锐角互余 (C)全等三角形面积相等 (D)全等三角形对应角相等 3.如图,⊿ABC是等腰直角三角形,点D在边AC上,且2 =, BD AD 则CBD ∠是---------------------------------------------------- () (A)5(B)10(C)15(D)45 4.在直角三角形中,若有一个角等于45,那么三角形三边的比为------- () (A)1:2(B)1:2(C)3(D)1:1 5.下列各组数中不能作为直角三角形的三边长的是-------------------- () (A) 6、8、10(B)1、1、2(C)2、6D) 7、24、25 6.如图,AD是⊿ABC的中线,45 ∠=,将⊿ADC沿直线AD ADC

翻折,点C 落在点'C 的位置上,如果10BC =,求'BC 的长为---------( ) (A )10 (B )5( C )(D ) 二、填空题:(本大题共12小题,每小题3分,满分36分) 7.命题“等腰三角形两腰相等”的逆命题是____________ ___. 8.到定点A 的距离为9cm 的点的轨迹是____________ ____________. 9.如图,已知14AB BC cm ==, DE 是AB 的中垂线,则AE EC +是__________cm . 10.如图,已知点P 是ABC ∠的角平分线BD 上的点,PH BA ⊥,如果5PH cm =,那么点P 到BC 的距离是 cm . 11.若直角三角形的两个锐角的比是2:7,则这个直角三角形的较大的锐角是 ___________度. 12.若Rt ⊿ABC 的两条直角边分别为1和2,则斜边为___________. 13.在Rt ⊿ABC 中,90A ∠= ,30C ∠=,2AB cm =,则BC = cm . 14.已知点(3,4)P -,(3,4)Q -,则线段PQ 的长为_____________. 15.如果一个三角形的三条边长分别为5,12,13cm cm cm ,那么这个三角形的面积 为_____________2cm . D C B A 第3题图 C B A ' C 第6题图 E D C B A 第9题图 H P D C B A 第10题图

七年级数学典型几何证明50题

初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S) A B C D E F 2 1 A D B C

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E A

八年级下册几何证明题精选

八年级下册几何证明题精选

八年级下册几何证明题精选 1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE = 2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的 角平分线,试证明:四边形MNKL 是矩形 3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相 交于E ,请判断四边形DOCE 的形状,并说明理由 4、 如图,△ABC 中,B ACB ∠?=∠,90的平分线交高CD 于点E , 交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形 5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与 边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA , 的中点,求证:四B

边形ENFM 是平行四边形 6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且 DM CH BF AE ===,求证:四边形EFHM 是正方形 F B 7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥ AN 交BC 于点E ,试证明:NE AM = 8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠, 的平分线,求证:四边形EBCD 是等腰梯形 9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,?=∠90A ,CD 〉AD , 将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。(1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形

初二数学几何证明初步练习题含答案

初二数学几何证明初步练习题含答案 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800 ( ,∴∠A+∠B+∠ACB=1800 . ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长 第9题图 第10题图 第11题图 分析:延长BD交 AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC , 即D E为ΔBCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . C B A D E F D A B C B A E D N M B D A C

初二数学几何证明初步经典练习题含答案

几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○1作CM∥AB,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800(,∴∠A+∠B+∠ACB=1800. ○2作MN∥BC,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800.2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC中,∠C>∠B,求证:AB>AC。 4. 已知,如图,AE 5. 已知:如图,EF∥AD,∠1 =∠2. 求证:∠AGD+∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB是L的斜线,CD是L的垂线。 求证:AB与CD必定相交。 8.2 一.角平分线--轴对称

9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12 FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得: 18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD = CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作 DN ⊥AC 于N .求证:BM = CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . B B

八年级数学几何证明题技巧(含答案)

几何证明题的技巧 1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。求证:DE =DF C F B A E D 图1 分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =, ∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的

八年级几何证明专题训练题

F O E D C B A 八年级几何证明专题训练 1. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°, ∠DEB=10°,求∠AEC的度数. 2. 如图,点E、A、B、F在同一条直线上,AD与BC交于点O, 已知∠CAE=∠DBF,AC=BD.求证:∠C= ∠D 3.如图,OP平分∠AOB,且OA=OB. (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E, 求证:BE=EC。 5. 如图,在△ABC中,AB=AD=DC,∠BAD=28°,求∠B和∠C的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC中,∠ACB=90o, D是AC上的一点,且AD=BC,DE AC于D,∠ EAB=90o.求证:AB=AE. 9. 如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP= ∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论. 10. 如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD 的周长为多少? 11.如图所示,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,求证:CE=DF. 12. 如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D. (1)判断直线BE与AD的位置关系是____;BE与AD之间的距离是线段____的长; (2)若AD=6 cm,BE=2 cm,求BE与AD之间的距离及AB的长. 13. 如图,已知△ABC、△ADE均为等边三角形,点D是BC延长线上一点,连结CE, 求证:BD=CE 14. 如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC?于点D,求证:?BC=3AD. 15. 如图,四边形ABCD中,∠DAB=∠BCD=90°,M为BD中点,N为AC中点,求证: MN⊥AC. 16、已知:如图所示,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE ⊥AC于点E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=A C;????? (2)求证:DG=DF. 6. 如图,B、D、C、E在同一直线上,AB=AC,AD=AE,求证:BD=CE。 B A E D C

初中几何经典例题及解题技巧

初中几何证明技巧及经典试题 证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。 10.等于同一角的两个角相等。 证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 *10.在圆中平分弦(或弧)的直径垂直于弦。 *11.利用半圆上的圆周角是直角。 证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

初二年级几何证明例题精讲

初二年级几何证明例题精讲 【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形. 证明:∵∠BCE=90°∠ACD=90° 在△ECB 和△ACD 中 ∠BCE=∠BCA+∠ACE BE=AD ∠ACD=∠ACE+∠ECD ∠ BCE=∠ACD ∴∠ACB=∠ECD EC=CD ∵△ECD 为等边三角形 ∴△ECB ≌△DCA( HL ) ∴∠ECD=60° CD=EC ∴BC=AC 即ACB==60° ∵∠ACB=60° ∴△ABC 是等边三角形 【例2】、如图,已知BC > AB ,AD=DC 。BD 平分∠ABC 。求证:∠A+∠C=180°. 证明:在BC 上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE ∵BD 平分∠BAC ∵AD=DC ∴∠ABD = ∠EBD ∴DE=DC 在△ABD 和△EBD 中 得 ∠DEC=∠C AB=EB ∵∠BED+∠DEC=180° ∠ABD = ∠EBD ∴∠A+∠C=180° BD=BD △ABD ≌ △EBD (SAS ) 1、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。 ①倍长中线 【例. 3】如图,已知在△ABC 中,90C ?∠=,30B ?∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD = 证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60° AD=AE ∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA ∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC 第3题 D C B A 图6 C B E A

七年级数学几何证明题(典型)

七年级数学几何证明题 1.如图,在ABC中,D在AB上,且ΔCAD和ΔCBE都是等边三角形, 求证:(1)DE=AB,(2)∠EDB=60° 2.如图,在ΔABC中,AD平分∠BAC,DE||AC,EF⊥AD交BC延长线于F。求证:∠FAC=∠B 3.已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若∠B=30 ∠C=50°求:(1),求∠DAE的度数。(2)试写出∠DAE与∠C - ∠B有何关系?(不必证明) B A C D

4、一个零件的形状如图,按规定∠A=90o ,∠ C=25o,∠B=25o,检验已量得∠BDC=150o,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。 C D A B 5、如图,已知DF ∥AC,∠C=∠D,你能否判断CE ∥BD?试说明你的理由 6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。 7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 交于G , 若∠BDC = 140°,∠BGC = 110°,则∠A ? G F E D C B A

8、如图,AD⊥BC于D,EG⊥BC于G,∠E =∠1,求证AD平分∠BAC。 E D C B A G 3 2 1 9、如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F, 若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数. 10、如图,将一副三角板叠放在一起,使直角的顶点重合于O, 则∠AOC+∠DOB

相关文档
相关文档 最新文档