文档库 最新最全的文档下载
当前位置:文档库 › 全厂防雷击浪涌方案(仪表部分)

全厂防雷击浪涌方案(仪表部分)

全厂防雷击浪涌方案(仪表部分)
全厂防雷击浪涌方案(仪表部分)

大唐多伦年产46万吨煤基烯烃项目

一、情况介绍

大唐多伦年产46万吨煤基烯烃项目是采用SHELL粉煤气化技术将多伦的褐煤气化,采用LURGI技术制甲醇,然后转化为丙烯(简称三合一), 经聚合后制成聚丙烯(DOW技术)的项目。

装置分为:

预干燥装置:

将原煤干燥并处理成煤气化和动力站需要的粉煤,由粉煤输送系统将粉煤分配至煤气化

和动力站,二套控制系统均采用随机械设备带来的PLC系统,进行顺序控制,因这二处的PLC控

制与其他控制方式不同,为方便操作,分别设置独立的预干燥装置控制室和粉煤输送系统控制

室对原煤干燥和粉煤输送进行控制,其监控数据通过光纤输送至上位机管理系统,为生产调度

提供第一手一线生产资料。

预干燥装置分为三套生产系列(每套生产系列五套煤干燥系统,四开一备), 分别对应

三台煤气炉。

粉煤输送装置分为三套输送系统(每套输送系统二条粉煤输送线,一开一备), 分别对

应三台煤气炉。

煤气化装置<三套>:

三套SHELL大型煤气化装置并联运行,为全厂源源不断提供大量合格煤气。

煤气化装置独立设置一套DCS和ESD, 对三套煤气化炉采用分区控制, 各套煤气化炉均

可单独投运或停车, 负荷运行灵活。

空分装置(杭氧总承包):

空分装置配置三套大型空分,包括三台空气压缩机,按惯例,均由空分厂总承包。

空分装置的控制系统主要是冷箱内的自动控制,由杭氧负责设计施工。

空分装置采用三套DCS, 分别对三套空分装置实施控制, 各套空分均可单独投运或停车,

负荷运行灵活, 空分DCS与煤气化装置的DCS光纤通讯。

三台空气压缩机的控制由ITCC(机组综合控制系统)完成,由ITCC集成商负责安装指导,软件组态,调试投运等工作。

甲醇装置

甲醇装置流程较长, 包括一氧化碳变换<三套>,酸性气体脱除,合成气压缩,甲醇合成,甲醇精馏,中间罐区,硫回收,冷冻等工序。

由煤气化装置生产的煤气进一氧化碳变换工序(也是三套并联运行),将CO在触媒的作用下加H2O转换为CO2和H2,进入酸性气体脱除工序,脱除掉大部分的CO2和全部的硫化物(H2S, 脱除的气体叫酸气),净化后的气体经合成气压缩后送至甲醇合成,在触媒的作用下生成粗甲醇,再经过甲醇精馏工序制成精甲醇(成品甲醇)。

中间罐区主要用于贮存粗甲醇和精甲醇,在生产过程中起缓冲调节作用。

酸性气体脱除工序脱掉的酸气在硫回收装置里燃烧成SO2(产生蒸汽热能回收),再转化成单体硫(化工产品)。

冷冻工序负责装置的冷却吸收。

脱除的CO2返回煤气化装置。

合成气压缩机组和冷冻工序的大型蒸汽透平压缩机组的控制各自采用ITCC进行监控。

MTP装置:

MTP装置是LURGI公司的新技术,包括反应, 再生,气体分离, 烯烃压缩及干燥, 净化, 乙烯制取,冷冻站等工序。

甲醇装置生产的甲醇在反应工序中经DME反应器转化成二甲醚,再经MTP反应器转变成烯烃,进气体分离脱除水份,由烯烃压缩机加压后在净化工序里分离成丙烯、汽油、LPG等分别进入各自贮罐,出净化的气体在乙烯制取工序分离出乙烯后返回前述之反应器,乙烯进入贮罐备用。

该冷冻站和甲醇装置的冷冻工序一样负责装置的冷却吸收。

烯烃压缩机组、脱乙烷压缩机组和冷冻工序的大型蒸汽透平压缩机组的控制采用ITCC进行监控。

PP装置:

PP装置采用美国DOW化学技术,工艺流程非常短,反应聚合率高:MTP装置的生成物丙烯在反应器内在催化剂的作用下由单体丙烯聚合成聚丙烯,再由风送系统和产品分配系统送至聚丙烯贮仓,经挤压机制成颗粒,即为成品。

未聚合的单体丙烯经分离后返回丙烯反应器。

聚乙烯制作亦如此。

采用DCS系统对PP装置的生产进行全方位监控。

采用ESD系统对PP装置进行安全保护和紧急停车。

PP装置的循环气压缩机和尾气压缩机由DCS和ESD监控。

公用工程(水处理及罐区):

水处理,由酸性气体脱除现场控制室的DCS实施监控。

罐区,由甲醇合成现场控制室的DCS实施监控。

动力站:

动力站由华北电力院负责设计。

二、方案讨论

(一)全厂防雷击浪涌方案:

1、概况

雷电灾害是目前国际公认的十大最严重的自然灾害之一,据来自内蒙古气象局的资料,自2003年以来,内蒙古因雷击造成30人死亡、41人受伤,经济损失达3700多万元。包头市的年雷暴日达34天,呼和浩特市为36天,已属于较强雷暴区,按石油石化系统的防雷要求,年雷暴日超过26天,就必须考虑对各类装置采取完善的直击雷、感应雷的防护措施。

大型的石化企业由于其生产过程的特殊性,厂区都会设置于人烟较为稀少和空旷的郊外,周围不会有高大的建筑物,其装置和设备绝大多数都是金属构件,由于电场的感应极易累积电荷,对周围的带电积雨云有强烈的吸引作用,所以石化厂区建立后,常常会遇到雷电频繁光顾的情况,雷电活动的频繁程度也常常会远高于周边地区。石化生产的中间环节以及生产过程中出现的一些副产品都是易燃易爆的气体或液体,由于雷电发生时引爆罐区的气体、燃料储存罐,击毁厂区重要设备的事故时有发生,如1979年黄岛油库4号罐遭雷击起火爆炸,导致30多人死亡,4000万元的经济损失;1988年湛江石化炼油厂两个成品油罐遭雷击起火,在周边10多支消防队的支援下才将大火扑灭,工厂不得不停车一周。石化工厂的生产由于其工艺的复杂性,依赖于DCS系统的精确控制,在生产过程中由于人为等各种偶然因素,可能出现危险状况,所以需要ESD等辅助安全系统将危险状况的影响控制在最小范围内,但是这些系统都是基于集成电路的弱电信号工作设备,由于雷击引起的高电压、电流窜入其回路时,轻则击毁通讯板卡,重则导致系统出现误判断,造成全厂范围的停车。这都已经不是偶然的个别现象了,在国内不少大型企业里都曾经出现过。

雷击为雷电直接作用在相应设备上而造成巨大损失,直接损失很大,但目前工厂、设备均安装有较完善的防雷措施(如避雷针等),因而直接雷击造成损失的概率较小。

然而瞬态浪涌电流的产生,却给工厂带来的损失就不小了。

瞬态浪涌电流的成因:

直击雷

附近雷击在金属管线上产生的浪涌电流

电力中断/电力管制产生暂态电压变化

大型电动力泵启停

电动力压缩机启停

附近升降机运行

电源负载变化

电弧

其他重型电动机械

等等

以上为浪涌产生的原因,将通过电阻耦合、电感耦合、电容耦合、电磁感应等几种方式进入到我们的自控系统中,防不胜防,造成严重的损失:

直接击毁或大幅降低用电设备寿命如各种变送器、I/O卡件、控制器、安全栅等。

上述用电设备损坏造成的全厂或生产装置停车。

2、国内外防雷击浪涌规范

目前在国际上, IEC61643, IEEE C62.41, BS6651:1999,对于采取浪涌保护措施,防止雷击对供电系统,弱电信号回路的保护都提出了明确的指导性建议。

目前国内涉及浪涌及雷击防护的有关标准有:

GB50057-2000 建筑物防雷设计规范

对于各种设施的供电系统提出了加装浪涌保护措施的要求。

GB50343-2004 建筑物电子信息系统防雷技术规范

对建筑物中的有线通讯系统如何加装浪涌保护措施提出了建议,但不适用于易燃易爆危险场所的电子信息系统。

GB 50074-2002 石油库设计规范

要求其自控系统的信号加装浪涌保护装置。

GB 50156-2002 汽车加油加气站设计与施工规范

要求仪表信号回路必须考虑加装浪涌保护装置。

3、基本方案

有较高雷暴日的地区,化工厂应在行政办公楼,生产装置区,原料成品罐区,生产控制室,网络信息平台,供水、污水处理公用设施,装车平台等地方考虑防雷击浪涌的保护措施。

大唐多伦46万吨/年煤基烯烃项目是一个超大型煤化工项目,占地面积大。

1)防雷击浪涌保护分为电源和控制系统信号回路保护两部分。

(1)在全厂所有控制室(如预干燥装置控制室、煤气化装置控制室、空分装置控制室、净化控制室、甲醇合成控制室、MTP装置控制室、PP装置控制室、动力站控制室、中央控制室及其它计算机网络系统机房)内的UPS 380VAC/220VAC供电入口处加装第一级电源浪涌保护器。

(2)在如下所有系统的电源入口处加装就地电源保护器(安装于各自的配电盘上):

DCS

ESD

ITCC

现场控制柜

远程I/O站

现场分析小屋

火灾和可燃气体报警系统(FGS)

工业电视系统

全厂通讯系统

上位调度管理系统网络

其它计算机网络系统

(3) 信号回路的保护分为现场仪表保护和室内各种系统保护:

对如下的贵重和重要的现场仪表应加装现场用浪涌保护器。

安装于较高位置的智能变送器(初步定为10m以上)

安装于较高位置的磁致伸缩液位计(初步定为10m以上)

安装于罐区的磁致伸缩液位计、雷达液位计、伺服式液位计

质量流量计

超声波流量计

可燃(有毒)气体检测探头

工业电视摄像头

重要的调节阀或开关阀

现场仪表是指各个装置,罐区,公用设施等安装于现场露天环境下的仪表,并根据现场是否属于危险场所采取相应的防爆措施。

DCS、ESD、ITCC、PLC等系统的I/O 回路的保护,原则上是来自现场室外的I/O信号进入机柜内I/O卡之前都需要加装浪涌保护器。(可进行详细地讨论)

包括各个罐区装车系统,公用设施的远程I/O,也是采取上述方式采取保护措施。

2)几点说明

(1) 通讯系统保护主要是针对有线通讯线路,如:来自电信局的中继电话线,在进入公司电话交换机之前必须加装通讯浪涌保护器。公司内部电话线路在分配时,进出各个大楼的入口处也必须加装相应的通讯浪涌保护器。

电源浪涌保护器和供电线路的连接导线应短而直,采用有效截面积不低于16 mm2的多股绝缘电缆。

(2) 位于通讯机房,计算机房,DCS、ESD、ITCC、PLC等机柜的配电柜内应安装一级220VAC 过电压操作保护浪涌保护器。

为保护程控交换机等通讯设备,通讯机房内来自电信局的通讯中继通讯线路进入交换机前应安装信号浪涌保护器,

(3) 在危险、重要场所配置的监控系统,有大量的室外监控摄像头,控制室内可以任意调节其取景范围、遥控转向,其在室外长距离铺设的视频、控制电缆上由于电磁感应出现浪涌后,很容易进入室内的矩阵解码器中,也属于我们需要考虑保护的范围。

(4) 包括称重衡、地磅在内的装车计量系统,设置在室外的金属地磅,经常是暴露在雷电的威胁之下,虽然有很好的接地系统,但在把大电流引入地下的过程中,设置在地磅下的敏感的测力传感器却经常被击毁,有时还会殃及室内的计算机计量系统。

雷击和浪涌现象经常随机地发生,一旦发生却会给企业带来较大的损失和伤害,使得针对性地预防工作变得十分困难,须详细讨论。

(本文为初稿)

浪涌抗扰度试验

浪涌冲击抗扰度测试及整改参考 浪涌冲击抗扰度测试及整改参考 1. 浪涌冲击形成的机理 电磁兼容领域所指的浪涌冲击一般来源于开关瞬态和雷击瞬态。 系统开关瞬态与以下内容有关: a )主电源系统切换骚扰,例如电容器组的切换; b )配电系统内在仪器附近的轻微开关动作或者负荷变化; c )与开关装置有关的谐振电路,如晶闸管; d )各种系统故障,例对设备组接地系统的短路和电弧故障。 雷击瞬态 雷电产生浪涌(冲击)电压的主要原理如下: a)直接雷击于外部电路(户外),注入的大电流流过接地电阻或外部电路阻抗而产生电压; b)在建筑物内、外导体上产生感应电压和电流的间接雷击(即云层之间或云层中的雷击或击于附近物体的雷击,这种雷击产生的磁场);c)附近直接对地放电地雷电入地电流耦合到设备组接地系统的公共接地路径。 当保护装置动作时,电压和电流可能发生迅速变化,并可能耦合到内部电路。 2. 试验内容: 对电气和电子设备的供电电源端口、信号和控制端口在受到浪涌(冲击)干扰时的性能进行评定。 3 .试验目的: 评定设备在遭受到来自电力线和互连线上高能量浪涌(冲击)骚扰时产品的性能。 4.试验发生器(雷击浪涌发生器) a)信号发生器特性应尽可能地模拟开关瞬态和雷击瞬态现象; b)如果干扰源与受试设备的端口在同一线路中,例如在电源网络中(直接耦合),那么信号发生器在受试设备的端口能够模拟一个低阻抗源; c)如果干扰源与受试设备的端口不在同一线路中(间接耦合),那么信号发生器能够模拟一个高阻抗源。 对于不同场合使用的产品及产品的不同端口,由于相应的浪涌(冲击)瞬态波形各不相同,因此对应模拟信号发生器的参数也不相同。 5.试验实施 电源、信号和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。 根据要进行试验的EUT的端口类型选择相应的试验试验波形发生器和耦合单元及相应的信号源内阻。 使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加冲击电压,。 每种组合应针对不同脉冲极性进行测试,两次脉冲间隔时间不少于1min。 对电源端子进行浪涌测试时,应在交流电压波形的正、负峰值和过零点分别施加试验电压。 对电源线和信号线应分别在不同组合的共模和差模状态下施加脉冲冲击。 每种组合状态至少进行5次脉冲冲击。 若需满足较高等级的测试要求,也应同时进行较低等级的测试。 只有两者同时满足,我们才认为测试通过。 6.试验结果 若电快速速变脉冲群测试通不过,可能产生如下后果: (1 )引起接口电路器件的击穿损坏。 (2 )造成设备的误动作。 7.导致浪涌冲击抗扰度试验失败的原因 浪涌脉冲的上升时间较长,脉宽较宽,不含有较高的频率成分,因此对电路的干扰以传导为主。主要体现在过高的差模电压幅度导致输入器件击穿损坏,或者过高的共模电压导致线路与地之间的绝缘层击穿。由于器件击穿后阻抗很低,浪涌发生器产生的很大的电流随之使器件过热发生损坏。对于有较大平滑电容的整流电路,过电流使器件损坏也可能是首先发生的。

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源适配器浪涌抗扰实验分析

开关电源适配器浪涌抗扰实验分析 自从开关电源适配器开始实行标准以来,我国在1999年和2008年推出了两个有关雷击浪涌抵抗的相关标准。这两个标准分别对应国际上的两种现行标准。虽然与雷击浪涌有关的GB/T17626.5规定在我国已经有两个版本,但因为大多数国内产品迟迟未根据新标准进行修订,所以造成了 GB/T17626.5-1999和GB/T17626.5-2008两个标准并存的局面。本文将为大家介绍开关电源适配器雷击浪涌抗扰度实验方法,以及实验等级。 ?标准主要模拟间接雷击(开关电源通常都无法经受直接雷击),如雷电击中户外电网线路,有大量电流流入外部线路或接地电阻,因而产生了干扰电压;间接雷击(如云层间或云层内的雷击)在外部线路上感应出的脉冲电压和电流;雷电击中线路邻近物体,在其周围建立强大电磁场,在外部线路上感应出电压;雷电击中附近地面,地电流通过公共接地系统时所引进的干扰。 ?电源适配器在浪涌抗扰试验标准处模拟自然界的雷击外,还提到了变电所等场合,因为开关动作而引进的干扰,如主电源系统切换时的干扰;同一电网,在靠近开关电源适配器附近的一些小开关跳动时形成的干扰;切换伴有谐振线路的晶闸管设备;各种系统性的故障,如设备接地网络或者接地系统间的短路和飞弧故障。 ?雷击浪涌抗扰度试验方法 ?1、根据试验品的实际使用和安装条件进行布局和配置,包括有些标准会改变体现波形发生器信号内阻的附加电阻。 ?2、根据产品要求来定试验电压的等级及试验部位。 ?3、在每个选定的试验部位上,正、负极性的干扰至少要各加5次,每次浪涌的最大重复率为1次/min。因为大多数系统用的保护装置在两次浪涌之间

雷击浪涌试验详细介绍

,. 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。

,. 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 耦合网络

,. 图4 交/直流上电容耦合的配置,线-线 图5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT非屏蔽互联线的试验配置

,. 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直

,. 接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开

浪涌保护电路

利用VDR,TVS等抗浪涌保护器件搭建的浪涌保护电路,加在电源模块的前端,有效消除浪涌电压,已试验过。 1.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。 压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。 压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压) 最小参考电压:Ulma≥(1.8~2)Uac (直流条件下使用) Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压) 压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。 2.抑制二极管: 抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7. 抑制二极管的技术参数 击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。 ⑵最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最

PFC电路防浪涌二极管的选用

PFC电路防浪涌二极管的选用 摘要:本文主要介绍了采用BOOST拓扑结构的PFC电路在浪涌二极管上的选用,对有浪涌二极管和无浪涌二极管的PFC电路进行了相应的试验验证。 关键词:BOOST PFC电路,浪涌二极管。 在目前常用的PFC电路中大多是采用BOOST拓扑结构,BOOST拓扑结构的PFC 电路能够起到很好的功率因素矫正和输出预稳压的作用,有利于较少交流输入电网的电流谐波分量,同时输出的预稳压对后的设计起到一个优化的作用。 在我们常用的BOOST PFC电路中常会用到一个浪涌二极管,如图1中的VD15,该二极管跨接在升压电感和升压二极管两端。浪涌的二极管的作用在理论上主要为在交流输入端存在有电压尖峰浪涌时,二极管能够在输入尖峰浪涌到达时导通,利用PFC输出的滤波电容对尖峰浪涌进行吸收,避免尖峰浪涌通过升压电感冲击到开关管,起到保护开关管的作用。但在实际应用中浪涌二极管的作用存在有一定的质疑,下面主要对有浪涌二极管和没有浪涌二极管的BOOST PFC电路进行比较试验。 如图1中的BOOST PFC电路,输入电压范围为154Vac~310Vac,输出为410Vdc,输出功率2KW,PFC输出过压保护点为440Vdc,控制电路采用UC3854B的平均电路控制模式。在电路中的VD15为浪涌二极管,在有浪涌二极管的PFC电路和无浪涌二极管的PFC电路进行比较试验,试验的内容主要考核在高压输入和浪涌输入时的PFC开关管保护能力。

图1 带有防浪涌二极管的PFC电路 在图1中PFC电路的正常工作输入电压范围达到300Vac以上,VD15使用的是RS806,针对在高压输入时RS806导通问题进行相应的试验,PFC输出电压为410Vdc,带额定负载,但输入电压调高到295Vac以上时浪涌二极管开始导通,同时PFC电路的功率因素开始降低,试验结果如下: 图1 CH1:升压电感电流 CH2:VD15电流图2 CH1:升压电感电流 CH2:VD15电流

雷击浪涌发生器操作规程

雷击浪涌发生器操作规程 为正确、安全、规范的使用雷击浪涌发生器,以评定样机在经受来自电力线上高能量骚扰时的性能,特制定本操作规程。 一、【注意事项】 1.试验人员必须经培训合格后才能进行设备操作; 2.当手潮湿或相对湿度超过75%时,不要使用本设备; 3.因为有高压脉冲加到输出接线端子(如,2Ω,500Ω,L1,L2,L3等端口), 如果改换接线,务必要在确认高压电源处于断开状态才能进行; 4.仪器的F.G.端子要良好接地; 5.本设备是利用高压水银开关来产生高压脉冲,严禁在设备倾斜状态下,进 行试验; 6.内带高压,请勿随意拆卸或敞开机壳工作; 7.当发生紧急情况时按EMERGENCY键仪器将迅速停止浪涌输出,关闭内部高压, 快速切断电源; 8.为保证试验的可比性和可重复性,试验配置必须规范; 9.非有关人员严禁操作本仪器。 二、【测试条件】 1.环境温度: 15℃~35℃; 2.相对湿度: 25%~75%。 三、【操作程序】 1.检查实验室雷击浪涌发生器的配置,需要按照相关标准和产品说明书进行配置, 特别注意的是仪器接地端子必须接入大地系统; 2.根据实验内容和仪器使用说明书的要求,完成相关接线,特别注意对需要接地的 设备必须接地,确认无误时再接入电网; 3.按雷击浪涌发生器使用说明书的要求,接好仪器电源和EUT电源输入端,打开前 面板上的POWER开关,并将仪器前面板的LINE ON空气开关向上合上,处于通路 状态; 4.设置参数:分别通过5个功能键选中需要设置对应的参数,再通过“△“增加健 和“▽“减小健设置。LEVEL为试验等级,试验按国标第4等级设置;VOLTAGE

信号口浪涌防护电路设计

信号口浪涌防护电路设计 通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。 设计信号口防雷电路应注意以下几点: 1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有 一定裕量。 2、防雷电路应有足够的冲击通流能力和响应速度。 3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设 备兼容。 4、信号防雷电路要考虑阻抗匹配的问题。 5、信号防雷电路的插损应满足通信系统的要求。 6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的 动作电压是信号回路的峰值电压的1.3~1.6倍。 1.1网口防雷电路 网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。 1.1.1室外走线网口防雷电路 当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图1设计。

a b 图1 室外走线网口防护电路 图1a 给出的是室外走线网口防护电路的基本原理图,从图中可以看出该电路的结构与室外走线E1口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和TVS 管组成的二级防护电路实现。图中G1和G2是三极气体放电管,型号是3R097CXA ,它可以同时起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω/2W 电阻,使前后级防护电路能够相互配合,电阻值在保证信号传输的前提下尽可能往大选取,防雷性能会更好,但电阻值不能小于2.2Ω。后级防护用的TVS 管,因为网口传输速率高,在网口防雷电路中应用的组合式TVS 管需要具有更低的结电容,这里推荐的器件型号为SLVU2.8-4。图 1b TX RX ,低节电容 ,低节电容

全厂防雷击浪涌方案(仪表部分)

大唐多伦年产46万吨煤基烯烃项目

一、情况介绍 大唐多伦年产46万吨煤基烯烃项目是采用SHELL粉煤气化技术将多伦的褐煤气化,采用LURGI技术制甲醇,然后转化为丙烯(简称三合一), 经聚合后制成聚丙烯(DOW技术)的项目。 装置分为: 预干燥装置: 将原煤干燥并处理成煤气化和动力站需要的粉煤,由粉煤输送系统将粉煤分配至煤气化 和动力站,二套控制系统均采用随机械设备带来的PLC系统,进行顺序控制,因这二处的PLC控 制与其他控制方式不同,为方便操作,分别设置独立的预干燥装置控制室和粉煤输送系统控制 室对原煤干燥和粉煤输送进行控制,其监控数据通过光纤输送至上位机管理系统,为生产调度 提供第一手一线生产资料。 预干燥装置分为三套生产系列(每套生产系列五套煤干燥系统,四开一备), 分别对应 三台煤气炉。 粉煤输送装置分为三套输送系统(每套输送系统二条粉煤输送线,一开一备), 分别对 应三台煤气炉。 煤气化装置<三套>: 三套SHELL大型煤气化装置并联运行,为全厂源源不断提供大量合格煤气。 煤气化装置独立设置一套DCS和ESD, 对三套煤气化炉采用分区控制, 各套煤气化炉均 可单独投运或停车, 负荷运行灵活。 空分装置(杭氧总承包): 空分装置配置三套大型空分,包括三台空气压缩机,按惯例,均由空分厂总承包。 空分装置的控制系统主要是冷箱内的自动控制,由杭氧负责设计施工。 空分装置采用三套DCS, 分别对三套空分装置实施控制, 各套空分均可单独投运或停车, 负荷运行灵活, 空分DCS与煤气化装置的DCS光纤通讯。

三台空气压缩机的控制由ITCC(机组综合控制系统)完成,由ITCC集成商负责安装指导,软件组态,调试投运等工作。 甲醇装置 甲醇装置流程较长, 包括一氧化碳变换<三套>,酸性气体脱除,合成气压缩,甲醇合成,甲醇精馏,中间罐区,硫回收,冷冻等工序。 由煤气化装置生产的煤气进一氧化碳变换工序(也是三套并联运行),将CO在触媒的作用下加H2O转换为CO2和H2,进入酸性气体脱除工序,脱除掉大部分的CO2和全部的硫化物(H2S, 脱除的气体叫酸气),净化后的气体经合成气压缩后送至甲醇合成,在触媒的作用下生成粗甲醇,再经过甲醇精馏工序制成精甲醇(成品甲醇)。 中间罐区主要用于贮存粗甲醇和精甲醇,在生产过程中起缓冲调节作用。 酸性气体脱除工序脱掉的酸气在硫回收装置里燃烧成SO2(产生蒸汽热能回收),再转化成单体硫(化工产品)。 冷冻工序负责装置的冷却吸收。 脱除的CO2返回煤气化装置。 合成气压缩机组和冷冻工序的大型蒸汽透平压缩机组的控制各自采用ITCC进行监控。 MTP装置: MTP装置是LURGI公司的新技术,包括反应, 再生,气体分离, 烯烃压缩及干燥, 净化, 乙烯制取,冷冻站等工序。 甲醇装置生产的甲醇在反应工序中经DME反应器转化成二甲醚,再经MTP反应器转变成烯烃,进气体分离脱除水份,由烯烃压缩机加压后在净化工序里分离成丙烯、汽油、LPG等分别进入各自贮罐,出净化的气体在乙烯制取工序分离出乙烯后返回前述之反应器,乙烯进入贮罐备用。

雷击浪涌试验细则

. . . . 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。 . 资 料. .. .

. . . . . 资料. .. . 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 耦合网络

. . . . . 资料. .. . 图 4 交/直流上电容耦合的配置,线-线 图 5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT 非屏蔽互联线的试验配置

. . . . . 资料. .. . 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。

. . . . . 资料. .. . 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开 图8 AC 主回路浪涌试验电路,线-线

雷击浪涌发生器-雷击浪涌抗扰度试验首选3ctest

8 ● 超大L C D 显示,计算机控制,一次设定,自动完成测试项目; ● 试验时智能采集试品击穿电流 电压值,直接L C D 显示; ● 内置电流传感器、电压衰减器,B N C 连接示波器观测波形(高配); ● 进口电子式主开关,波形稳定,可比性强,寿命长; ● 正负自动切换,正负极性可以交替切换; ● 程控高压电源,电压稳定精度高; ● 浪涌注入相位角度0~359°自由设定; ● 内置I E C 61000-4-5标准试验等级; ● E M C K 3000测量软件保存波形和试验记录(选配); ● R S -232通讯接口,可实施远程控制。 全自动雷击浪涌模拟器 S G -5006G (台式)用于评估设备电源线和内部连接线在经受来自开关切换及自然界雷击所引起高能量瞬变干扰时的性能提供一个共同依据。 性能完全满足最新的IEC61000-4-5 和GB/T17626.5 GB/T16927.1要求。 根据客户要求可以满足A N S I C 62.41/45、U L 1449要求。 技术特点 S G -5006G 主要技术参数 0.1~3kA 2Ω±10% 1.2μs±30%50μs ±20% 自由设定0~359°IEC 四种标准试验等级10V/10kV 或6kV ,10V/5kA 或3kA 阻容耦合,其中差模时18μF 、共模时9μF /10Ω8μs ±30% 20μs±20% 正或负 正负交替输出电压波 输出阻抗浪涌注入相位内置标准等级浪涌耦合方式输出波形BNC 端口电压极性 输出电流波输出短路电流触发方式智能耦合/去耦网络(选配)工作电源电压范围 项 目 SG-5006G 0.2~6kV 同步/异步自由设置SGN-20G (三相五线,20A )SGN-5010G (单相三线,20A )单相AC220V ±10% 、50/60Hz 环境温度内包装尺寸(长×宽×高)重 量770×680×485mm 10°C ~ 40°C 约30kg

浪涌防护器中的常用器件

浪涌防护器中的常用器件 目前在浪涌防护器中常用的器件主要包括: 1.金属氧化物压敏电阻(MOV) 金属氧化物压敏电阻是非线性的电子元件,允许大电流通过维持接线端(指定端)很低的残余电压。当金属氧化物压敏电阻遇到瞬时超过它的启动电压时,他立即由电阻抗变为低阻抗,让瞬间巨大的浪涌泻放到大地,是危险的高电压远离敏感的电子设备。典型的有氧化锌(ZnO)浪涌吸收器,它是一种以ZnO材料为主,添加多种过渡性金属氧化物经高温烧成处理而成的多晶半导体陶瓷元件。由于电微观结构的隧道效应,使它具有与齐纳二极管相似的非线性电压一电流特性曲线。另外,该元件的承受脉冲能量几乎是齐纳二极管的几十或几百倍。至今,这种元件已广泛地应用于电源设备或其他低频电路防雷击和吸引开关电涌。 2.滤波电容器 滤波电容器能够消除脉冲危害,并可以过滤高频噪音。当幅度为几十伏到几百伏的高脉冲进入电涌时,若没经过处理,这些脉冲会导致电子系统混乱和元件劣变。瞬间浪涌可以经金属氧化物压敏电阻与硅雪崩二极管的反应快并具钳位电压低的特性。为您提供最低的平稳钳位电压。同时由滤波电容器消除高频噪音。 3.混合型器件 混合型器件兼容了金属氧化物压敏电阻的大过流容量特性,提高浪涌电流导通能力,又具有硅雪二极管的反应快并具钳位电压低的特性。为您提供最低的平稳钳位电压。同时由滤波器消除高频噪音。 4.NTC热敏电阻器 抑制浪涌电流用负温度系数热敏电阻能有效地将开机瞬间的浪涌电流抑制在十分之一以内,而不影响仪器的正常工作,并且在正常工作时其阻值很小,从而所耗散的功率也很少。这类元件已广泛用于各类开关电源中。 5.瞬变电压抑制器(TVS) 瞬变电压抑制器(TVS)是一种特殊的硅二极管雪崩器件,故也称为闭变电压抑制二极管,其工作原理与齐纳二极管相似。特性及符号与齐纳二极管相同,但与一般的齐纳二极管不同的是对TVS器件有大面积的PN结,具有承受瞬间大电流的能力,另外它的反向特位为典型的雪崩型,在雪崩时有低动态阻抗及低竿位电压,只要将TVS并接受要保护的电路上,当有瞬态电压发生时,TVS将快速响应(击穿),以耗散大的浪涌电流,电路被塔位于低电压,使电路得以保护。

防雷开关电源电路的设计方案

一般建筑物上的避雷针只能预防直击雷,而强大的电磁场产生的感应雷和脉冲电压却能潜入室内危及电视、电话及电子仪表等用电设备。特别是太阳能控制仪表,由于太阳能安装位置的特殊情况,其使用稳定性是广大开发人员一直关注的重点。 瞬间高电压的雷击浪涌以及信号系统浪涌是引起仪表稳定性差的重要原因,信号系统浪涌电压的主要来源是感应雷击、电磁干扰(EMI)、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。如何设计防雷电路成为仪表研发的关键问题。 雷击浪涌分析 防雷击浪涌电路的设计 解决方案: 应用将压敏电阻和陶瓷气体放电管的单相并联 使用线绕电阻断开电路 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1、电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2、信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不

LED 照明电源防雷击浪涌保护电路

====================================================================== LED照明电源及驱动电路的保护 由于LED电源和驱动电路容易遭受过电冲击和短路故障而损坏,因此在驱动电路设计中要充分考虑各 种故障状态的保护措施,以提高电路的可靠性,从而降低返修率。PTC可以实现交流电源的过流和短路保 护,MOV用于过电冲击和浪涌保护。PTC+TVS系列是用于直流电源输入口的过压过流综合保护元件,LED 灯串联的表面贴装保险丝则是实现负载过流或断路故障保护。 如图为LangTuo Electronics可用于开关模式电源供应(SMPS)和LED 驱动输入输出的综合保护机制。PPTC 也是一种过流保护器件,可以安装在同电源输入串联的位置上,用来防止电路短接、电流过载或者 用户误操作引起的危害。另外,在输入端放置一个MOV 也可以为LED模块提供过压保护。 MOV与GDT气体放电管的组合使用-----许多设备生产商倾向于使用联合的保护电路,把可重置PPTC 器件 同上游的防雷保护结合在一起。 LED 驱动器也很容易受到不当的直流电压和极性错误的损害。其输出也可能被未加留意的短接破坏。电 源接口同样也会受到瞬间电压过压的损害,另外还有ESD 冲击。驱动器输入端,简单提供了一个传统的箝 位二极管,可以防止瞬变提供反向偏置保护和过流保护。 总结 可重置PPTC 器件可以防止LED照明应用中由过流或温度过高导致的损害。MOV+GDT(LT-B5G600L)过 压保护器件可以帮助生产商满足一系列的安全管理机构的要求,同时还能提供高电流处理及能量吸收处理 能力,另外还能对瞬变过压作出快速反应。ESD 保护器件可以防止ESD 问题,且保持很低的电容。

以太网在雷击浪涌测试中的应用

以太网在雷击浪涌测试中的应用 中心议题: ?以太网雷击保护的必要 ?RClamp2504N/3304N在电脑上的保护应用 解决方案: ?对以太网物理层进行保护 ?提供线对线的保护 1.以太网雷击保护 以太网是广泛用于访问和城域网络基础设施。这些接口通常必须符合GR1089雷击浪涌测试。为了防止雷电浪涌,低钳位电压是必须的. 新一代的物理层更敏感雷击。为了防止雷电浪涌,(如GR1089,IEC61000-4-5,K.20/21)和ESD事件,低钳位电压的设备是必要的。 新一代的物理层更敏感雷击。给千兆以太网保护我们开发的解决保护方案是给最敏感的PHY。 Semtech公司的RClamp3304N/2504N采用Semtech的专有的保护技术EPD。 EPD提供大量减少漏电流和电容对硅雪崩低对峙电压二极管工艺。 它们还配有一个2.5伏特和3.3伏特的真正卓越的保护工作电压。 这两个产品已被应用到桌面(个RJ45)成功。 2.RClamp2504N/3304N在电脑上的保护应用 I.IEC61000-4-5雷击规格:

Note:1)开路电压波形是10*700us 2)短路电流波形是5*310us II.解决方案: 为了选择一个强大的千兆以太网应用防雷解决方案,这个方案将用于千兆以太网的RJ-45连接器里,因此,只有保护元件的数量限制,因此,Semtech公司已提供下列解决方案: 两个RClamp2504N/3304Ns放置在物理层芯片这边,下列是原理图:

Semtech公司RClamp2504N/3304N被作为推荐的保护配置,是因为它提供了TVS的最低工作电压为2.5V或3.3V。低工作电压可以快速的瞬态响应时间,使低钳位保护电压敏感的物理层芯片。 此外,该解决方案只提供线对线的保护。线对地的保护需要特殊的RJ45连接器和好的PCB设计. III.测试结果总结 ?线对线测试结果 测试数据:

雷击浪涌试验细则

浙江中凯科技股份有限公司 雷击浪涌试验细则 1 试验环境布置 考虑试验安全性问题,建议将试验设备LSG506A以及CDN-532A接地。 LSG背面板 接地线 参考接地板 图1 浪涌试验环境布置 1.1 EUT电源端的试验配置 EUT电源端的试验包括AC主回路三相的试验和控制模块供电端子单相的试验。各项试验中包括线-线与线-地两种方式。示意图分别见图2-图5。 第 1 页共12 页

浙江中凯科技股份有限公司 耦 合 网 络 图2 交流线(三相)上电容耦合的试验配置,线-线 图3交流线(三相)上电容耦合的试验配置,线-地 第 2 页共12 页

浙江中凯科技股份有限公司 图 4 交/直流上电容耦合的配置,线-线 图 5 交/直流上电容耦合的配置,线-地 注:图2-图5为干扰叠加在电源线上的原理图,并不是进行试验时我们的接线图。 1.2 EUT非屏蔽互联线的试验配置 第 3 页共12 页

浙江中凯科技股份有限公司 第 4 页 共 12 页 图6 非屏蔽互连线的试验配置,电容耦合方式 注:此方法用于对EUT 的I/O ,控制线端子进行浪涌试验。需使用40欧姆的电阻,以保护EUT 受试设备。 1.3 EUT 屏蔽通信线的试验配置 图7 屏蔽线的试验配置,直接施加 根据GB17626.5中7.6节的要求,非金属外壳产品的屏蔽线试验,可以直接施加在屏蔽线上。如上图所示,以共模的方式将浪涌干扰加到屏蔽线层上。

浙江中凯科技股份有限公司 第 5 页 共 12 页 2 CPS 试验方法 2.1 KB0-T 、KB0-R 、KB0-B 的 AC 主回路电源端口试验 (1)试验判据 标准中无明确要求,参照试验判据表1,给出试验结果。 (2)施加干扰电压水平 主回路电源线的试验水平为线-地4kV ,线-线2kV 。脉冲在正负两个极性进行,相角为0°、90°。在每一极性和相角施加5次脉冲(共20个脉冲),每个脉冲之间的时间间隔为1min 。 (3)受试设备接线方式 KB0-T 、KB0-R 和KB0-B 主回路串联,进行线-线、线-地试验的接线方式分别如图8、9所示。图8中左图所示为标准中规定的受试设备的AC 主回路接线图,即将主回路三相串联,并用升流器分别给受试设备提供0.9倍和2倍的额定电流(0.9倍时,EUT 中的脱扣器应不动作,2倍额定电流时应在规定的时间内动作)。由于使用了升流器给EUT 供电,因此LSG 试验设备中的EUT 电源不接(悬空)。 升流器 L N PE LSG本机开关 01 背面板 正面板 LSG试验设备 接地 01内置CDN EUT电源 本机电源 EUT AC 主回路 开 开 图8 AC 主回路浪涌试验电路,线-线

485通信防雷击浪涌方案

RS485数据总线雷击过压防浪涌保护方案 2008-11-08 15:45:51| 分类:串口系列| 标签:|字号大中小订阅 1、RS485 总线的应用领域: 工业控制,DCS,数据采集系统 高速公路收费系统 过程控制及制造 电力系统采集与控制系统 远程终端互连 2、雷击过压防护的必要性: 由于RS485总线实行长距离传输(1200米以上),而且其传输线通常暴露于户外,因此极易因为雷击等原因引入过电压。而RS485收发器工作电压较低(5V左右),其本身耐压非常低(-7~+12V),一旦过压引入,就会击穿损坏芯片。还有强烈的浪涌能量出现时,甚至可以看到收发器爆裂,线路板焦糊的 现象。 3、防护方法及原理图: 以上为RS485总线的两级防护电路图。当雷击发生时,感应过电压由两端引入,G2与G3进行共模防护,G1进行差模防护,此时过电压被大大削弱到约500V左右,在经过电阻R1、R2限浪,TVS1/2二次限压后,到收发器的电压被箝制在6.8V左右,从而实现对收器的保护。 4、方案选择与对比

该方案中的线绕电阻选择为10Ω/1W,价格低廉,效果不错;PTC则可以采用10Ω左右,100~200MA,耐压250V以上的自恢复保险丝。TVS1/2选择根据芯片的工作电压与耐压决定,一般略高于芯片最高工作电压,可以6.8V-10V之间选择。 问:过压防护标准的依据是什么? IEC6100-4-5,ITU-T K20/K21及国标GB9043均有关于雷击浪涌抗扰度测试标准。其通信线路的最高测试标准为10/700μS,4KV。10/700μS为通信线路中感应出的雷电压波形,表示从零值上升至峰为时间为10ms , 下降至峰值的一半为700μS。 问:雷击过压防护的接地要求? 雷击浪涌防护除了需要选择优质的防护器件,进行良好的电路板设计,接地也是其最重要的要求。一般防雷地都必要可靠的连接至大地,且接地电阻不能超过10欧,可靠的接地可以大大提高防护效果,而不良的接地也会大大削弱防护效果。 问:为了降低成本及体积,可不可以只采用一级防护? 不好,能承受大能量雷击的器件不可能一次将雷击电压钳制到芯片可以承受的水平,TVS虽然可以将雷击电压一次钳制到芯片可在承受的水平,但是 不能承受大的雷击能量,因此必须两级防护。 问:RS232,RS422的防护与RS485有何区别? 防护方法完全相同。只是根据其工作电压的不同,精细保护器件TVS的电压参数应选择不同。如RS232最大工作电压为15V,则TVS选择为P6KE18CA 或贴片SMBJ15CA,RS422最大工作电压为12V,则TVS选择为P6KE15CA或贴片SMBJ12CA RS485口较常见的损坏情况如下: ●R1或R2被烧断,(10Ω/1W的电阻根本就不能承受雷击测试.)TV1、TV2和485芯片完好。这是由于有较大的瞬态干扰电流经R1或R2、会将 其烧断。 ●485芯片损坏(YS301..等300V放电管起不到任何保护作用)R1、R2和TV1、TV2完好。这主要可能是受到静电冲击或瞬态过电压速度快于TV1、 TV2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。 ●TV1或TV2、485芯片损坏,R1和R2完好。这可能是受到高电压低电流的瞬态干扰电压将TV1或TV2和485芯片击穿,由于电流较小和发 生时间较短因而R1、R2不至于发热烧断。 由以上分析得知485接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,所以EIA-485标准要求将各个RS485接口的信号地用一条低阻值导线连接在一起以保证各节点的地电位相等,消除地线环流! 当带电插拔未隔离的连接电缆时,由于两端电位不相等电路中又存在诸多电感、电容之类的器件,插拔瞬间必然产生瞬态过电压或过电流。 连接在RS485总线上的其它设备产生的瞬态过电压或过电流同样会流入,总线上连接的设备站点数越多,产生瞬态过电压的因素也越多。 当通信线路较长或有室外架空线时,雷电必然会在线路上造成过电压,其能量往往是巨大的。 解决办法: ●应将瞬态抑制二极管靠近接口,限流(匹配)电阻靠近芯片。 ●选用带静电保护、过热保护、输入失效保护等保护措施完善的高挡次RS485芯片。 ●采用响应速度更快、承受瞬态功率更大的新型保护器件TVS或陶瓷浪涌吸收器,如LT-BS0080MS的,2KV 10/700uS,宽频优化保护器 LT-B3D420L则可抗击5KA以上大电流冲击。 ●R1和R2采用正温度系数的自恢复保险PTC,如K250-120,正常情况下的电阻值为5欧,并不影响正常通信,当受到浪涌冲击时,大电流流 过PTC和保护器件TVS,PTC的电阻值将骤然增大,使浪涌电流迅速减小。

相关文档