文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)

概率论与数理统计习题解答(第8章)
概率论与数理统计习题解答(第8章)

第八章 假 设 检 验

三、解答题

1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为

32.46,31.54,30.10,29.76,31.67,31.23

在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,

则需要检验的是:

00:μμ=H 01:μμ≠H

由于2

σ已知,选取n

X Z σμ0

-=

为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:

}|{|}|{|005.02Z z Z z ≥=≥α

查表得 2.575829005.0=Z ,现由

n =6, 31.1266711

∑===n

i i x n x ,1.1=σ, 50.320=μ

计算得:

3.058156

1.13

2.5

-31.126670

==

-=

n

X z σμ

005.0Z z >

可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。 EXCEL 实验结果:

2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:

54,67,68,78,70,66,67,65,69,70

已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?

解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数

),(~2σμN X ,则需要检验的是:

0:μμ=H

1:μμ≠H

由于方差未知,选取n

s X T 0

μ-=

为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:

)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α

查表得 2.26215716)9(025.0=t ,现由

n =10, 67.411∑===n i i x n x , ()35.1555556111

22

∑==--=n i i x x n s , 计算得

2.453357610

35.1555556724.670=-=

-=

n

s

X t μ

)9(025.0t t >

可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

3. 从某种试验物中取出24个样品,测量其发热量,算得平均值11958=x ,样本均方差316=s .设发热量服从正态分布,在显著性水平α = 0.05下,是否可认为该试验物发热量的平均值不大于12100?

解:这是单个正态总体均值比较的问题,该试验物发热量),(~2σμN X ,

则需要检验的是: 00:μμ≤H 01:μμ>H

此为右边检验,由于方差未知,应选用t 统计量检验,在显著水平α = 0.05下,H 0 的拒绝域为

??

????????-≥-=

)1(0

n n s x t t αμ=}

{)124(05.0-≥t t 由表得}{714.1)23(05.0=t ,现有n =24,11958=x ,316=s ,121000=μ计算得到

-2.201440

=-=

n

s

x t μ<1.714

可知,t 未落入拒绝域中,故在0.05的显著水平下应接受H 0 ,认为该试验物发热量的平均值不大于12100。

4. 某种电子元件的寿命(以小时记)服从正态分布.现测得16只元件的寿命如下所示:

159 280 101 212 224 379 179 264 222

362

168

250

149

260

485

170

问在显著性水平α = 0.05下,是否可以认为元件的平均寿命显著不小于225小时? 解:这是单个正态总体均值比较的问题,该电子元件的寿命 ),(~2σμN X ,则需要检验的是:

H 0 :225≥μ H 1 :225<μ

此为左边检验,由于总体服从正态分布且方差未知,故选用t 检验,在显著性水平α = 0.05下,H 0 的拒绝域为

??

????????-≤-=

-)1(0

n n s x t t αμ=}

{)116(05.0--≤t t 查表得7531.1)15(05.0-=-t 有n =16,x =(159+280+……+170)/16=241.5,2

s =9746.8,

2250

,计算得到

n

s

x t μ0

-=

=0.668518> - 1.7531

可知,t 未落入拒绝域中,故在0.05的显著水平下不能拒绝H 0 ,可以认为元件的平均寿命显著不小于225小时。

5. 设某次考试的学生成绩服从正态分布,从中随机的抽取36位考生的成绩,算得平均

成绩为66.5,标准差为15分.

(1) 问在显著水平α = 0.05下,是否可以认为这次考试全体考生的平均成绩为70分? (2) 在显著水平α = 0.05下,是否可以认为这次考试考生的成绩的方差为162? 解: (1):按题意需检验

H 0 :70=μ H 1 :70≠μ

此为双边检验,由于方差未知,应选用t 检验,在显著水平为α = 0.05下,H 0 的拒绝域为

??

????????-≥-=)1(20

n n s x t t αμ=}

{)136(025.0-≥t t =}{0301.2≥t

现有n=36,5.66=x ,s=15,

700

计算得到

4.10

=-=

n

s

x t μ<2.0301

可知,t 为落入拒绝域中,故在0.05的显著水平下应接受H 0 ,可以认为这次考试全体考生的平均成绩为70分。

(2)按题意需检验

H 0 :2

2

16=σ H 1 : 2

2

16≠σ 取检验统计量20

2

2

)1(σ

χs n -=

,在显著水平为α = 0.05下,H 0 的拒绝域为

}{}{

)1()1(2

222

12

-≥-≤-n n χ

χ

ααχχ

即 }{

}

{

)35()35(2025

.022975

.02χ

χ

χχ≥≤

计算得

569.20)35(2975

.0=χ

,203.53)35(2025

.0=χ

由n =36,5.66=x ,s=15,

2

2

016=σ,而σ

χ20

2

2

)1(s n -=

=

16

1615

1535???=30.76172,由于

20.569<30.76172<53.203 ,则统计量2

χ为落入拒绝域中,不能拒绝H 0 ,可以认为这次考试考生的成绩的方差为2

16。

6. 某厂生产的某种型号的电池, 其寿命长期以来服从方差σ2 = 5000 (小时2)的正态分布, 现有一批这种电池,从它生产情况来看,寿命的波动性有所变化.现随机的取26只电池,测出其寿命的样本方差S 2 = 9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(显著性水平α = 0.05)? 解:按题意需检验

H 0 :50002

=σ H 1 : 50002≠σ

取检验统计量为σ

χ20

2

2

)1(s n -=

,在显著水平α = 0.05下,H 0 的拒绝域为:

}{}{

)1()1(2

2

222

12

-≥

-≤

-n n χ

χ

ααχχ

即}{

}

{

)25()25(2025

.022975

.02χ

χ

χχ≥

计算得 11972.13)25(2975

.0=χ

,64647.40)25(2025

.0=χ

由n =26,

50002

0=σ,92002

=s ,则465000

9200

25)1(20

2

2

=?=

-=

σ

χs n >40.64647落入了

H 0的拒绝域,应该拒绝H 0,即认为这批电池的寿命的波动性较以往的有显著的变化。 7. 对7岁儿童作身高调查结果如下所示,设身高服从正态分布,能否说明性别对7岁儿童的身高有显著影响(显著性水平α = 0.05)?(提示:先做方差齐性检验,再做均值检验.)

性别 人数(n ) 平均身高(x ) 标准(S ) 男 384 118.64 4.53 女

377

117.86

4.86

解:设男孩的身高服从),(~2111σμN X ,女孩身高服从),(~2

222σμN X 。根据题意需对量

总体的均值进行比较,由于两总体方差未知,需要首先进行方差的齐性检验,即检验σ21

和σ2

2

是否有显著差异,然后再检验μ1

和μ2

是否有显著差异。

(1)检验假设

H 0 :σσ2221= H 1 : σσ2221≠

由于μ1

,μ2

未知,选取统计量F =

s

s 22

21

,在显著水平α = 0.05下,拒绝域为:

}{}

{)11()11(212212

1--≥--≤-n n F n n F

F F ,,αα 即}{}{)376383(F )76,3383(F 025.0975.0,

≥≤ F F 计算得

817555.0)376383(975

.0=,F

,223391.1)76,3383(025.0=F

拒绝域为}{}{223391.1817555.0≥≤F F 。由观测数据得到n 1=384,n 2=377,64.1181=x ,

86.1172=x ,s 1=4.53,s 2=4.86,F =868808.086

.486.453.453.42

2

2

1=??=s

s 未落入拒绝域,不能拒绝H 0 ,

在0.05的显著水平下,可以认为性别对儿童身高的方差无显著差异。 (2) 根据(1)的结论,可以在σ

σ22

21=的条件下检验假设

H 0: μ

μ2

1= H 1:μμ2

1≠

选t=

n

n S x

x 2

1

2

1

1

1

+

为检验统计量,在显著水平α = 0.05下,H 0的拒绝域为:

}

{}{)759()2(025.0212

t n n t

t t ≥=-+≥α计算得

963094.1)759(025

.0=t

计算

s ω再求出t 得

377

1

3841237738486.486.4)1377(35.435.4)1384(86

.11764.1181

1

2

)1()1(2

1

2

1

22

2

2

1

1

2

1

+

?-+??-+??--=

+

?

-+-+--=n

n n n s

n s n x

x t =2.290739963094.1>?t

可知,t 落入H 0的拒绝域中,故在0.05显著水平下应拒绝H 0 ,认为性别对儿童身高有显著差异。

8. 某自动车床生产的产品尺寸服从正态分布,按规定产品尺寸的方差σ2不得超过0.1,为检验该自动车床的工作精度,随机的取25件产品,测得样本方差S 2 = 0.1975,86.3=x .问该车床生产的产品是否达到所要求的精度(显著性水平α = 0.05)? 解:按题意需检验

H 0:1.02

≤σ H 1:1.02>σ

取统计量σ

χ20

2

2

)1(s n -=

,在显著性水平α = 0.05下,H 0的拒绝域为:

}{}

{

)125()1(205

.022

2

-≥

=-≥

χ

χ

χχ

α

n 计算得41503.36)24(205

.0=χ

由观测数据n =25,2

s = 0.1975,86.3=x ,1.02

0=σ,

得4.471

.0)125()1(2

20

2

2

=?-=-=

s s n σ

χ>36.41503落入H 0的拒绝域中,故在0.05的显著水

平下应拒绝H 0 ,认为床生产的产品没有达到所要求的精度。

9. 一台机床大修前曾加工一批零件,共1n =10件,加工尺寸的样本方差为

)(25221mm s =.大修后加工一批零件,共122=n 件,加工尺寸的样本方差为)(42

22mm s =.

设加工尺寸服从正态分布,问此机床大修后,精度有无明显提高(显著性水平α = 0.05)?

解:按题意需检验

H 0:σσ2221≥ H 1:σσ2221<

取检验统计量S

S

F 22

21

=,在显著性水平α = 0.05下,H 0 的拒绝域为:

}{}{)119()11(95

..02

1

1,,F

n n F F F ≤=--≤-α

计算得

2735.2)119(95

.0-=,F

由观测数据n 1 =10,n 2 =12,252

1=S ,42

2=S ,则25.64

25

22

21=

=

S

S

F >-2.2735未落在H 0的拒绝域中,故在0.05显著水平下,应接受H 0,可认为此机床大修后,精度有明显提高。 10. 由10名学生组成一个随机样本,让他们分别采用A 和B 两套数学试卷进行测试,成绩如下表:

试卷A 78 63 72 89 91 49 68 76 85 55 试卷B

71

44

61

84

74

51

55

60

77

39

假设学生成绩服从正态分布,试检验两套数学试卷是否有显著差异(显著性水平α = 0.05).

解:本题中的每一行数据虽然是同一张试卷的成绩,但10个数据的差异是由10个不同学生造成的, 因此表中的每一行都不能看成是一个样本的观察值,

再者,对每一对数据而言,他们是同一个学生做不同试卷的成绩,因此它们不是两个独立随机变量的观察结果,因此,我们不能用两独立样本均值的t 检验法作检验。

而同一对中两个数据的差异则可看成是仅由这两套试卷本身的差异所引起的。所以,构

造新的随机变量,Y X Z -=有),,(~2

σμN Z 其中,,2

22

1221σσσμμμ+=-=则

n

i Y X Z i i i ,....,2,1,=-=为Z 的简单随机样本,可以看成是来自一个总体的样本观察值。

如果两种方法测量结果无显著差异,则各对数据的差异

n

Z Z Z ...,21属于随机误差,随机误差

可以认为服从标准正态分布,且其均值为零。故问题可以转化为检验假设

0:,0:10≠=μμH H

设n Z Z Z ...,21的样本均值为,z 样本方差为2

s ,采用单个正态分布均值的t 检验,拒绝域为:

,2622.2)9()9(/0 025.02/==≥-=t t n

s z t α

由667

.42,

11,102===s z n

可得

2622.2325.5>=t ,所以拒绝0H ,在显著性水平α = 0.05下,可以认为两套数

学试卷有显著差异。

错误解法:设试卷A 的成绩服从),(~2

11σμN X ,试卷B 的成绩服从),(~2

22σμN X ,

根据题意,需要进行两总体的均值比较,但由于两总体方差未知,需要首先进行方差齐性检验,即

σ21和σ2

2是否有显著差异,然后再检验μμ2

1和是否有显著差异。 (1)检验假设

H 0: σσ2221= H 1:σσ2

221≠

由于μμ2

1和未知,选取统计量S

S y

x F 22

=,在显著性水平α = 0.05下,拒绝域为:

}{}

{)11()11(212212

1--≥--≤-n n F n n F

F F ,,αα 即}{}{)99(F )9,9(F 025.0975.0,

≥≤ F F 计算得

248386.0)99(975

.0=,F

,025994.4)99(025.0=,F 。

拒绝域为}{}{025994.4248386.0≥≤F F 。由观测数据得到n 1=10,n 2=10,6.72=x ,

6.61=y ,

0444.1982

=S x ,

8222.2172

=S y ,909202.08222

.2170444

.19822==

=

S

S

y

x F ,由于

0.248386<0.909202<4.025994则F 未落入H 0的拒绝域中,不能拒绝H 0 ,在0.05的显著水平下,可以认为两试卷成绩的方差无显著差异。

(2)根据(1)的结论,可以在σσ2

221=的条件下检验假设

H 0 :μμ21= H 1 :μμ21≠

选统计量

n

n S y

x t 2

1

1

1

+

-=

ω

为检验统计量,在显著性水平α = 0.05下,H 0 的拒绝域为:

}

{}{)18()2(025.0212

t n n t

t t ≥=-+≥α,计算得

100922.2)18(025

.0=t

计算得

705751

.11

1

2

)1()1()

(2

1

2

1

2

22

1=+

?

-+-+--=

n

n n

n S n S n y

x y x t <2.100922

可知,t 为未落入H 0的拒绝域中,故在0.05的显著水平下应接受H 0 ,认为两套试卷的成绩无显著差异。

四、应用题

1. 某部门对当前市场的价格情况进行调查.以鸡蛋为例,所抽查的全省20个集市上,售价分别为(单位:元/500克)

3.05 3.31 3.34 3.82 3.30 3.16 3.84 3.10 3.90 3.18 3.88

3.22

3.28

3.34

3.62

3.28

3.30

3.22

3.54

3.30

已知往年的平均售价一直稳定在3.25元/500克左右,假设鸡蛋的销售价格服从正态分布,能否认为全省当前的鸡蛋售价明显高于往年(显著水平α = 0.05)?

解法一:设鸡蛋的平均售价为μ,若设鸡蛋的销售价),(~2σμN X ,按题意需检验

25

.3:0≤μH

25

.3:0>μH

这是右边检验问题,由于方差未知,应选用t 检验,在显著水平α = 0.05下,拒绝域为:

{}{}729.1)19()1(/05.00

≥=≥=??????-≥-=

t t t n t n s x t n αμ

由样本观测值计算得到

,40.311∑===n i i x n x 0724.0)(111

22=--=∑=n i i x x n s n

729

.1476.220

26901.025

.340.3/0>=-=-=

n s x t n μ

由于476.2=t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,可以认为全省当前的鸡蛋售价明显高于往年。

解法二:这是单个正态总体均值比较的问题,若设鸡蛋的销售价),(~2σμN X ,则需要检验的是:

00:μμ≥H 01:μμ

这是左边检验问题,由于方差未知,选取n

s

X T 0μ-=为检验统计量,在显著水平α = 0.05

下,拒绝域为:

)}19({)}1({05.0t t n t t -≤=--≤α

查表得-1.72913)19(05.0=-t ,现由

n =20, 3.39911∑===n i i x n x , ()0.072409111

22

∑==--=n i i x x n s , 计算得

2.47630220

0.07240925

.33.3990=-=

-=

n

s

X t μ

)19(05.0t t ->

可知,t 未落入拒绝域中,故在0.05的显著水平下不能拒绝0H ,可以认为全省当前的鸡蛋售价明显高于往年。

注意:本题方法二没有方法一好,想一想为什么?

2. 有若干人参加一个减肥锻炼,在一年后测量了他们的身体脂肪含量,结果如下表所示:

男生组: 13.3 19 20 8 18 22 20 31 21 12 16 12 24 女生组:

22

26

16

12

21.7

23.2

21

28

30

23

假设身体脂肪含量服从正态分布,试比较男生和女生的身体脂肪含量有无显著差异(显著水平α = 0.05).

解:依题意,男女生的脂肪含量是分别来自正态总体),(2

11σμN 和),(2

22σμN ,

222121,,,σσμμ均未知,故首先要验证方差齐性,对两组数据做假设检验

. : , :2

221122210σσσσ≠=H H

拒绝域为:87.3)9,12(025.021

2

1=≥=F S S

F

或2907.0)9,12(025.012

2

2

1

=≤=-F S S F 由样本观测值计算得

,10,1321==n n 299

.28,390.362221==S S

29

.1299.28390.3622

2

1===S S F 87.329.12907.0<=

故不能拒绝0H ,可以认为两总体方差相等。

接下来进行两独立正态总体的均值比较:

若设男生脂肪含量),(~21σμN X ,女生脂肪含量),(~22σμN X ,则需要检验的是:

2

10:μμ=H 211:μμ≠H

选2

111n n S Y

X T w +

-=

为检验统计量,在显著水平α = 0.05下,H 0的拒绝域为:

)}21(|{|)}2(|{|025.0212t t n n t t ≥=-+≥α

查表得07961.2)21(025.0=t ,现由n 1 = 13,n 2 = 10,

18.176911

1

1

∑===

n i i

x n x ,22.2912

1

2∑===n i i

y

n y ,

()36.390311112121

∑==--=n i i x x n s ,()28.29881121

222

2∑==--=n i i y y n s , 5.737812

101328.2988)110(36.3903)113(2)1()1(212

22211=-+?-+?-=-+-+-=n n s n s n s w

计算得到

2.079611.7042310

11315.7378129.221769.181

12

1<=+?

-=

+-=

n n s y x t w

可知,t 未落入拒绝域中,故在0.05的显著水平下应接受H 0,可以认为男生和女生的身体脂肪含量无显著差异。

3. 装配一个部件时可以采用不同的方法,所关心的问题是哪一个方法的效率更高.劳动效率可以用平均装配时间反映.现从不同的装配方法中各抽取12件产品,记录下各自的装配时间(单位:分钟)如下表所示:

甲法: 31 34 29 32 35 38 34 30 29 32 31 26 乙法:

26

24

28

29

30

29

32

26

31

29

32

28

假设装配时间服从正态分布,问两种方法的装配时间有无显著不同(显著水平α = 0.05)? 解:这是两独立正态总体的均值比较问题,设甲法的装配时间),(~2

1σμN X ,乙法的

装配时间),(~2

2σμN X , 由于2

22

121,,,σσμμ均未知,故首先要验证方差齐性,需要检

验假设

. : , :2

221122210σσσσ≠=H H

拒绝域为:58.3)11,11(025.021

2

1

=≥=F S S F 或2793.0)11,11(025.012

22

1=≤=-F S S F 由样本观测值计算得:,1221

==n n 061.6,205.102221==S S

68.1061.6205

.1022

2

1===S S F

58.368.12793.0<=

故不能拒绝0H ,可以认为这两种方法的装配时间的方差相等。 第二步,进行均值检验,需检验假设211210:,:μμμμ≠=H H

取检验统计量 ,1

12

1n n S Y X t w +

-= 其中.

2)1()1( 212

222112

-+-+-=n n S n S n S w

拒绝域为:???

?

?

?????????==-+≥+

-=

0739.2)22()2(11)(||025.0212/21t n n t n n s y x t w α 现由n 1 = 12,n 2 = 12,

31.751111∑===n i i x n x ,

28.6667

1

2

1

2

∑===

n i i

y

n y

()10.204511112121

∑==--=n i i x x n s ,() 6.060611121222

2∑==--=n i i

y y n s ,

85177

.22

1212 6.06061)112(10.2045)112(2)1()1(21222211=-+?-+?-=-+-+-=n n s n s n s w

计算得到

2.07387

2.6483912

11212.8517728.6667-31.75112

1>=+?

=

+-=

n n s y x t w

落入拒绝域,故在0.05的显著水平下,可以认为这两种方法的装配时间有显著不同。 4. 为了考察两种测量萘含量的液体层析方法:标准方法和高压方法的测量结果有无显

著差异,取了10份试样,每份分为两半,一半用标准方法测量,一半用高压方法测量,每个试样的两个结果(单位:mg )如下表,假设萘含量服从正态分布,试检验这两种化验方法有无显著差异(显著水平α = 0.05).

标准 14.7 14.0 12.9 16.2 10.2 12.4 12.0 14.8 11.8 9.7 高压

12.1

10.9

13.1

14.5

9.6

11.2

9.8

13.7

12.0

9.1

解:本题中的每一行数据虽然是同一方法测量的结果,但10个数据的差异是由10个不同试样引起的, 因此表中的每一行都不能看成是一个样本的观察值,

再者,对每一对数据而言,他们是同一试样用不同方法测得的结果,因此它们不是两个独立随机变量的观察结果,因此,我们不能用两独立样本均值的t 检验法作检验。

而同一对中两个数据的差异则可看成是仅由这两中方法本身的差异所引起的。所以,构

造新的随机变量,Y X Z -=有),,(~2

σμN Z 其中

,,22212

21σσσμμμ+=-=则n

i Y X Z i i i ,....,2,1,=-=为Z 的简单随机样本,可以看成是来自一个总体的样本观察值。

如果两种方法测量结果无显著差异,则各对数据的差异

n

Z Z Z ...,21属于随机误差,随机误差

可以认为服从标准正态分布,且其均值为零。故问题可以转化为检验假设

0:,0:10≠=μμH H

设n Z Z Z ...,21的样本均值为,z 样本方差为2

s ,采用单个正态分布均值的t 检验,拒绝域为:

,2622.2)9()9(/0

025.02/==≥-=t t n

s z t α

由269.1,

27.1,102===s z n

可得

2622.2565.3>=t ,所以拒绝0H ,在显著性水平α = 0.05下,可以认为两种测

试方法有显著差异。

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计习题及答案

习题二 3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 5.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;

(2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 7.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间 隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32 (0)e P X -== (2) 52 (1)1(0)1e P X P X - ≥=-==- 11.设P {X =k }=k k k p p --22) 1(C , k =0,1,2 P {Y =m }=m m m p p --44) 1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=5 9 ,试求P {Y ≥1}. 【解】因为5(1)9P X ≥= ,故4(1)9 P X <=. 而 2 (1)(0)(1)P X P X p <===-

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计答案,祝东进

习题 1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止. (4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或 检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2, ,6}i j i j Ω===; (2){|0,1, ,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)}; (5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤. 2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”. (2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”. 解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=; (2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =; (3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =. 3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

哈工大概率论与数理统计课后习题答案 一

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案 高等教育出版社 习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数 之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -.

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

相关文档
相关文档 最新文档