文档库 最新最全的文档下载
当前位置:文档库 › 电磁波谱和常见地物的波谱特征

电磁波谱和常见地物的波谱特征

电磁波谱和常见地物的波谱特征
电磁波谱和常见地物的波谱特征

1.何谓电磁波谱?试述其划分依据及其谱段的特性。

电磁波谱是指将各种电磁波按其波长的(频率)大小所依次排列成的图表。

电磁波谱的划分依据是不同波长电磁波的特性。按照这一划分依据可以把电磁波谱划分为:宇宙射线、γ—射线、X—射线、紫外线、可见光、红外线、微波。宇宙射线的波长<10-8 um,来自宇宙天体,其特性是具有很大的能量和贯穿能力,人工还无法能产生,目前遥感未能用得上这个波段;γ—射线的波长范围为10-8~10-6 um,是原子衰变裂解时放出的射线之一,也具有很高的能量和穿透性;X—射线的波长范围为10-6~10-2 um,高能但是穿透能力较γ—射线弱,被大气层全部吸收,不能用于遥感工作;紫外线的波长范围为0.01~0.38 um,穿透力很弱而且散射严重,易于被臭氧吸收,只有波长0.28~0.38 um的紫外线,能部分穿地大气层,但散射严重,只有部分投射到地面,并使感光材料所感应,可作为遥感工作波段,称为摄影紫外。现已开始用于监测气体污染及水体的油污染;可见光的波段范围为0.38~0.76um,可分解为红、橙、黄、绿、青、蓝、紫七种色光,在太阳辐射能中所占的的比例较高,信息量大,可用摄影、扫描等各种方式成像,是遥感最常用的波段;红外线的波长范围为0.76 — 1000um,红外线按其特性又可以分为近红外(0.76~3um)、中红外(3~6um)、远红外(6~15um)、超远红外(15~1000um),近红外是地表层反射太阳的红外辐射,其中的0.76~1.3um波段可以使胶片感光,常被成为摄影红外,中远红外是地表物体发射的红外线,一般用于热红外遥感;微波的波长为1mm~1m,其特性是具有很强的穿透云雾和一定厚度的植被、冰层和土壤的能力,可以用人工制造的仪器发射微波,因为在遥感使用上具有全天候的能力。

2.试述水体、植被和土壤的波谱特征。

水体的波谱特征:

清洁水体的反射率在各波段都很低(一般在3%左右),在可见光部分为4-5%,在0.6处降至2-3%,到0.75以后的近红外波段,水成了全吸收体。但是污水以及含沙量较高的水体的发射率比清洁水体要高出很多。

植被的波谱特征:

1)不同种类的植物均具有相似的反射波谱曲线

2)可见光区域,由于叶绿素的强烈吸收,植物的反射、透射率均低,仅在0.55附近有一10-20%的小反射峰而呈绿色。

3)近红外区域,在0.7—1.3之间形成45-60%的强反射峰,由于不同种植物的叶内细胞结构差异大,不同种植物的反射率在该波段具有最大的差值,故是区分植物种类的最低波段。

4)1.45、1.95、2.7为中心的三个吸收带为水吸收带,高斯曼发现,还三人吸收带之间的两个反射峰(1.65及2.2)上,各值与非多汁植物反射率差别非常明显。

土壤的波谱特征:

自然状态下土壤的反射率与土壤质地、有机质含量、氧化含量和含水量及盐份等因素有关,土壤的反射光谱曲线由可见光到红外呈舒缓向上的缓倾延伸,没有明显的反射峰和吸收峰。

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 从标准波谱库选择端元进行地物识别 自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS 硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。便携式光谱仪是“我国典型地物标准波谱数据库”获取光谱数据的主要设备。 基本技术参数:

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案 一,单项选择题 1.电磁波的极化特性由__B ___决定。 A.磁场强度 B.电场强度 C.电场强度和磁场强度 D. 矢量磁位 2.下述关于介质中静电场的基本方程不正确的是__D ___ A. ρ??=D B. 0??=E C. 0C d ?=? E l D. 0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量 z = n e )通过电流I ,则圆环中心处的磁感应强度B 为 __D ___A. 02r I a μe B.02I a φμe C. 02z I a μe D. 02z I a μπe 4. 下列关于电力线的描述正确的是__D ___ A.是表示电子在电场中运动的轨迹 B. 只能表示E 的方向,不能表示E 的大小 C. 曲线上各点E 的量值是恒定的 D. 既能表示E 的方向,又能表示E 的大小

5. 0??=B 说明__A ___ A. 磁场是无旋场 B. 磁场是无散场 C. 空间不存在电流 D. 以上都不是 6. 下列关于交变电磁场描述正确的是__C ___ A. 电场和磁场振幅相同,方向不同 B. 电场和磁场振幅不同,方向相同 C. 电场和磁场处处正交 D. 电场和磁场振幅相同,方向也相同 7.关于时变电磁场的叙述中,不正确的是:(D ) A. 电场是有旋场 B. 电场和磁场相互激发 C.电荷可以激发电场 D. 磁场是有源场 8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___ A. 不再是平面波 B. 电场和磁场不同相 C.振幅不变 D. 以TE波形式传播 9. 两个载流线圈之间存在互感,对互感没有影响的是_C __

电磁场与电磁波期末复习题

2014年第一学期《电磁场与电磁波》复习题 一.填空题 1.已知矢量2z 2y 2x z e xy e x e A ,则A =z xy x 222 , A =2y e z 。 注: z xy x z A y A x A A z y x 222 222)(y x xy xy y A y z z y y y 2.矢量B A 、垂直的条件为0 。 3.理想介质的电导率为0 ,理想导体的电导率为 ,欧姆定理的微分形式为 。 4.静电场中电场强度E 和电位φ的关系为 ,此关系的理论依据为0 ;若已知电位 22z 3x y 2 ,在点(1,1,1)处电场强度 E 642z y x e e e 。 注: z xy y z y x z y x z y x 6422 5.恒定磁场中磁感应强度B 和矢量磁位A 的关系为 ;此关系的理论依据为0 。 6.通过求解电位微分方程可获知静电场的分布特性。静电场电位泊松方程为 /2 ,电位拉普拉 斯方程为02 。 7.若电磁场两种媒质分界面上无自由电荷与表面电流,其D E 、边界条件为: 021 n 和 021 D D e n ;H B 、边界条件为: 021 n 和 021 n 。 8.空气与介质)4(2 r 的分界面为z=0的平面,已知空气中的电场强度为4e 2e e E z y x 1 ,则介质中 的电场强度 2E 12z y x e e e 。 注:因电场的切向分量连续,故有z z y x E e e e E 222 ,又电位移矢量的法向分量连续,即 1422200 z z r E E

所以122z y x e e e 。 9. 有一磁导率为 μ 半径为a 的无限长导磁圆柱,其轴线处有无限长的线电流 I ,柱外是空气(μ0 ),则 柱内半径为1 处磁感应强度1B =12 I e ;柱外半径为2 处磁感应强度2B =2 02 I e 。 10.已知恒定磁场磁感应强度为z 4e my e x e B z y x ,则常数m= -5 。 注:因为0 z B y B x B B z y x ,所以5041 m m 。 11.半径为a 的孤立导体球,在空气中的电容为C 0=a 04 ;若其置于空气与介质(ε1 )之间,球心位于分界面上,其等效电容为C 1= a 102 。 解:(1)0 2 4 Q r E r ,2 04r Q E r ,a Q dr E U a r 04 ,a U Q C 04 (2)Q r D r D r r 2 22 122 , 1 20 1 r r D D , 210012r Q D r , 2 10122r Q D r , 210212r Q E E r r ,a Q dr E U a r )(2101 ,a U Q C )(210 12.已知导体材料磁导率为μ,以该材料制成的长直导线单位长度的内自感为 8。 13.空间有两个载流线圈,相互 平行 放置时,互感最大;相互 垂直 放置时,互感最小。 14.两夹角为n (n 为整数)的导体平面间有一个点电荷q ,则其镜像电荷个数为 (2n-1) 。 15.空间电场强度和电位移分别为D E 、,则电场能量密度w e = D E 2 1 。 16.空气中的电场强度)2cos(20kz t e E x ,则空间位移电流密度D J = kz t e x 2sin 400。 注: )2sin(40)2cos(2000kz t kz t t t D x x D (A/m 2)。 17.在无源区内,电场强度E 的波动方程为022 E k E c 。 18.频率为300MHz 的均匀平面波在空气中传播,其波阻抗为)(120 ,波的传播速度为 )/100.3(8s m c ,波长为 1m ,相位常数为)/(2m rad ;当其进入对于理想介质(εr = 4,μ

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1.点电荷电场的等电位方程是( )。A . B . C . D . C R q =04πεC R q =2 04πεC R q =024πεC R q =2 024πε2.磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3.磁偶极矩为的磁偶极子,它的矢量磁位为( )。 A . B . C . D .024R m e R μπ?u r r 02 ·4R m e R μπu r r 02 4R m e R επ?u r r 2 ·4R m e R επu r r  4.全电流中由电场的变化形成的是( )。A .传导电流 B .运流电流 C .位移电流 D .感应电流 5.μ0是真空中的磁导率,它的值是( )。 A .4×H/m B .4×H/m C .8.85×F/m D .8.85×F/m π7 10-π7 107 10-12 106.电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质7.静电场中试验电荷受到的作用力大小与试验电荷的电量( )A.成反比 B.成平方关系 C.成正比 D.无关8.真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9.磁通Φ的单位为( )A.特斯拉 B.韦伯 C.库仑 D.安/匝10.矢量磁位的旋度是( )A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度11.真空中介电常数ε0的值为( )A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12.下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量13.电场强度的量度单位为( )A .库/米 B .法/米 C .牛/米D .伏/米14.磁媒质中的磁场强度由( )A .自由电流和传导电流产生B .束缚电流和磁化电流产生C .磁化电流和位移电流产生D .自由电流和束缚电流产生15.仅使用库仓规范,则矢量磁位的值( )A .不唯一 B .等于零 C .大于零D .小于零16.电位函数的负梯度(-▽)是( )。?A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17.电场强度为=E 0sin(ωt -βz +)+E 0cos(ωt -βz -)的电磁波是( )。 E v x e v 4πy e v 4π A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18.在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1. 点电荷电场的等电位方程是( )。 A .C R q =04πε B .C R q =204πε C .C R q =02 4πε D .C R q =202 4πε 2. 磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3. 磁偶极矩为m 的磁偶极子,它的矢量磁位为( )。 A .024R m e R μπ? B .02 ?4R m e R μπ C .024R m e R επ? D .02 ?4R m e R επ 4. 全电流中由电场的变化形成的是( )。 A .传导电流 B .运流电流 C .位移电流 D .感应电流 5. μ0是真空中的磁导率,它的值是( )。 A .4π×710-H/m B .4π×710H/m C .8.85×710-F/m D .8.85×1210F/m 6. 电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质 7. 静电场中试验电荷受到的作用力大小与试验电荷的电量( ) A.成反比 B.成平方关系 C.成正比 D.无关 8. 真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9. 磁通Φ的单位为( ) A.特斯拉 B.韦伯 C.库仑 D.安/匝 10. 矢量磁位的旋度是( ) A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度 11. 真空中介电常数ε0的值为( ) A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12. 下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量 13. 电场强度的量度单位为( ) A .库/米 B .法/米 C .牛/米 D .伏/米 14. 磁媒质中的磁场强度由( ) A .自由电流和传导电流产生 B .束缚电流和磁化电流产生 C .磁化电流和位移电流产生 D .自由电流和束缚电流产生 15. 仅使用库仓规范,则矢量磁位的值( ) A .不唯一 B .等于零 C .大于零 D .小于零 16. 电位函数的负梯度(-▽?)是( )。 A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17. 电场强度为E =x e E 0sin(ωt -βz +4π)+y e E 0cos(ωt -βz -4 π)的电磁波是( )。 A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18. 在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末试题 一、填空题(20分) 1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。 2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满 足的边界条件:0 1=?B n ,s J H n =?1 。 3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式 n ??=?ε σ-。 4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。 5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。 6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。 7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。 8.表征时变场中电磁能量的守恒关系是坡印廷定理。 9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为 谐振腔 。 10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 2 4r Q πε;无限长线电荷(电荷线 密度为λ)E =r πελ 2。 11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合, 而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。

12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。 二、判断题(每空2分,共10分) 1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。(×) 2.一个点电荷Q 放在球形高斯面中心处。如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。(×) 3.在线性磁介质中,由I L ψ= 的关系可知,电感系数不仅与导线的几何尺寸、 材料特性有关,还与通过线圈的电流有关。(×) 4.电磁波垂直入射至两种媒质分界面时,反射系数ρ与透射系数τ之间的关系为1+ρ=τ。(√) 5.损耗媒质中的平面波,其电场强度和磁场强度在空间上互相垂直、时间上同相位。(×) 三、计算题(75分) 1.半径为a 的导体球带电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的电流线密度。(10分) 解:以球心为坐标原点,转轴(一直径)为Z 轴。设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则p 点的线速度为 θ ωωφsin a e r v =?= 球面上电荷面密度为 2 4a Q πσ= 故 θ ωπθωπσφ φ sin 4sin 42 a Q e a a Q e v J s === 2.真空中长直线电流I 的磁场中有一等边三角形,边长为b ,如图所示,求三角形回路内的磁通。(10分) 解:根据安培环路定律,得到长直导线的电流I 产生的磁场: Z

电磁场与电磁波期末试题2010A

一、简答题(30分) 1.写出静电场的电位泊松方程,并给出其两种理想介质分界面的边界条件。 2ρ ?ε ?=-; 在两种完纯介质分界面上电位满足的边界条件: 12??= 12 12s n n ??εερ??-=-?? 2.讨论均匀平面波在无界空间传播时本征阻抗与波阻抗的区别。 3.写出均匀平面波在无界良导体中传播时相速的表达式。 4.写出时谐电磁场条件下亥姆霍兹方程。 5.写出传输线输入阻抗公式。 6.证明电场矢量和磁场矢量垂直。 证明:任意的时变场(静态场是时变场的特例)在一定条件下都可以通过Fourier 展开为不同频率正弦场的叠加。 垂直。 也与垂直 与垂直。 与乘定义,可知根据E H H X ∴=?-=?-??- =??B B E B E k B j E k j t B E ωω 7.写出线性各向同性的电介质、磁介质和导电介质的本构关系式。 E J H B E D σμε=== 8.写出均匀平面波在两介质分界面的发射系数和投射系数表达式。 9.写出对称天线的归一化方向函数。 10.解释TEM 、TE 、TM 波的含义。 二、计算题 1. (10分)已知矢量222 ()()(2)x y z x axz xy by z z czx xyz =++++-+-E e e e ,试确 2 1 21 2212rm im tm im E E E E ηηηηητηη-Γ==+== +

定常数a 、b 、c 使E 为无源场。 解 由(2)(2)(122)0x az xy b z cx xy ?=++++-+-= E ,得 2,1,2a b c ==-=- 2.已知标量函数22223326u x y z x y z =+++--。(1)求u ?;(2)在哪些点上u ?等于零。 解 (1)(23)(42)(66)x y z x y z u u u u x y z x y z ????=++=++-+-???e e e e e e ; (2)由(23)(42)(66)0x y z u x y z ?=++-+-=e e e ,得 32,12,1x y z =-== 3. 两块很大的平行导体板,板间距离为d ,且d 比极板的长和宽都小得多。两板接上直 流电压为U 的电源充电后又断开电源,然后在板间放入一块均匀介质板,它的相对介电常数为9r ε= ,厚度比d 略小一点,留下一小空气隙,如图所示。试求放入介质板前后,平行导体板间各处的电场强度。并由此讨论电介质的作用。(20分) 解: (1)建立坐标系如图。加入介质板前,因两极板已充电,板间电压为U ,间距d 远小于平板尺寸,可以认为极板间电场均匀,方向与极板垂直。所以板间电场为 0z U d =-E e 设两极板上所带自由电荷面密度分别为s ρ和s ρ-,根据高斯定理 s s s d d Q S ερ===???D S E S 即 000s D E S S ερ=?=? 得 0000 s U D E d ερε=== r ε =d U z

电磁波谱和常见地物的波谱特征

1.何谓电磁波谱?试述其划分依据及其谱段的特性。 电磁波谱是指将各种电磁波按其波长的(频率)大小所依次排列成的图表。 电磁波谱的划分依据是不同波长电磁波的特性。按照这一划分依据可以把电磁波谱划分为:宇宙射线、γ—射线、X—射线、紫外线、可见光、红外线、微波。宇宙射线的波长<10-8 um,来自宇宙天体,其特性是具有很大的能量和贯穿能力,人工还无法能产生,目前遥感未能用得上这个波段;γ—射线的波长范围为10-8~10-6 um,是原子衰变裂解时放出的射线之一,也具有很高的能量和穿透性;X—射线的波长范围为10-6~10-2 um,高能但是穿透能力较γ—射线弱,被大气层全部吸收,不能用于遥感工作;紫外线的波长范围为0.01~0.38 um,穿透力很弱而且散射严重,易于被臭氧吸收,只有波长0.28~0.38 um的紫外线,能部分穿地大气层,但散射严重,只有部分投射到地面,并使感光材料所感应,可作为遥感工作波段,称为摄影紫外。现已开始用于监测气体污染及水体的油污染;可见光的波段范围为0.38~0.76um,可分解为红、橙、黄、绿、青、蓝、紫七种色光,在太阳辐射能中所占的的比例较高,信息量大,可用摄影、扫描等各种方式成像,是遥感最常用的波段;红外线的波长范围为0.76 — 1000um,红外线按其特性又可以分为近红外(0.76~3um)、中红外(3~6um)、远红外(6~15um)、超远红外(15~1000um),近红外是地表层反射太阳的红外辐射,其中的0.76~1.3um波段可以使胶片感光,常被成为摄影红外,中远红外是地表物体发射的红外线,一般用于热红外遥感;微波的波长为1mm~1m,其特性是具有很强的穿透云雾和一定厚度的植被、冰层和土壤的能力,可以用人工制造的仪器发射微波,因为在遥感使用上具有全天候的能力。 2.试述水体、植被和土壤的波谱特征。 水体的波谱特征: 清洁水体的反射率在各波段都很低(一般在3%左右),在可见光部分为4-5%,在0.6处降至2-3%,到0.75以后的近红外波段,水成了全吸收体。但是污水以及含沙量较高的水体的发射率比清洁水体要高出很多。 植被的波谱特征: 1)不同种类的植物均具有相似的反射波谱曲线 2)可见光区域,由于叶绿素的强烈吸收,植物的反射、透射率均低,仅在0.55附近有一10-20%的小反射峰而呈绿色。 3)近红外区域,在0.7—1.3之间形成45-60%的强反射峰,由于不同种植物的叶内细胞结构差异大,不同种植物的反射率在该波段具有最大的差值,故是区分植物种类的最低波段。 4)1.45、1.95、2.7为中心的三个吸收带为水吸收带,高斯曼发现,还三人吸收带之间的两个反射峰(1.65及2.2)上,各值与非多汁植物反射率差别非常明显。 土壤的波谱特征: 自然状态下土壤的反射率与土壤质地、有机质含量、氧化含量和含水量及盐份等因素有关,土壤的反射光谱曲线由可见光到红外呈舒缓向上的缓倾延伸,没有明显的反射峰和吸收峰。

《电磁场与电磁波》期末考试试题A卷

《电磁场与电磁波》期末考试试题A 卷 一:(16分)简答以下各题: 1. 写出均匀、理想介质中,积分形式的无源(电流源、电荷源)麦克斯韦方程组;(4分) d d d d d 0d 0l S l S S S t t ?? ?=???? ???=-???? ? ?=?? ?=????????D H l S B E l S D S B S 2. 假设两种理想介质间带有面密度为S ρ的自由电荷,写出这两种介质间矢量形式的交变电磁场边界条件;(4分) ()()()()12121212000 S ρ?-=?? ?-=?? ?-=???-=?n D D n B B n E E n H H 3. 矩形金属波导中采用TE 10模(波)作为传输模式有什么好处(3点即可);(4分)

4. 均匀平面波从媒质1(ε1,μ1=μ0,σ1=0)垂直入射到与媒质2(ε2,μ2=μ0, σ2=0)的边界上。当ε1与ε2的大小关系如何时,边界上的电场振幅大于入射波电场振幅?当ε1与ε2的大小关系如何时,边界上的电场振幅小于入射波电场振幅?(4分) 答:(1)电场在边界上振幅与入射波振幅之比是1+R ,所以问题的关键是判的R 的正负。第一问答案ε1 < ε2 ,第二问答案 ε1> ε2 二、(16分)自由空间中平面波的电场为:() 120e j t kx z ω+=πE e ,试求: 1. 与之对应的H ;(5分) 2. 相应的坡印廷矢量瞬时值;(5分) 3. 若电场存在于某一均匀的漏电介质中,其参量为(0ε, 0μ,σ),且在频率为9kHz 时其激发的传导电流与位移电流幅度相等,试求电导率σ。(6分) 解: 1.容易看出是均匀平面波,因此有 ()()()j j 01120e e 120t kx t kx x x z y ωωπηπ++??-=?= -??= ???e H E e e e (A/m ) 或者直接利用麦克斯韦方程也可以求解:( )j 0 e j t kx y ωωμ+??==-E H e 2.若对复数形式取实部得到瞬时值,则 ()120cos z t kx =πω+E e ,()cos y t kx =ω+H e , ()()()2 120cos cos 120cos z y x t kx t kx t kx πωωπω??=?=+?+=-+?????? S E H e e e (W/m 2)。若瞬时值是取虚部,则结果为 ()2 120sin x t kx πω=-+S e 。 3.根据条件可知 397 01 29101051036σωεππ--==??? ?=?(S/m ) 三、(10分)空气中一均匀平面波的电场为 ()(1.6 1.2) 34j x y x y z A e --=++E e e e ,问欲使其为左旋圆极化波, A =?欲使其为右旋圆极化波,A =? 解:(1)左旋圆极化波时,5A j = (2)右旋圆极化波时,5A j =- 由于 345 x y +=e e ,所以5A =。在xoy 平面上画出34x y +e e 和43x y -k =e e ,由 z e 向34x y +e e (相位滞后的方向)旋转,拇指指向k ,符合左手螺旋,因此

电磁场与电磁波期末试卷A卷答案

淮 海 工 学 院 10 - 11 学年 第 2 学期 电磁场与电磁波期末试卷(A 闭卷) 答案及评分标准 题号 一 二 三 四 五1 五2 五3 五4 总分 核分人 分值 10 30 10 10 10 10 10 10 100 得分 1.任一矢量A r 的旋度的散度一定等于零。 (√ ) 2.任一无旋场一定可以表示为一个标量场的梯度。 (√ ) 3.在两种介质形成的边界上,磁通密度的法向分量是不连续的。 ( × ) 4.恒定电流场是一个无散场。 (√ ) 5.电磁波的波长描述相位随空间的变化特性。 (√ ) 6.在两介质边界上,若不存在自由电荷,电通密度的法向分量总是连续的。( √) 7.对任意频率的电磁波,海水均可视为良导体。 (× ) 8.全天候雷达使用的是线极化电磁波。 (× ) 9.均匀平面波在导电媒质中传播时,电磁场的振幅将随着传播距离的增加而按指数规律衰减。 (√ ) 10.不仅电流可以产生磁场,变化的电场也可以产生磁场。 (√ ) 二、单项选择题(本大题共10小题,每题3分,共30分) 1.设点电荷位于金属直角劈上方,如图所示,则 镜像电荷和其所在的位置为[ A ]。 A 、-q(-1,2,0);q(-1,-2,0) ;-q(1,-2,0) B 、q(-1,2,0);q(-1,-2,0); q(1,-2,0) C 、q(-1,2,0);-q(-1,-2,0); q(1,-2,0); D 、-q(-1,2,0);q(-1,-2,0); q(1,-2,0)。 2.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是[ C ]。 A 、镜像电荷的位置是否与原电荷对称; B 、镜像电荷是否与原电荷等值异号; C 、待求区域内的电位函数所满足的方程与边界条件是否保持不变; D 、镜像电荷的数量是否等于原电荷的数量。 3.已知真空中均匀平面波的电场强度复矢量为 2π()120 (V/m)j z E z e e π-=x r r 则其磁场强度的复矢量为[ A ] A 、2π=(/)j z y H e e A m -r r ; B 、2π=(/)j z y H e e A m r r ; C 、2π=(/)j z x H e e A m -r r ; D 、2π=-(/)j z y H e e A m -r r 4.空气(介电常数为10εε=)与电介质(介电常数为204εε=)的分界面是0 z =的平面。若已知空气中的电场强度124x z E e e =+r r r ,则电介质中的电场强度应为 [ D ]。 A 、224x z E e e =+r r r ; B 、2216x z E e e =+r r r ; C 、284x z E e e =+r r r ; D 、22x z E e e =+r r r 单选题1

(完整版)植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。 从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

电磁场与电磁波期末试卷B卷答案

淮海工学院 10 - 11 学年第 2 学期电磁场与电磁波期末试卷(B闭卷) 答案及评分标准 一、判断题(本大题共10小题,每题1分,共10分) 1.导体或介质所受到的静电力可以由能量的空间变化率计算得出。(√)2.在恒定电流场中,电流密度通过任一闭合面的通量一定为零。(√)3.均匀导体中没有净电荷,在导体面上,也没有电荷分布。(×)4. 标量场梯度的方向沿其等值面的切线方向。(×)5.在理想导电体的表面上电场强度的切向分量等于零。(√)6.在无限大理想介质中传播的平面电磁波不衰减。(√)7.复能流密度矢量的实部代表能量的流动,虚部代表能量交换。(√)8.平面波的频率是由波源决定的。(√)9.用单站雷达可以发现隐形飞机。(×)10.地面雷达存在低空盲区。(√)二、单项选择题(本大题共10小题,每题3分,共30分) 1.一个点电荷q位于一无限宽和厚的导电板上方(0,0,d)点,如图1所示, 则求解上半空间p(x,y,z)点的电场时,导体板上的感应电荷可用位于[ B ]的像电荷q -代替。 A、(0,0,-z); B、(0,0,-d); C、(x,y,-z); D、(x,y,-d)。 2.设在无源的自由空间中,电场强度复矢量的表达式为 j (34e)e kz x y E e E- =- 则以下说法正确的是[ A ] 。 A、此电磁波沿z轴正向传播; B、该电磁波为椭圆极化波; C、该电磁波沿z轴方向衰减; D、该电磁波为右旋椭圆极化波。 3.当平面波在介质中传播时,其传播特性与比值 σ ωε 有关。此比值实际上反映了[ A ] 。 A、介质中传导电流与位移电流的幅度之比; B、复介电常数的实部与虚部之比; C、电场能量密度与磁场能量密度之比; D、介质中位移电流与传导电流的幅度之比。 4.已知一电磁波电场强度复矢量表达式为 由此可知它的极化特性为[ C ] 。 A、线极化; B、左旋椭圆极化; C、右旋圆极化; D、右旋椭圆极化。 5.光导纤维即是由两种介电常数不同的介质层构成的。其内部芯线的介电常数大于外层介质的介电常数。当光束以大于临界角的入射角度自芯线内部向边界投射时,即发生[ C ],光波局限在芯线内部传播,这就是光导纤维的导波原理。 A、散射; B、无反射; C、全反射; D、折射。 6.以下四个矢量函数中,只有[ A ]中的矢量函数,才可能是磁感应强度。 A、 x y B e y e x =+ ;B、 x y B e x e y =+ ; C、22 x y B e x e y =+ ;D、2 x y B e x e x =+ 。 7.两个载流线圈之间存在互感,对互感没有影响的是[ D ]。 A、线圈的尺寸; B、线圈的形状; C、两线圈的相对位置; D、线圈上的电流。 8.如两个频率相等、传播方向相同、振幅相等,且极化方向相互正交的线极化波合成新的线极化波,则这两个线极化波的相位差为[ A ]。 j (je)e kz x y E E e- =- 1

典型地物反射波谱测量与特征分析复习进程

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识: ASD野外光谱分析仪 FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。 FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 ●从标准波谱库选择端元进行地物识别 ●自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm

电磁场与电磁波期末试题

一、选择题(10×2=20分) 1.产生电场的源为( C ) A 位移电流和传导电流; B 电荷和传导电流; C 电荷和变化的磁场; D 位移电流和变化的磁场。 2.在有源区,静电场电位函数满足的方程是( A ) A 泊松方程; B 亥姆霍兹方程; C 高斯方程; D 拉普拉斯方程。

3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D ) A 2 22 41z y x q ++π ε; B 2 220 41z y x q ++πε ; C 2 2 2 41z y x q ++π ε ; D 2 2 2 41z y x q ++πε 。 4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B ) A 15m μ; B 30m μ; C 120m μ; D 240m μ。

5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。 6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0 εε=, 设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B ) A a 0 4πε; B a 0 8πε; C a 0 12πε; D a 0 2πε。

7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B ) A 反射波平行极化; B 入射角等于布儒斯特角; C 入射角等于临界角; D 入射波为左旋园极化。 8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续 A 传导电流; B 时变电流; C 运流电流; D 位移电流。

电磁波期末考试题集及答案详解

电磁场与电磁波练习 1、一半径为a 的均匀带电圆环,电荷总量为 q ,求圆环轴线上离环中心 o 点为z 处的电场 强度E 。 z , 4 二;o a 解:⑴ 如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为 dq=2二dr :由习题 2. 1的结果可知该回环在轴线上 P 点处的场强为 v 解: (1)如图所示,环上任一点电荷元dq 在P 点产生的场强为dE 二 dq 对称性可知,整个圆环在P 点产生的场强只有z 分量,即 dE z = dtE^cos dq 2 — r nz o R R zdq ’ -2 2 4,:;. o a z 积分得到 E z 3 4 二;o 2 ■ z 2 2 dq = 昭兀dl 4- ;o 2 ■ z 2 2 l 2、 H4H.nl ⑵.q 寺:不变的情况下, 当 a —? 0和a —?时结果如何? a > 0和ar-'时结果如何? (3)在保持总电荷 qz F 变的情况下,当 o

dE 二zdq z rdr 3 2;0 2z2

2 2 2 1 4、在介电常数为;的无限大约均匀介质中,有一半径为 a 的带电 q 的导体球,求储存在 介质中的静电能量。 解:导体在空间各点产生的电场为 v E w = 0 E r q 2 r 二;r (0 :: r :: a) 故静电能量为 4二r 2dr 二 q 则整个均匀带电圆面在轴线上P 点出产生的场强为 I /"0 ; ⑶若保持q 弋。当不变时当g N 0)时贝此带电o 圆面可视为一点电荷。则 q 2 4二;o z 3、有一同轴圆柱导体,其内导体半径为 a ,外导体内表面的半径为 b ,其间填充介电常 数为;的介质,现将同轴导体充电,使每米长带电荷 ,。试证明储存在每米长同轴导 Ez = 、N a r z 2 2 (2)若■ 不变,当 a - 0时,则E z 当 ar ::, 则 E z 二 2 2 ;o (1-0)= 6 2 ; o 体间的静电能量为 W = ln b 。 4二;a 证:在内外导体间介质中的电场为 v E 二 2mr 沿同轴线单位长度的储能为dV (a :: r :: b) 2 ; o In 4二; a

相关文档
相关文档 最新文档