文档库 最新最全的文档下载
当前位置:文档库 › 单片机与上位机通信协议的制定解析

单片机与上位机通信协议的制定解析

单片机与上位机通信协议的制定

单片机和上位机的串口通信协议分为上行协议和下行协议,要分别制定!

上行协议,即由单片机向上位机发送数据。

下行协议,即由上位机向单片机发送数据。

而通信协议又要分固定长度和不定长度两种

本文所介绍的协议属于简单的固定字长的通信协议!

下行协议由四个字节构成

上表是简单的上位机对单片机的控制指令

下述函数是C#中封装的串口通信类中的发送函数的封装

public void SerSendCommu(byte orderDef, byte data)//参数1为命令字,参数二为要发送的数

//据,需要时可直接调用

{

Byte[] BSendTemp = new Byte[SEND_LENTH];

BSendTemp[0] = PRE;

BSendTemp[1] = orderDef;

BSendTemp[2] = data;

BSendTemp[3] = END;

this.serialPort1.Write(BSendTemp, 0,

SEND_LENTH);

}

下位机中用中断方式接收字符,本文用的是GCC语言,下面是串口接收数据中断

ISR(USART_RXC_vect)//串口接收中断

{

unsigned char status,data;

status = UCSRA; //**首先读取UCSRA的值,再读取UDR值,顺序不能颠倒,否则读取UDR后的UCSRA的

//值即会改变**

data = UDR;

if(!Uart_RecvFlag)//判断缓存中的数据是否读完,读完则接收指令

{

if((status&((1<

{

rx_buffer[rx_counter]=data;

rx_counter++;

switch(rx_counter)

{

case 1:

if(data!=USART_BEGIN_STX)

rx_counter=0;

break;

case 4:

rx_counter=0;

if(data==USART_END_STX)

Uart_RecvFlag=1;

break;

}

}

}

}

在单片机主循环程序的最前部分进行指令译码

if(Uart_RecvFlag)//接收到命令

{

switch(rx_buffer[1])

{

case 0xAA://单片机状态命令控制;

ucWorkStatue=rx_buffer[2];//指令数据

break;

case 0xDD://PWM值修改指令

OCR2=rx_buffer[2];

break;

case 0xFF://初始温度设定

break;

}

Uart_RecvFlag=0;

}

//随后进行执行指令

switch(ucWorkStatue)

{

case 1://空闲模式

break;

case 2://测量模式,但不输出

break;

case 3://测量模式,由串口输出

break;

case 4://PWM输出测试

break;

default:

break;

}

这样就可以利用串口对单片机进行在线命令控制了;

上行协议的制定!

和下行协议基本一致!

在AVR单片机程序中定义了串口通信输出缓冲区,缓冲区的字长正好为协议的长度;

//串口发送缓冲区变量声明

volatile unsigned char tx_buffer[TX_BUFFER_SIZE];//定义串口发送缓冲区

volatile unsigned char

tx_wr_index=0,tx_rd_index=0,tx_counter=0;//rx_wr_index写指

针,rx_rd_index读指针,rx_counter缓冲区数据个数

//USART发送函数

void USART_Transmit(unsigned char data)//发送数据函数

{

while(tx_counter==TX_BUFFER_SIZE);//输出缓冲区满,等待

asm("cli");

if(tx_counter||((UCSRA & DATA_REGISTER_EMPTY)==0))

{

tx_buffer[tx_wr_index]=data;

if(++tx_wr_index==TX_BUFFER_SIZE)

tx_wr_index=0;

++tx_counter;

}

else

UDR = data;

asm("sei");

}

//发送中断服务程序

ISR(USART_TXC_vect)//USART发送数据中断

{

if(tx_counter)

{

--tx_counter;

UDR=tx_buffer[tx_rd_index];

if(++tx_rd_index==TX_BUFFER_SIZE)

{

tx_rd_index=0;

}

}

}

在C#编写的上位机中,利用串口接收事件响应方法定义

serialPort1.ReceivedBytesThreshold = RECEIVE_LENTH;

在时间响应事件中调用协议分析处理函数serialPortCaculate()来分析协议

private void serialPort1_DataReceived(object sender, SerialDataReceivedEventArgs e)

{

https://www.wendangku.net/doc/6f5637805.html,bel_dispzedNum.Invoke(new MethodInvoker(delegate

{

//匿名方法

int inNumSData=0;

try

{

inNumSData =

this.serialPort1.BytesToRead;

https://www.wendangku.net/doc/6f5637805.html,b_serial_bufin_diplay.T ext = inNumSData.ToString();

//串行数据处理

//图像显示

byte dataID = 0x00;

double temp =

this.serialPortCaculate(ref dataID);

switch(dataID)

{

case TEMVAL:

break;

default:

this. serialPort1.DiscardInBuffer

()

break;

}

}

catch

{ }

}));

}

///////接收转换协议,接收数据时直接调用

private double serialPortCaculate(ref byte dataID)

{

Byte[] BReceiveTemp = new Byte[RECEIVE_LENTH];

for (int i = 0; i < RECEIVE_LENTH; i++)//接收定长数据字符串

{

BReceiveTemp[i] =

Convert.ToByte(this.serialPort1.ReadByte());

}

dataID=BReceiveTemp[1];

switch (BReceiveTemp[1])

{

case TEMVAL:

default :

}

}

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

设计单片机通讯协议论文(非常经典)

如何设计单片机常用通信 协议论文

目录 1.自定义数据通信协议 (3) 2.上位机和下位机中的数据发送 (3) 3.下位机中的数据接收和协议解析 (4) 4.上位机中的数据接收和命令处理 (8) 5.总结 (9)

单片机通信协议现在大部分的仪器设备都要求能过通过上位机软件来操作,这样方便调试,利于操作。其中就涉及到通信的过程。在实际制作的几个设备中,笔者总结出了通信程序的通用写法,包括上位机端和下位机端等。 1.自定义数据通信协议 这里所说的数据协议是建立在物理层之上的通信数据包格式。所谓通信的物理层就是指我们通常所用到的RS232、RS485、红外、光纤、无线等等通信方式。在这个层面上, 底层软件提供两个基本的操作函数:发送一个字节数据、接收一个字节数据。所有的数据协议全部建立在这两个操作方法之上。通信中的数据往往以数据包的形式进行传送的,我们把这样的一个数据包称作为一帧数据。类似于网络通信中的TCPIP协议一般,比较可靠的通信协议往往包含有以下几个组成部分:帧头、地址信息、数据类型、数据长度、数据块、校验码、帧尾。 帧头和帧尾用于数据包完整性的判别,通常选择一定长度的固定字节组成,要求是在整个数据链中判别数据包的误码率越低越好。减小固定字节数据的匹配机会,也就是说使帧头和帧尾的特征字节在整个数据链中能够匹配的机会最小。通常有两种做法,一、减小特征字节的匹配几率。二、增加特征字节的长度。通常选取第一种方法的情况是整个数据链路中的数据不具有随即性,数据可预测,可以通过人为选择帧头和帧尾的特征字来避开,从而减小特征字节的匹配几率。使用第二种方法的情况更加通用,适合于数据随即的场合。通过增加特征字节的长度减小匹配几率,虽然不能够完全的避免匹配的情况,但可以使匹配几率大大减小,如果碰到匹配的情况也可以由校验码来进行检测,因此这种情况在绝大多说情况下比较可靠。 地址信息主要用于多机通信中,通过地址信息的不同来识别不同的通信终端。在一对多的通信系统中,可以只包含目的地址信息。同时包含源地址和目的地址则适用于多对多的通信系统。 数据类型、数据长度和数据块是主要的数据部分。数据类型可以标识后面紧接着的是命令还是数据。数据长度用于指示有效数据的个数。 校验码则用来检验数据的完整性和正确性。通常对数据类型、数据长度和数据块三个部分进行相关的运算得到。最简单的做法可是对数据段作累加和,复杂的也可以对数据进行CR C运算等等,可以根据运算速度、容错度等要求来选取。 2.上位机和下位机中的数据发送 物理通信层中提供了两个基本的操作函数,发送一个字节数据则为数据发送的基础。数据 包的发送即把数据包中的左右字节按照顺序一个一个的发送数据而已。当然发送的方

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

上位机和下位机通信

目录 摘要 1 引言 (1) 2 结构设计与方案选择 (2) 2.1设计任务 (2) 2.1.1单片机的选择 (2) 2.1.2电平转换 (2) 2.1.1单片机的选择 (2) 2.1.3单片机与pc机通信原理 (2) 2.2软件方案选择 (2) 2.2.1 上位机编程方案选择 (3) 2.2.2 单片机编程方案选择 (3) 2.3 总体方案选择 (2) 3 硬件设计 (8) 3.1单片机主要特性 (5) 3.2 MAX232电平芯片介绍10 (10) 3.3 硬件电路设计图 (11) 3.3.1 PC机与单片机通信接口电路设计框图 (11) 3.3.2整体设计原理图 (11) 4软件设计 (12) 4.1上位机程序设计 (12) 4.2下位机程序设计 (13) 5 软硬件调试部分 (21) 5.1 PROTEUS软件仿真 (21) 5.1.1 Protues简介 (21) 5.1.2 Protues仿真电路图 (22) 5.2 VC软件仿真 (21) 结束语 (27) 致谢 (28) 参考文献 (29)

摘要 本文主要描述了利用PC机与AT89C51单片机之间的通信程序设计实现温度显示。并详述了在VC6.0环境下,上位机利用MSCOMM通信控件与单片机之间串口通信实现温度显示。由单片机采集一个温度信号,将采集到的温度信号传送给PC机显示,PC机用VC6.0编写程序,单片机程序用C语言编写,最后用PROTUES软件进行仿真实现温度显示。 关键词:单片机MSCOMM控件VC6.0 AT89C51 温度显示

1引言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。 现代化集中管理需要对现场数据进行统计、分析、制表、打印、绘图、报警等,同时,又要求对现场装置进行实时控制,完成各种规定操作,达到集中管理的目的。加之单片机的计算能力有限,难以进行复杂的数据处理。因此在功能比较复杂的控制系统中,通常以PC机为上位机,单片机为下位机,由单片机完成数据的采集及对装置的控制,而由上位机完成各种复杂的数据处理及对单片机的控制。

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.wendangku.net/doc/6f5637805.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

上位机与下位机之间通信协议格式

一、通信协议 1、命令帧格式 帧头标志参数校验帧尾 命令字 01累加和 2030 1Byte1Byte2Byte1Byte1Byte 说明:1、累加和校验:各字节累加和与100的模。 2、 10进制输入;16进制传输。

2、信息帧格式 帧头标志参数校验帧尾 命令字 2030 02累加和 1Byte1Byte2Byte1Byte1Byte 说明:1、累加和校验:各字节累加和与100的模。 2、 10进制输入;16进制传输。

3、数据帧格式 (文件mokuaideng.txt (模块指示灯地址) 20 Byte ) 帧头标志校验帧尾203003累加和数据数据1Byte 16Byte 1Byte 1Byte 1Byte 标志:03 数据帧 文件mokuaideng.txt (模块指示灯地址) 20 Byte 04 数据帧 文件daotongbiao.txt (导通表) 40 Byte 05 数据帧 文件canshu.txt (控制参数) 6 Byte 06 数据帧 校验文件mokuaideng.txt (模块指示灯地址) 20 Byte 07 数据帧 校验文件daotongbiao.txt (导通表) 40 Byte 08 数据帧 校验文件canshu.txt (控制参数) 6 Byte 4、信息帧格式 定位物理针位 下位机-》上位机 上位机-》下位机 点亮指示灯 帧头标志参数校验帧尾203011累加和物理针位1Byte 1Byte 2Byte 1Byte 1Byte 说明:1、累加和校验:各字节累加和与100的模。 2、 10进制输入;16进制传输。 标志位 13 ,单点检测 判断单点导通关系是否真确 5、信息帧格式 下位机-》上位机 自检、线检测 帧头标志参数1校验帧尾203012累加和起始针位1Byte 1Byte 2Byte 1Byte 1Byte 参数2终点针位2Byte 参数3状态1Byte 状态:00 导通 01 断路 02 短路/错路

汇编语言实现串口通信(PC和单片机间)教学文案

8.用C语言或汇编语言实现串口通信(PC和单片机间) 上位机和下位机的主从工作方式为工业控制及自动控制系统所采用。由于PC 机分析能力强、处理速度更快及单片机使用灵活方便等特点,所以一般都将PC 机作为上位机,单片机作为下位机,二者通过RS-232或者RS-485接收、发送数据和传送指令。单片机可单独处理数据和控制任务,同时也将数据传送给PC机,由PC机对这些数据进行处理或显示 1 硬件电路的设计 MCS-51单片机有一个全双工的串行通讯口UART,利用其RXD和TXD与外界进行通信,其内部有2个物理上完全独立的接收、发送缓冲器SBUF,可同时发送和接收数据。所以单片机和PC机之间可以方便地进行串口通讯。单片机串口有3条引线:TXD(发送数据),RXD(接收数据)和GND(信号地)。因此在通信距离较短时可采用零MODEM方式,简单三连线结构。IBM-PC机有两个标准的RS-232串行口,其电平采用的是EIA电平,而MCS-51单片机的串行通信是由TXD(发送数据)和RXD(接收数据)来进行全双工通信的,它们的电平是TTL电平;为了PC机与MCS-51 机之间能可靠地进行串行通信,需要用电平转换芯片,可以采用MAXIM公司生产的专用芯片MAX232进行转换。电路如图1所示。硬件连接时,可从MAX232中的2路发送器和接收器中任选一路,只要注意发送与接收的引脚对应关系即可。接口电路如图3.5所示。

总体设计按照整体设计思路方案绘制原理图如下所示: 2 系统软件设计 软件设计分上位机软件设计和下位机软件设计。这两部分虽然在不同的机器上编写和运行,但它们要做的工作是对应的:一个发送,另一个接收。为了保证数据通信的可靠性,要制定通信协议,然后各自根据协议分别编制程序。现约定通信协议如下:PC机和单片机都可以发送和接收。上位机和下位机均采用查询方式发送控字符和数据、中断方式接收控制字符和数据。采用RS-232串口异步通信, 1上位PC机与下位单片机异步串行通信的通信协议

modbus 协议 及 modbus RTU 的 C51 单片机 程序

modbus 协议及modbus RTU 的C51 单片机程序 Modbus通讯协议 Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。此协议支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。 Modbus 协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。 Modbus 协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave 站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。 下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP 和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。所以在这里我仅介绍一下Modbus的ASCII和RTU协议。 下表是ASCII协议和RTU协议进行的比较: 协议 开始标记 结束标记

51串口通信协议(新型篇)

51串口通信协议(新型篇) C51编程:这是网友牛毅编的一个C51串口通讯程序! //PC读MCU指令结构:(中断方式,ASCII码表示) //帧:帧头标志|帧类型|器件地址|启始地址|长度n|效验和|帧尾标志 //值: 'n' 'y'| 'r' | 0x01 | x | x | x |0x13 0x10 //字节数: 2 | 1 | 1 | 1 | 1 | 1 | 2 //求和: ///////////////////////////////////////////////////////////////////// //公司名称:*** //模块名:protocol.c //创建者:牛毅 //修改者: //功能描述:中断方式:本程序为mcu的串口通讯提供(贞结构)函数接口,包括具体协议部分 //其他说明:只提供对A T89c51具体硬件的可靠访问接口 //版本:1.0 //信息:QQ 75011221 ///////////////////////////////////////////////////////////////////// #include #include //预定义 //帧 #define F_ST1 0x6e //帧头标志n #define F_ST2 0x79 //帧头标志y #define F_R 0x72 //帧类型读r #define F_W 0x77 //帧类型写w #define F_D 0x64 //帧类型数据帧d #define F_B 0x62 //帧类型写回应帧b #define F_C 0x63 //帧类型重发命令帧c #define F_Q 0x71 //帧类型放弃帧q #define F_ADDR 0x31 //器件地址0-9 #define F_END 0x7a //帧尾标志z #define F_SPACE 0x30 //空标志0 #define F_ERR1 0x31 //错误标志1,flagerr 1 #define F_ERR2 0x32 //错误标志2 2 //常数 #define S_MAXBUF 16 //接收/发送数据的最大缓存量 #define FIELD_MAXBUF 48 //最小场缓存,可以大于48字节,因为协议是以20字节为

单片机与上位机通信系统设计说明

JIU JIANG UNIVERSITY 《单片机原理与应用》大作业 题目单片机与上位机通信系统设计院系信息科学与技术学院 专业计算机应用设计 姓名 班级学号 指导教师 2011年12月14 信息科学与技术学院

单片机大作业任务书 作业名称基于AT89C52单片机与上位机通信系统设计 2、设计要求 (1)可以由上位机通过串口操作单片机模块。 (2)利用单片机自身功能实现通信。 完成时间2011-2012学年第一学期

目录 一、摘要 (4) 二、总体方案设计与论证 (5) 1、设计 (5) 2、框图设计 (5) 3、知识点 (5) 三、系统硬件设计 (7) 1、电路原理图··················································· 四、系统软件设计 (11) 五、系统硬件PROTEUS仿真原理图 (13) 六、系统PROTEUS运行情况图 (13) 七、心得体会 (18) 八、致 (2)

摘要 本文介绍了一种基于AT89C52 单片机与上位机通信系统, 并对其工作原理及软、硬件的设计和实现方法进行了详细的阐述。 在单片机的输入输出控制中,除直接上小键盘和LCD显示等方法外,一般都通过 串口和上位机PC进行通信,后面一种方法由于能实现远程控制并且PC机拥有强大的数据处理功能以及友好的控制界面所以显得尤为有用。此系统可以由上位机控制通过串口操作 单片机模块 本单元就是来完成由上位机通过串口控制来实现以发光二极管的发光状态模拟开关电路的 通断,用上位机的DOS命令对其进行控制 通过此次作业能够更加牢固的掌握单片机的应用技术,增强动手能力、硬件设计能力以及软件设计能力。 关键词:AT89C52; 上位机,单片机 二.总体方案论证与设计 1设计 本论文是设计一基于AT89C52单片机应用系统,可以由上位机通过串口操作控制单片机模块以发光二极管的发光状态模拟开关电路的通断,用上位机DOS命令来控制 2框图设计 基于AT89C52单片机与上位机通信系统设计由电源电路,单片机主控电路,按键控制电路数码管控制对像和上位机接口组成,系统框图如图所示

基于C#的串口通信上位机和下位机源程序文件

基于单片机串口通信的上位机和下位机实践 串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 首先亮出C#的源程序吧。 主要界面: 只是作为简单的运用,可以扩展的。 源代码: using System; using System.Collections.Generic; using https://www.wendangku.net/doc/6f5637805.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.IO.Ports; using System.Timers; namespace 单片机功能控制 { public partial class Form1 : Form

{ public Form1() { InitializeComponent(); } SerialPort sp = new SerialPort(); private void button1_Click(object sender, EventArgs e) { String str1 = comboBox1.Text;//串口号 String str2 = comboBox2.Text;//波特率 String str3 = comboBox3.Text;//校验位 String str4 = comboBox5.Text;//停止位 String str5 = comboBox4.Text;//数据位 Int32 int2 = Convert.ToInt32(str2);//将字符串转为整型 Int32 int5 = Convert.ToInt32(str5);//将字符串转为整型 groupBox3.Enabled = true;//LED控制界面变可选 try { if (button1.Text == "打开串口") { if (str1 == null) { MessageBox.Show("请先选择串口!", "Error"); return; } sp.Close(); sp = new SerialPort(); sp.PortName = comboBox1.Text;//串口编号 sp.BaudRate = int2;//波特率 switch (str4)//停止位 { case "1": sp.StopBits = StopBits.One; break; case "1.5": sp.StopBits = StopBits.OnePointFive; break; case "2": sp.StopBits = StopBits.Two; break;

十二.PC 机与单片机通信(RS232 协议)

十二.PC 机与单片机通信(RS232 协议) [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机 系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为 20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是 用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 数字二进制Px0~Px7 Abcdefg p 十六进制 0 00111111 00000011 11111100 0xco 1 00000110 10011111 01100000 0xf9

[C语言源程序] #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容 sbit gewei=P2^6; //个位选通定义 sbit shiwei=P2^5; //十位选通定义 sbit baiwei=P2^4; unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1, 0x86,0x8e,0x40,}; void Delay(unsigned int tc) //延时程序 { while( tc != 0 ) {unsigned int i; for(i=0; i<100; i++); tc--;} } void LED() //LED显示接收到的数据(十进制) { shiwei=0; P0=table[dat/10]; Delay(10); shiwei=1; gewei=0; P0=table[dat%10]; Delay(10); gewei=1; baiwei=0; P0=table[dat/100]; Delay(10); baiwei=1; } ///////功能:串口初始化,波特率9600,方式1///////// void Init_Com(void) { TMOD = 0x20; PCON = 0x00; SCON = 0x50; TH1 = 0xFd;

(合同制定方法)单片机与上位机通信协议的制定

(合同制定方法)单片机与上位机通信协议的制定

单片机和上位机通信协议的制定 单片机和上位机的串口通信协议分为上行协议和下行协议,要分别制定!上行协议,即由单片机向上位机发送数据。 下行协议,即由上位机向单片机发送数据。 而通信协议又要分固定长度和不定长度俩种 本文所介绍的协议属于简单的固定字长的通信协议! 下行协议由四个字节构成

上表是简单的上位机对单片机的控制指令 下述函数是C#中封装的串口通信类中的发送函数的封装publicvoidSerSendCommu(byteorderDef,bytedata)//参数1为命令字,参数二为要发送的数 //据,需要时可直接调用 { Byte[]BSendTemp=newByte[SEND_LENTH]; BSendTemp[0]=PRE; BSendTemp[1]=orderDef; BSendTemp[2]=data; BSendTemp[3]=END; this.serialPort1.Write(BSendTemp,0,SEND_LENTH); } 下位机中用中断方式接收字符,本文用的是GCC语言,下面是串口接收数据中断 ISR(USART_RXC_vect)//串口接收中断

{ unsignedcharstatus,data; status=UCSRA;//**首先读取UCSRA的值,再读取UDR值,顺序不能颠倒,否则读取UDR后的UCSRA的 //值即会改变** data=UDR; if(!Uart_RecvFlag)//判断缓存中的数据是否读完,读完则接收指令 { if((status&((1<

上位机与下位机通过蓝牙通讯协议

文档名称:蓝牙通信协议编制审定:解晓飞

目录 1 前言 (2) 2帧定义 (2) 2同步字 (2) 3帧类型 (3) 4通讯流程 (3) 4.1设置采集信息 (3) 4.2采集测试命令 (3) 4.3开始采集、结束采集 (4) 5通信原则 (4)

PDA与下位机蓝牙通讯协议 1 前言 本协议用于定义PDA通过蓝牙与下位机进行数据通信的底层操作。数据传输以信息帧格式传输,且帧长度为非定长信息。 2帧定义 系统中共有三种帧格式,根据类型的不同帧的格式也不同具体定义如下: 3.1、命令帧 3.2 回复帧 3、2数据帧 其中命令帧是由PDA发给单片机的,回复帧和数据帧是由单片机发给PDA 的。 2同步字 为保证数据正确传输,帧格式中设有起始同步字和结束同步字,起始同步字包括两个字节,内容为0xaa、0xaa,结束同步字包括两个字节,内容为0x55、0x55。

3帧类型 类型字包括一个字节,表示发送的数据的类型,本系统中包括三个类型:命令、回复、数据三类。具体定义如下: 4通讯流程 操作过程中PDA均采用主动模式,单片机采用被动模式。 4.1设置采集信息 单片机启动后等待接收蓝牙命令首先进行参数设置,本部分由PDA控制。 PDA发送设置命令(帧类型0x30)并将信息发送到单片机,单片机接收到数据后检测数据个数是否正确,如果检测正确返回接收正确命令否则返回接收错误命令。 如果单片机返回的数据为接收错误,PDA重新发送命令。 从数据发送时起PDA进行计数等待,等待500ms后没有接收到返回值,自动重新发送命令并等待,重复上述操作。 发送三次都没有返回值时弹出警告对话框,提示蓝牙通讯故障。 如发送数据正常则提示设置成功信息对话框。 4.2采集测试命令 1、PDA发送采集命令 PDA发送采集设置命令(帧类型0x30),单片机接收到数据后检测数据是否正确,如果检测错误则返回接收错误命令。PDA接收到单片机返回接收错误回复,PDA重新发送命令。 从数据发送时起PDA进行计数等待,等待500ms后没有接收到返回值(采集数据或错误回复值),自动重新发送命令并等待,重复上述操作。

通用单片机通讯协议ascii

组态王与单片机协议 1.通讯口设置: 通讯方式:RS-232,RS-485,RS-422均可。 波特率:由单片机决定(2400,4800,9600and19200bps)。 字节数据格式:由单片机决定。 注意:在组态王中设置的通讯参数如波特率,数据位,停止位,奇偶校验必须与单片机编程中的通讯参数一致 2.在组态王中定义设备地址的格式 格式:##.# 前面的两个字符是设备地址,范围为0-255,此地址为单片机的地址,由单片机中的程序决定; 后面的一个字符是用户设定是否打包,“0”为不打包、“1”为打包,用户一旦在定义设备时确定了打包,组态王将处理读下位机变量时数据打包的工作。 3.在组态王中定义的寄存器格式 注意:在组态王中定义变量时,一个X寄存器根据所选数据类型(BYTE,UINT,FLOAT)的不同分别占用一个、两个,四个字节,定义不同的数据类型要注意寄存器后面的地址,同一数据区内不可交叉定义不同数据类型的变量。为提高通讯速度建议用户使用连续的数据区。 例如, 1、在单片机中定义从地址0开始的数据类型为BYTE型的变量: 则在组态王中定义相应的变量的寄存器为X0、X1、X2、X3、X4。。。。。。。。,数据类型为BYTE,每个变量占一个字节 2、在单片机中定义从地址100开始的数据类型为UINT型的变量: 则在组态王中定义相应的变量的寄存器为X100、X102、X104、X106、X108。。。。。。。。,数据类型UINT,每个变量占两个字节

3、在单片机中定义从地址200开始的数据类型为FLOAT 型的变量: 则在组态王中定义相应的变量的寄存器为X200、X20 4、X208、X212。。。。。。。, 数据类型FLOAT ,每个变量占四个字节 3.组态王与单片机通讯的命令格式: 字头:1字节1个ASCII 码,40H 设备地址: 1字节2个ASCII 码,0—255(即0---0x0ffH ) 标志:1字节2个ASCII 码,bit0~bit7, bit0= 0:读,bit0= 1:写。 bit1= 0:不打包。 bit3bit2 = 00,数据类型为字节。 bit3bit2 = 01,数据类型为字。 bit3bit2 = 1x,数据类型为浮点数。 数据地址: 2字节4个ASCII 码,0x0000~0xffff 数据字节数:1字节2个ASCII 码,1—100,实际读写的数据的字节数。 数据…:为实际的数据转换为ASCII 码,个数为字节数乘2。 异或:异或从设备地址到异或字节前,异或值转换成2个ASCII 码 CR :0x0d 。 通讯尝试恢复命令(COMERROR ),请求地址为0的一个BYTE 数据 3.1.上位机发送读命令 下位机应答:若正常: 若不正常: 100,数据类型为字节,不打包。组态王所 若正确:

基于C#的串口通信上位机和下位机源代码

基于单片机串口通信的上位机和下位机实践串口 Universal Serial Bus或者USB RS232 GPIB兼容的设备也带有RS-232 获取远程采集设备的数据。 bit byte 发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488 202 1200米。 首先亮出C#的源程序吧。

using System; using System.Collections.Generic; using https://www.wendangku.net/doc/6f5637805.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.IO.Ports; using System.Timers; namespace 单片机功能控制 { public partial class Form1 : Form { public Form1() {

InitializeComponent(); } SerialPort sp = new SerialPort(); private void button1_Click(object sender, EventArgs e) { String str1 = comboBox1.Text;//串口号 String str2 = comboBox2.Text;//波特率 String str3 = comboBox3.Text;//校验位 String str4 = comboBox5.Text;//停止位 String str5 = comboBox4.Text;//数据位 Int32 int2 = Convert.ToInt32(str2);//将字符串转为整型Int32 int5 = Convert.ToInt32(str5);//将字符串转为整型groupBox3.Enabled = true;//LED控制界面变可选 try { if (button1.Text == "打开串口") { if (str1 == null)

上位机与单片机之间的通讯

1.注册MSComm控件 众所周知,C++Builder本身并不提供串行通讯控件MSComm,但我们却可以通过注册后直接使用它。启动C++Builder5.0后,然后选择C++Builder主菜单中的Component菜单项,单击Import Active Control命令,弹出Import Active窗口,选择Microsoft Comm Control6.0,再选择Install按钮执行安装命令,系统将自动进行编译,编译完成后即完成MSComm控件在C++Builder中的注册,系统默认安装在控件板的Active页,接下来我们就可以像使用C++Builder本身提供的控件那样使用新注册的MSComm控件了。(前提条件是你的机子上安装了Visual Basic,或者有它的库) 2.具体实现 新建一个工程Project1,把注册好的MSComm控件加入到窗体中,然后再加入5个ComboBox用来设置串口的属性,4个Button分别用来"打开串口" "关闭串口""发送数据""保存数据" ,2个Memo控件分别用来显示接收到的数据和发送的数据。再加入一个Shape控件用来标明串口是否打开。 ComboBox1用来设置串口号,通过它的Items属性设置1,2,3,4四个列表项分别表示COM1,COM2,COM3,COM4口。ComboBox2用来设置波特率,ComboBox3用来设置奇偶校验位,ComboBox4用来设置数据位,ComboBox5用来设置停止位。他们的缺省值分别是9600,n,8,1。 Button1用来打开串口,Button2用来关闭串口,Button3用来发送数据,Button4用来保存数据。Memo1用来显示发送的数据,Memo2显示接收的数据。Shape1的Shape属性设置为stCircle。 下面给出部分源码: __fastcall TForm1::TForm1(TComponent* Owner) : TForm(Owner)

上位机与下位机之间的连接

第一章上位机与下位机 1.1 上位机与下位机的概念 上位机和下位机,一般是指集中控制系统中的PC机和现场的工控机。上位机(PC 机)主要用来发出操作指令和显示结果数据,下位机(工控机)则主要用来监测和执行上位机的操作指令。举个例子,蓄电池生产中,需要按工艺要求进行充电和放电。现场有许多工位,各自配有智能的充放电设备,它们就是“下位机”。整个车间有一台PC机来集中管理,这就是“上位机”。 上位机软件一般用高级语言编程,如BASIC、C,有比较丰富的图形界面。下位机的编程,依所用的MCU而异,以汇编为主。 上位机和下位机之间的通讯,常见是RS-232,RS-485,当然还有很多,但都是串行方式。特别是“一对多”的RS-485用得最普遍。 上位机是指:人可以直接发出操控命令的计算机,一般是PC,屏幕上显示各种信号变化(液压,水位,温度等)。下位机是直接控制设备获取设备状况的的计算机,一般是PLC/单片机之类的。上位机发出的命令首先给下位机,下位机再根据此命令解释成相应时序信号直接控制相应设备。下位机不时读取设备状态数据(一般模拟量),转化成数字信号反馈给上位机。简言之如此,真实情况千差万别不离其宗。上下位机都需要编程,都有专门的开发系统。 另外,上位机和下位机是通过通讯连接的“物理”层次不同的计算机,是相对而言的。一般下位机负责前端的“测量、控制”等处理;上位机负责“管理”处理。下位机是接收到主设备命令才执行的执行单元,即从设备,但是,下位机也能直接智能化处理测控执行;而上位机不参与具体的控制,仅仅进行管理(数据的储存、显示、打印......人机界面等方面)。常见的DCS系统,“集中-分散(集散)系统”是上位机集中、下位机分散的系统。 在概念上,控制者和提供服务者是上位机.被控制者和被服务者是下位机.也可以理解为主机和从机的关系.但上位机和下位机是可以转换的. 两机如何通讯,一般取决于下位机。TCP/IP一般是支持的。但是下位机一般具有更可靠的独有通讯协议,购买下位机时,会带一大堆手册光盘,告诉你如何使用特有协议通讯。里面会举大量例子。一般对编程人员而言一看也就那么回事,使用一些新的API罢了。多语言支持功能模块,一般同时支持数种高级语言为上位机编程。 上位机是指:人可以直接发出操控命令的计算机,一般是PC,屏幕上显示各种信

相关文档
相关文档 最新文档