文档库 最新最全的文档下载
当前位置:文档库 › 混流水轮机转轮叶片最优化设计

混流水轮机转轮叶片最优化设计

混流水轮机转轮叶片最优化设计
混流水轮机转轮叶片最优化设计

清华大学学报(自然科学版)

25/26 

 1997年第37卷

Jo urnal of T sing hua U niver sity (Sci &T ech)第3期第102~105页 

混流水轮机转轮叶片最优化设计*

陈乃祥, 林汝长, 罗兴琦

清华大学水利水电工程系,北京100084

收稿日期:1996-02-09

第一作者:男,1945年生,副教授 *国家自然科学基金项目(59379409), 三峡基金资助项目(59493700)

文 摘 用计及叶厚、有限叶片数影响及来流有旋的全三维设计理论及最优化技术中的单纯型法寻优,用SWIF T 法将反映包角、叶片流速及流动分离等约束的等式和不等式约束条件计入目标函数,以V H r 的分布为优化参数进行混流式水轮机转轮最优化设计的初步尝试。给出了理论、方法及算例,其中包括分别按汽蚀性能优化和按损失最小优化及多目标优化的结果。其中损失计入叶片正、背面及上冠下环的沿程损失和叶片进口撞击损失、出口扩散损失。关键词 全三维;最优化;水轮机转轮;有旋流动分类号 T K 730.2

水轮机转轮的最优化设计是在一定前提条件下,在一切可能设计出的转轮中设计并选择出性能

最优的转轮。而最优化设计计算必须解决以下几个问题:1)提出最优化标准、并进行量化、亦即目标函数值计算;2)最优化是在什么前提条件和限制条件下进行的,并应数模化;3)用什么方法尽快求出最优解,即选择最优化方法,本文针对水轮机转轮叶片设计,以V H r 为被优化参量,在转轮流道形状给定的前提下,进行叶片最优化设计,文中分述了设计方法、目标函数、约束条件及计算结果的简要分析。

1 转轮叶片设计模型

设计模型对设计成的转轮特性可控制程度起着关键作用,所以本文选择全三维反问题设计模型进行最优化设计计算。现将模型简述如下:

参考文[1,2]建立来流有旋的全三维反问题设计模型。在不可压、无粘流假设下,设来流涡量为81,将转轮内的三维流动分解为周向平均流动和周期性脉动流动,并用置于叶片中面的源(汇)Q 及涡82分别代替叶厚及叶片对水流的作用,则涡场8和源汇Q 为

8=81+8-1+8~2

(1)Q =Q -?+Q ~?

(2)8~2+Q ~?=(8-2+Q -?)M (s )(3)

其中8-2,Q -?分别为82,Q ?的周向平均分量,8

~2,Q ~?

分别为其周向脉动分量,其中M (s )=2Re 6+∞

k =1exp (i K Bs ),s =H -f (r ,z ),当s =0,H =f (r ,z )时即为叶片中面方程,r ,H ,z 为圆柱坐标三分量,则可得到以下支配方程:

1)由81,8-2,Q -?

产生的二维流动根据涡、源的定义、Chebsch 转换、流函数U 及势函数5的定义

可得到下述方程$2U =-r [$s ?$

(V H r )]-r [(W

-z +W -H r 9f 9z )9E -r 9r -(W -r +W -H r 9f 9r )9E -r 9z

]/W -2(4)$

25=Q -?=B [9(t H W -*r )9r +9(t H W -*

r )9z ]/2P r (5)该两式的边界条件根据上冠、下环为流线、进口W -z =0及出口参考试验结果或计算给出。其中E -r 为平均相对运动积分常数,B 为叶片常数,t H 周向叶

厚,W -*r ,W -*

z 为叶片中面上速度,U ,5分别为流函

数和速度势,其中周向平均速度V -r ,W

-r 的关系为V -r =W -r =9U 9r -9U r 9z

(6)

W -z =9U 9z -9U z 9r

(7)

2)三维周期性脉动流动与平均流动类似,并根据式(3)可得

$2U ak =2Re[ex p(-i K Bf )]$2(V -H r )/i K B +2[$s ?$V -H r ]+Q -*Re[exp(-i K Bf )](8)

$2U bk =2Im [ex p(-iK Bf )]$2V -H r /i K B +2[$s ?$V -H r ]+Q -*Im[ex p(-i K Bf )](9)

U ~(r ,H ,z )=

6

k =1

[U ak cos(K B H )+U bk sin(K B H )]

(10)

则 V =y5~(r ,H ,z )-

6Re(exp(-i K Bs )/

i K B )yV -H r (11)

上述中 $2=929r

+9r 9r +929Z +K 2B 2/r 2

。式(8)、(9)的边界条件可根据转轮进口出口处之U ~为0及上冠

下环处$

?n o =0得到。3)设计叶片骨面为流面,则叶片方程为

W -bl ?$

s =0(12)

其中W

-bl 为叶片表面相对流速。4)求解过程为给定轴面流道设计参数及V H r

分布,按一元半方法求初始叶片及轴面流场,迭代求解方程(4)~(12)得新流场和新叶片,直至收敛。

2 优化目标及其函数表示式

本文的最优化设计计算是建立在保证叶片强度即给定叶片厚度分布及轴面流道形状的条件下进行水力最优化设计,所以评价转轮叶片性能有两个标准:一是水力损失小,二是汽蚀系数小。所以目标函数可以写成

F (x )=

G G F G (x )+G R F R (x )

(13)

其中G G 及G R 分别表示损失权因子和汽蚀权因子,x

为被优化变量组成的矢量

x =[A 1上,d 2上,Y d 上,d 1下,d 2下,y d 下,A ]

T

其中A 1,d 2,y d 如图1所示,下标“上”“下”分别指上

冠下环之给定值。A 为A 1,A 2,Y d 上冠至下环的幂指数。

F G (x )=(1-G )=(H w -h )/H w

其中h =h 1+h 2+h fs +h fp +h fh +h fd ,h 1,h 2分别为进口撞击损失和出口扩散损失,h fs ~h fd 分别为叶片正,背面及上冠,下环的沿程损失,

均由边界层计算图1 叶片环量分布规律

得到。F R (x )可参考文[3]得

F R (x )=K K 2X 2+

G v K 2

v 1

K =(w k /w 2)2

-1,K v 2=V 2/

2gh ,K X 1=w 2/

2gh ,W k 为最大相对速度。

3 最优化方法的选择及SWIFT 法[4]

最优化方法很多,本文之所以选择SWIFT 算法的主要原因是本文的目标函数计算过程复杂,其中包括叶片设计、同时计算出流场,根据流场计算的损失和汽蚀系数,不能用显式表示,在多维空间中求导也存在一定困难,所以选择以单纯形加速法为基础的SWIFT 方法。

在有约束条件下,SWIFT 方法的增广目标函数表达如下

P (x ,T k )=F (x )+T k {6h j (x )- 6h j (x )+

6

G j (x )}(14)其中 h 1(x )=#-#g =0

(15.1) g 2(x )=-T -0.06≤0(15.2) g 3(x )=U -U max ≤0

(15.3) g 4(x )=$U -$U max ≤0

(15.4)

g 5(x )=X p -X s ≤0(15.5) g 6(x )=L s -l 0≤0(15.6)式(15.1)为等式约束条件,即能量约束,亦即进出口环量差应满足能量方程的要求,#为叶片沿准流线总环量,#g =2P gH G H /X 。式(15.2)为无分离约束条件,其中T 为分离判别准则系数。式(15.3)、(15.4)分别为叶片最大包角差约束,U max ,$U max 为给定的包角最大值和上冠、下环包角差最大值。式(15.5)、(15.6)分别为吸力面速度大于压力面速度及吸力面最大速度点到出水边距离的约束条件。

4 最优化计算结果及分析

最优化计算针对一高比速转轮和一中比速转轮进行。作为算例给出按汽蚀系数优化和按损失最小优化的中比速转轮叶片木模图及轴截线图详见图2(按空化系数最小最优化)和图3(按损失系数最小最优化)。压力系数C p 分布图见图4,对应的最优化后的环量分布图分别见图5和图6,上述图中m -为流线长度相对值。通过以空化系数R 为单目标函数进行设计使空化系数由0.13319减到0.13309,减小了0.075%,改善了空化性能。当以损失系数为目标函数时由0.02730优化为0.02208,减小了15.46%,优化效果明显。从叶片包角U 来看,按空化优化的叶片明显长于按损失优化的叶片,说明优化计算的结果是合理的,表1是多目标优化的结果,

103

陈乃祥,等: 混流水轮机转轮叶片最优化设计

从表中可知当效率的权重因子G n 增大时,损失系数

N 减小,叶片包角减小,空化系数R 变大。

这可从损失和空蚀的影响因素来分析说明这是合理的,也说

明可通过调整权重因子来控制优化设计的结果。

表1 多目标优化结果

G n A 1上A 2上A 1下A 2下y d 上y d 下A 0.000.6910.1540.6550.2020.3590.359 2.0830.250.6190.2030.3390.2050.3760.398 2.0170.500.6800.1600.5080.1740.3750.399 2.0430.750.6590.1930.4950.2180.4290.4790.2061.000.714

0.146

0.5880.1960.4740.493

2.028G n U 上/(°)U 下/(°)U max /(°)N R F 0.0048.7838.9548.780.0270.1330.1330.2546.4536.7646.450.1280.1280.1270.5047.3537.4447.350.0250.1350.1300.754

3.7335.0343.730.0230.157

0.1241.00

41.66

35.08

41.66

0.022

0.176

0.

110

2 按空化系数最小优化的叶片水平截线

图3 按损失最小优化的叶片水平截线

图4 沿中间流线压力系数分布图

图5 空化系数最小最优环量分布图6 以损失最小的最优环量分布

104

清华大学学报(自然科学版)1997,37(3)

5 结 论

1)全三维反问题计算模型更贴近转轮实际流

动,并在实现设计的同时也可得到性能预估的资料,减少正问题计算的工作量,这两点十分有利于最优化设计的有效性和快速性。

2)做这类最优化设计尚属首次,但通过算例可以说明本文最优化设计系统可以达到优化设计的目的,辅以实验,将可为提高转轮的设计水平提供有利的工具。

参 考 文 献

1Bo r ges J E.A three-dimensional inver se metho d fo r tur bo machinery,P art one-theo ry.A SM E J o f

tur bo machimery,1990,112:346~354

2陈乃祥,叶生海,林汝长.混流无厚度叶片的三维反问题计算.水力发电学报,1995,1:59~65

3曹 昆鸟,姚志民.水轮机原理及水力设计,北京:清华大学出版社,1991

4蔡宣三.最优化与最优控制.北京:清华大学出版社, 1982

Study on optimum design of

mixed flow turbine runner blade

Chen Naixiang,Lin R uchang,Luo Xingqi

D epar tment o f Hy dr aulic and Hydro pow er Eng neer ing,

T sing hua U niver sity,Beijing100084

Abstract: T he paper studes o pt imum desig n o f mix ed flow t ur bine r unner by SW IF T method and full3-D mathematical m odel counted effect o f thickness and limit nomber of bladies.T he tar get function acco unted r estrain factor of equvalence and unequivalence of wr ap angle of blade, sur face v elo city of blade and flow separat ion,and the distr ibutio n of V o r is taken as o pt imized paramet ers.T he t heo r y,method and ex ample ar e g iven in t he paper,it is includded t ha t least cavitatio n factor,least lose w hich acco uted sur face lose o f blade,cr ow n and band of r unner, and lose o f outlet diffuse and inlet str ike,and least sum of t he t wo factor s(cav itation factor and ener ge lose).

Key words: tur bine r unner;o pt imum design;mix ed flow tur bine;tar g et function

105

陈乃祥,等: 混流水轮机转轮叶片最优化设计

多体动力学优化方法

多体动力学优化方法 3 李庆国1 ,曾庆良1 ,范文慧 2 (1.山东科技大学机电学院,青岛山东266510;2.清华大学国家C I M S 工程技术研究中心,北京100084) 摘 要: 介绍一种多体动力学优化设计方法,基于I SI GHT 软件集成Pr o /E 和Ada m s,建立优化设 计平台。夹紧装置优化设计实例,验证了该平台的有效性和合理性。关键词: 多体动力学优化;多学科设计优化(MDO );I SI GHT 中图分类号:O313.3 文献标识码:B 文章编号:1001-0874(2007)03-0089-02 A Me thod ofMulti 2body Dynam i c Op ti m i za ti o n L I Q ing 2guo 1 , ZEN G Q ing 2liang 1 , FAN W en 2hui 2 (1.College of Mechanical &Electric Engineering,,Shandong University of Science and Technol ogy,Q ingdao 266510,China; 2.Nati onal C I M S Engineering Research Center of Tsinghua University,Beijing 100084,China ) Ab s trac t: This paper intr oduces a method of multi 2body dyna m ic op ti m izati on design and builds an op ti m izati on design p latfor m based on I SI GHT s oft w are integrati on Pr o /E and Ada m s .The effectiveness and reliability of the p latfor m is validated by taking the op ti m izati on design of chucking fixture as exa mp le .Keywo rd s: multi 2body dyna m ic op ti m izati on;multidisci p linary design op ti m izati on;I SI GHT 3国家自然科学基金资助项目(编号:60474059) 1 多体动力学和MDO 多体系统是多个相互运动的物体通过运动副相联的多刚体系统和多柔体系统。上世纪80年代初,多刚体系统动力学计算机仿真已广泛应用于工程领域,通常用来研究系统的位移、速度、加速度与其受力之间的关系。随着计算机技术的飞速发展,仿真、优化技术已在多体系统设计中得到大量应用。为了解决不同学科间的协同设计问题,人们提出了多学科设计优化的思想。 多学科设计优化(Multidisci p linary Design Op ti 2m izati on 简称MDO )是一种设计复杂系统和子系统的方法论。通过充分利用各个学科(子系统)之间相互作用所产生的协同效应,获得系统的整体最优解[1] 。 多学科设计优化问题,在数学形式上可表达为:寻找:x 最小化:f =f (x,y ) 约束:h i (x,y )=0 (i =1,2,3,…,n ) g i (x,y )≤0 (j =1,2,3,…,m ) 其中f 为目标函数,x 为设计变量,y 是状态变量,h i (x,y )是等式约束,g i (x,y )是不等式约束。 MDO 的研究主要分为三个方面:面向设计的多 学科分析设计软件的集成;有效的MDO 算法,实现多学科并行设计,获得系统最优解;MDO 分布式计算的环境支持。目前,已经出现了较成熟的商业软件,I SI GHT 就是典型代表。2 多学科优化软件I SI GHT I SI GHT 是一个通过软件协同驱动产品设计优 化的软件。特色是融合了优化设计中需要的三大主要功能:自动化功能、集成化功能和最优化功能。 (1)自动化功能 I SI GHT 的过程集成(Pr ocess I ntegrati on )功能可 以对各种CAD 或CAE 软件进行自动化启动、监视和控制,文件解析(File Parser )功能可以自动地编辑、生成输入文件和自动处理输出文件及读取计算结果。 (2)集成化功能 ? 98?2007年第3期 煤 矿 机 电

燃气轮机叶片

燃气轮机叶片加工与控制 一.燃气轮机的结构与组成 燃气涡轮发动机主要由压气机、燃烧和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多。 二.燃气轮机工作原理及热处理过程 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 三.燃气轮机叶片 1.在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。叶片的工作条件。 压气机叶片含风扇叶片属于冷端部件的零件,除最后几级由于高压下与气体的摩擦产生熵增而使温度升高到约600K(327°C),其余温度不高,进口处在高空还需防结冰。工作前面几级由于叶片长以离心负荷为主,后面几级由于温度以热负荷为主。总之压气机叶片使用寿命较长。叶片的使用的材料一般为铝合金、钛合金、铁基不锈钢等材料。 涡轮是在燃烧室后面的一个高温部件,燃烧室排出的高温高压燃气流经流道流过涡轮,所有叶片恰好都是暴露在流道中必须承受约1000°C的高温1Mpa 的以上高压燃气的冲刷下能正常工作。因此叶片应有足够的耐高温和高压的强度。涡轮叶片的使用寿命远低于压气机叶片约2500h。 转子叶片,静子叶片只承受热应力及弯曲应力,没有离心应力。叶片使用的材料一般为高温铸造合金如K403、K424等、和高温合金如GH4133等,温下高强度材料。 2.叶片加工与控制 (1)加工 叶片的加工分两大部分:一部分为叶片型面加工,一部分为榫头加工及缘板加工:压气机工作叶片的型面是用高能高速热挤压成型后经抛光而成;整流叶片是由冷轧成型经抛光而成。涡轮叶片的叶型,无论是工作叶片

防止某型号燃气轮机叶片断裂的措施

防止某型号燃气轮机叶片断裂的措施 一概述 燃气轮机发电机机组具有起、停快,负荷调节灵活,为电网提供电源和调峰.MS6001B型燃气轮机发电机组在我国燃机电厂中是比较多类型机组,由于新设备技术新,没有足够的运行、维护检修经验和相应的技术措施,在燃气轮机运行中,曾经发生了一些非正常故障和叶片断裂事件,增加了机组的运营成本,也影响了企业的经济效益和社会效益. 透平动叶是燃气轮机的重要部件,引起透平动叶断裂的主要因素有: (1)可调进气导向叶片(IGV)卡涩,转动失灵,造成压气机喘振;致使透平动叶断裂. (2)透平叶片因腐蚀,蠕变产生的断裂. 二压气机进气导向叶片(IGV) 的合理间隙 燃气轮机在运行过程中, IGV叶片是以燃机的转速信号和透平排气温度为控制基准,由电液伺服阀控制其开度,最小开度为32°,最大开度84°, IGV 叶片在此范围内连续可调. 叶片在燃汽轮机起停机等低转速过程中是防止压气机喘振的重要机构之一. 燃气轮机在低速运行时,空气容积流量低,压气机前12级容易发生气流旋转脱离现象,进一步发展会形成喘振,其表现为压气机空气流量、压力出现脉动,时高时低,严重时出现压气机气流倒流的现象,同时还会发生低频的怒吼声,机组伴随强烈的震动.由于叶片受到变速的强烈振动,易产生疲劳甚至共振断裂,造成机组灾难性的事故.因此, IGV叶片的安全可靠性,对于燃气轮机至关重要.而IGV叶片的安全可靠性主要取决于其是否卡涩;转动是否失灵,叶顶与进气内缸的间隙、叶根与进气外缸间隙是否超过规范,详见图1、图2。

机组在经过多次起停、水洗等过程后,叶片叶根转轴的铜质垫片A可能会产生腐蚀或锈蚀,尤其是在燃机水洗时,带有污垢的水可能会残留在叶根转轴的台阶孔和垫片A之间,这种残留物会导致垫片A锈蚀变形,进而导致IGV叶片沿转轴孔向叶顶径向移动,于是,叶片叶顶与进气内缸的间隙X1变小。通常该情况主要表现在进气缸的下半缸,因为下半缸中叶根转轴的台阶孔和垫片A之间的间隙容易残留水洗时带来的污垢。(图3) 与此同时,下半缸内缸叶顶转轴石墨衬套的松动,在重力的作用下,向下径向移动,使得叶片叶顶与进气内缸的间隙X1变小更成为可能,严重时,IGV叶片叶顶切入到石墨衬套,石墨衬套破损,叶片发生卡涩,使叶片转动失灵,叶片甚至翘曲变形或断裂,严重影响机组运行的安全性。某电厂就因石墨衬套脱落被IGV叶片切成碎片吸入压气机,酿成压气机叶片外物损坏(FOD)的严重事件。 三透平动叶膨胀间隙的要求 由于燃气轮机透平转子在高温高压燃气的环境中运行,透平动叶必定产生一些膨胀,即透平动叶叶根部分在冷态下(停机状态)需保留一定的间隙(如表1),才能是透平叶片在高温状态下运行时膨胀后处于正常的工作状态。透平一、二、

结构的动力学设计

§概述 结构设计的一个重要内容是强度设计,而结构强度设计特别是飞机、汽车等航行器的强度设计已经从过去的结构静强度设计思想,发展到现在的结构动力学设计概念,所谓的结构动力学设计,是指按照对结构动力学特性指标的要求,对结构进行设计,以满足对振动频率、振动响应以及振动稳定性边界的要求。目前,结构动力学设计的概念正逐渐被人们所接受,各种动力学设计技术已逐渐发展起来并应用到结构设计的工程实践中。 一般所谓的结构动力学设计,实际上是结构动力学优化设计。结构动力学优化设计的研究原则上包括三方面的内容:(1)在给定频率和响应控制设计要求下,对结构的构型或布局进行设计优选;(2)在确定结构布局或构型后,对有关的结构设计参数进行设计优选;(3)在基本结构设计确定后,如有必要,还应进行附加质量、附加刚度及附加阻尼的设计优选,或附加其它类型的振动控制措施。但是,目前结构动力学设计的研究和应用水平,尚不能提供上述各方面的设计方法。大多数的研究都集中在前两方面的研究内容上,即针对给定结构的构型和布局设计,按照结构动力学分析和优化设计的方法来对有关的结构设计参数进行设计优选,或者基于已按其它方面要求确定的基本结构的设计参数,进行结构动力学优化设计和设计修改。而上述第三方面内容的研究和应用,现已经纳入到结构振动控制研究的范畴。 显然,对于确定的结构布局形式,无论是进行结构的频率控制设计或是进行在给定载荷下的响应控制设计,或者两者的联合控制设计,都属于结构动力学中的逆问题。对工程实际中复杂结构的振动逆问题,只能借助于有关的近似方法。目前最有效的方法,就是数学中得到了很好发展的最优化方法,它成为结构动力学设计的一个有效手段。在第八章中介绍的结构参数灵敏度分析、参数摄动分析以及结构动力学修改等近似方法,也构成了结构动力学设计的基础。本章主要介绍结构动力学设计中常用的一些优化方法。 【结构动力学设计的必要性】 过去对各种航行器的结构设计,都是按照静强度的思想进行设计,直到使用中出现各种振动故障问题时,才着手进行排故处理,一般对结构的振动问题没有进行事先估计,也没有采取相应的设计措施,因而在使用中最先暴露的是各

航空发动机和燃气轮机耐高温叶片

附件4 航空发动机和燃气轮机耐高温叶片 “一条龙”应用计划申报指南 一、产业链构成 面向航空发动机和燃气轮机等应用领域,以提高高温合金精密铸造涡轮叶片质量和可靠性为核心,组织产业链各环节优势力量,推动重点项目攻关,突破单晶高温合金母合金纯净度控制、复杂定向/单晶涡轮叶片制备、长寿命热障涂层设计与制备等关键技术,带动上游原辅材料产业、高端装备产业等相关产业互融共生、分工合作、利益共享,推进产业链协作发展,形成上下游产业对接顺畅的应用示范全链条,推动航空发动机和燃气轮机的开发、生产和应用。 关键产业链条环节 序号产业链环节航空发动机叶片地面燃气轮机叶片 1上游原材料√√ 2关键设备制造√√ 3高性能涡轮叶片合金开发√√ 4高纯净度母合金制备√√ 5涡轮叶片精密铸造√√ 6涡轮叶片机加√√ 7涡轮叶片制孔√√ 8涡轮叶片焊接√√ 9涡轮叶片热障涂层√√ 10下游应用√√ 二、目标和任务 (一)上游原材料 1.母合金用原材料 (1)环节描述及任务。开发镍、钽、铼等原材料制备技术,提

高原材料的杂质元素含量控制水平,为涡轮叶片用铸造高温合金熔炼提供优质原材料,为母合金锭纯净度控制奠定基础。 (2)具体目标。具备优质原材料生产能力,镍、钽、铼等具体化学成分控制要求如下表所示: 表1镍的化学成分控制要求 表2钽的化学成分控制要求 类别牌号 化学成分,% Ta Nb C O N Fe Ni Mn 不大于 钽条TTa-1余量0.010.0150.200.010.010.0050.003 类别牌号W Mo Si Zr Al Cu Cr Ti 不大于 钽条TTa-10.00 30.0030.010.0030.0030.0030.0050.003 表3铼的化学成分控制要求 类别 化学成分,% Re K Na Ca Fe Cu Mo Pb 不小于不大于 铼条、铼粒99.990.00050.00050.00050.00050.00010.00010.0001 类别W As Se Sn Ba Mn Be Pt 不大于 铼条、铼粒0.00050.00010.00030.00010.00010.00010.00010.0001 类别Co Cd Bi Si Mg C Zn Sb 不大于 铼条、铼粒0.00050.00010.00010.00050.00010.00150.00010.0001 类别Al Ni Ti Cr Tl Te S 不大于 铼条、铼粒0.00010.00050.00050.00010.00010.00010.0005 2.陶瓷型芯/型壳用原材料 (1)环节描述及任务

燃气轮机结构-涡轮

第四章涡轮 涡轮概述 一:涡轮功用 把来自燃烧室的高温、高压燃气中的部分热能和压力能转换成机械功,用以带动压气机、附件和外负荷。 二:按燃气流动方向分类 轴流式径流式(离心式、向心式) 三:涡轮工作条件 高温、高转速、频繁剧烈热冲击、不均匀加热及由于转子不平衡和燃气压力、流量脉动造成的不平衡负荷的作用。 四:船舶燃气轮机涡轮 船舶燃气轮机多应用轴流式涡轮。其特点是功率大、燃气温度高、转速高、效率高。 燃气发生器涡轮(增压涡轮):用来带动压气机和附件; 动力涡轮:用来带动减速器-螺旋桨或其他负荷,输出功率 五:涡轮通流形式 平的 扩张型:等中径通流等内径通流等外径通流

涡轮转子 一:涡轮转子组成 涡轮盘、涡轮轴、工作叶片、连接零件 二:盘与轴的连接 1.不可拆卸式结构:销钉连接整体结构或焊接 2.可拆卸式结构:螺钉连接短螺栓连接

三:盘与盘的连接 盘与盘地连接也分为不可拆卸和可拆卸两种结构,如下为典型连接: 不可拆卸式的径向销钉连接用长螺栓连接的可拆卸结构用短螺栓连接的可拆卸结构四:工作叶片及其与轮盘的连接 1:工作叶片工作环境: 离心力、气动力、振动负荷、受到燃气腐蚀、冷热疲劳 第一级工作叶片工作条件最恶劣,决定燃气初温选择,直接影响燃气轮机性能和可靠性 2:工作叶片组成 叶身、中间叶根、榫头(有些叶尖带有叶冠) 3:中间叶根作用 可以减少向轮盘传热,改善榫头应力分布不均匀;可以通冷却空气,降温,减少热应力,减轻轮盘质量。 4:榫头 叶片用枞树形榫头连接,承受负荷、离心力大、高温下工作。 故需满足:a.允许榫头受热后自由膨胀 b.传热性能好,叶片热量容易带走5:工作叶片的固定: 涡轮静子 一:涡轮静子组成 涡轮外环、导向器、涡轮支撑、传力系统 二:涡轮机匣 1:结构特点 一般采用整体式,且采用与燃机轴线垂直的分开面,将外环分成几部分 也有用于纵向剖分面的分开式结构的机匣,但多用于多级涡轮的情况 : 2:径向周向定位 通常采用圆柱表面实施,也有用几个不等距的精密配合的销钉作为定位件,再用精配螺栓附加定位

某电厂3号燃气轮机压气机叶片故障的原因分析

第36卷 第1期热力透平Vol136No11 2007年3月THER M A L T UR BI NE Mar12007某电厂3号燃气轮机压气机叶片故障的原因分析 朱宝田,肖俊锋,祁文玉 (西安热工研究院,西安,710032) 摘 要: 对某电厂3号燃气轮机压气机叶片的故障原因进行分析,调查了故障发生经过、运行记录、控制系统记录、机组分解现场、零部件损坏情况,对叶片材质和断口进行了理化检验分析,得出故障原因,对机组的修复和今后的安全运行具有重要的意义。故障与运行操作无直接关系。故障原因分析的结论成为电厂向制造商索赔的技术依据。 关键词: 发电厂;燃气轮机;压气机;叶片;故障;原因分析 中图分类号:T K47418 文献标识码:A 文章编号:1672-5549(2007)01-0067-04 Analysis on Compressor Blade Failure of No13G as Turbine in a Certain Plant Z H U B ao2ti an,X I A O J un2f eng,QI W en2y u (Thermal Power Research Institute,Xi’an710032,China) Abstract: An analysis on the compressor blade failure of No13gas turbine in a certain plant was analyzed1 The failure occurring,operating record,control system record,unit decomposition site and components damage status were investigated1The physical and chemical inspection analysis for blade material and blade fracture were done to obtain the failure causes,which has a great significance to the rehabilitation of unit and later safe operation1The failure had no direct relation to operation.The conclusion of failure analysis could be considered as technical material used for the plant,who claimed for damages f rom manufacturer1 K ey w ords: power plant;gas turbine;compressor;blade;failure;analysis 1 机组情况 某电厂3号燃气轮机为GE2AL STOM公司制造的P G65812B型燃气轮机,额定功率42100kW(天然气燃料),额定转速5163r/min。2004年9月24日简单循环投运,2005年9月4日,联合循环投运。3号燃气轮机累计点火运行1004314小时;累计启动80次,事故跳闸9次(因燃气轮机引起的跳闸仅本次事故);系统周波4919~5012Hz。机组正常运行负荷在30~40MW之间,平均负荷33MW,冬季环境温度低时最高负荷48MW,调峰时最低负荷25MW。 2 故障情况 故障前,3号燃气轮机负荷37MW。 2005年12月6日凌晨5点左右,1号轴承两个振动监测值由原来的0189mm/s、0197mm/s分别增至1182mm/s、119mm/s。 9时许,1号轴承振动监测值增至316mm/s、3156mm/s,2号轴承两个振动监测值由113mm/ s、1144mm/s增至3139mm/s、3109mm/s;由于上述振动监测值与GE公司规定的报警值1217mm/s尚有距离,机组继续运行。 11:52分,控制系统出现“燃机排气温度高”报警,机组跳闸。跳闸前报警信息如下: 时间 报警信息 2005/12/06 11:52:231343燃机排气温度高2005/12/06 11:52:231343排气超温跳闸2005/12/06 11:52:241718发电机短路器跳闸2005/12/06 11:52:451343高振动跳闸或停机机组跳闸前后燃机有短促异常声响。跳闸后机组惰走时间11分20秒,与正常停机6走时间 收稿日期:2006-09-27 作者简介:朱宝田(1948-),男,西安热工研究院首席研究员,享受国务院政府特殊津贴的专家,从事发电厂设备和系统的研究。本文为2006年中国动力工程学会透平专委会论文研讨会宣读论文,获优秀论文奖。

燃气轮机航空叶片介绍

航空发动机叶片 众所周知,在航空发动机里叶片是透平机械的“心脏”,是透平机械中极为主要的零件。透平是一种旋转式的流体动力机械,它直接起着将蒸汽或燃气的热能转变为机械能的作用。叶片一般都处在高温,高压和腐蚀的介质下工作。动叶片还以很高的速度转动。在大型汽轮机中,叶片顶端的线速度已超过600 m/s,因此叶片还要承受很大的离心应力。叶片不仅数量多,而且形状复杂,加工要求严格;叶片的加工工作量很大,约占汽轮机、燃气轮机总加工量的四分之一到三分之一。叶片的加工质量直接影响到机组的运行效率和可靠行,而叶片的质量和寿命与叶片的加工方式有着密切的关系。所以,叶片的加工方式对透平机械的工作质量及生产经济性有很大的影响。这就是国内外透平机械行业为什么重视研究叶片加工的原因。随着科学技术的发展,叶片的加工手段也是日新月异,先进的加工技术正在广泛采用。 叶片的主要特点是:材料中含有昂贵的高温合金元素;加工性能较差;结构复杂;精度和表面质量要求高;品种和数量都很多。这就决定了叶片加工生产的发展方向是:组织专业化生产,采用少、无切削的先进的毛坯制造工艺,以提高产品质量,节约耐高温材料;采用自动化和半自动化的高效机床,组织流水生产的自动生产线,逐步采用数控和计算机技术加工。叶片的种类繁多,但各类叶片均主要由两个主要部分组成,即汽道部分和装配面部分组成。因此叶片的加工也分为装配面的加工和汽道部分的加工。装配面部分又叫叶根部分,它使叶片安全可靠地、准确合理地固定在叶轮上,以保证汽道部分的正常工作。因此装配部分的结构和精度需按汽道部分的作用、尺寸、精度要求以及所受应力的性质和大小而定。由于各类叶片汽道部分的作用、尺寸、形式和工作各不相同,所以装配部分的结构种类也很多。有时由于密封、调频、减振和受力的要求,叶片往往还带有叶冠(或称围带)和拉筋(或称减震凸台)。叶冠和拉筋也可归为装配面部分。汽道部分又叫型线部分,它形成工作气流的通道,完成叶片应起的作用,因此汽道部分加工质量的好坏直接影响到机组的效率。 下面说一下叶片的材料,由于透平叶片的工作条件和受力情况比较复杂,因此对叶片材料的要求也是多方面的,其中主要的要求概括如下:(1).具有足够的机械强度。即在工作温度范围内具有足够的,稳定的机械强度(屈服极限和强度极限),并且在工作温度范围内这些机械强度具有稳定的数值。在高温情况下(一般指450℃以上),具有足够的蠕变极限和持久强度极限。(2).具有高的韧性和塑性以及高温下抗热脆性(高温下稳定的冲击韧性),避免叶片在载荷作用下产生脆性断裂。(3).耐蚀性。抵抗高温下气体中有害物质的腐蚀以及湿蒸汽和空气中氧的腐蚀能力。(4).耐磨性。抵抗湿蒸汽中水滴和燃气中固体物质的磨蚀。(5).具有良好的冷、热加工性能。(6).具有良好的减振性。叶片是处在交变载荷下工作,除要求有较高的疲劳极限外,还要求有良好的减震性能,即高的对数衰减率。这样可以减小振动产生的交变应力,减小叶片疲劳断裂的可能性。 根据使用温度、使用温度和化学成份等,可以将叶片材料分为两类:(1).马氏体、马氏体-铁素体和铁素体钢。这类钢的使用温度最高不超过580℃,可以作为汽轮机叶片材料。(2).奥氏体钢、铁镍合金和镍基合金等。着类钢的使用温度最高不超过700~750℃,可以作为燃气轮机叶片材料。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

图说燃气轮机的原理与结构

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

振动力学吸震器发展 应用

吸 振 器 发 展 、 原 理 及 应 用 机电学院 机械设计制造及其自动化 机电121 朱强 20120334121

绪论 自从人类诞生以来,就不断地在改造着世界。尤其是进入20世纪以来,世界发生了 翻天覆地的变化:科学技术突飞猛进,社会生产力极大提高,经济规模空前扩大,物质 极大丰富。然而,与此同时,人类与自然的关系也在急剧的变化,资源面临枯竭,污染 日益严重,震惊世界的公害事件频频发生……环境问题已经成为了政府、社会关注的焦点,它将通过法律法规、国际公约、公众环保意识以及经济规律影响企业行为,影响社 会经济的变革与发展。因此正确处理环境、经济和技术之间的关系,已经成为决定未来 企业竞争能力的关键因素。 机电产品绿色设计包括振动工程,而振动控制是振动工程的一个重要科学分支。广义 来说,振动控制包含诱发振动和控制振动两个范畴。 振动控制的措施大致分为五种:1.消振或减弱振源 2.隔震 3.动力吸振 4.阻尼减振 5.结构修改。在结构振动控制中,动力吸振器的研究和应用已得到了不断的发展。动力 吸振器是建立在反共振原理基础上的,提摩盛科早在1928年就解决了正弦激励下动力 吸振器的设计问题。80年代,国内曾利用动力吸振器成功排除了某改型飞机尾舵的扰 流振故障。研究动力吸振器模拟问题,归根到底是一个数学优化问题和机械仿真问题。一、发展背景 动力吸振器自1911年问世以来,在实践中得到了广泛的应用。它通过在需要减振的结构(称为主系统)上附加子结构,改变系统的振动能量的分布和传递特性,使振动能量转移到附加的子结构上,从而达到控制主系统振动的目的。传统的动力吸振器多属被动控制,它对于主系统的窄带响应有着良好的吸振效果,但由于其吸振带宽不可调节,对于宽频激励引起的主系统的振动,吸振效果不是很理想。 近年来,对于主动吸振器的大量研究表明,主动吸振器可以根据主系统的振动状态,自动调节自身的结构参数或振动状态,实现宽频吸振,提高了吸振器减振效果,大大拓宽了吸振器的应用范围。根据吸振器自动调节机理的不同,主动吸振器可分为全主动式吸振器和半主动式吸振器。全主动式吸振器是根据主系统的振动状态反馈调节吸振器的振动状态,使其对主

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

燃气轮机叶片冷却技术的发展

动力与能源工程学院 动力机械及工程学科专题研究课程设计 学号: 专业: 动力机械及工程 学生姓名: 任课教师: 2009年12月 燃气轮机叶片冷却技术的发展 1概述 燃气轮机作为大型动力装置,广泛应用于发电,船舶,航空航天等工业领域。 其主要性能指标为系统循环热效率和输出功率,它们均随涡轮转子燃气进口温度(RIT)的增加而增加。据计算,RIT 在1073~1273K范围内每提高100℃,燃气轮机的输出功率将增加20%~25%,节省燃料6%~7%。所以,要使燃气轮机性能的不断提高,关键在于提高RIT,但伴随而RIT的提高,燃气轮机热端部件材料的耐热问题也随之而来。目前,燃气轮机的RIT远高于涡轮叶片金属材料的熔点;下一代燃气轮机若以氢气和人造气为燃料,RIT将会更高,如果不能成功的解决这一问题,用提高RIT来提高燃气轮机性能只能是个美好的愿望。 先进的冷却技术可使热端部件能承受更高的工作温度,提高燃气轮机的循环热效率,延长燃气轮机使用寿命,提高系统工作的安全性和可靠性。据推算,如果无冷却导向叶片材料的使用温度能达到1470 K,则该导向叶片采用内部对流冷却时,可使涡轮进口温度提高到2200 K。由此可见,开展叶片冷却技术的研究具有十分重要的意义。

2燃气轮机气冷技术的发展进程 早期的涡轮叶片没有采用冷却技术,RIT受叶片材料的限制,很难超过1 323K。为了突破这一瓶颈,气体冷却技术被应用到实践中,这一技术是用来自不同压缩级的压缩空气作为冷剂对燃气涡轮的热端部件进行冷却,可大幅提高燃气初温。由于空气容易获取,实践成本较低,空气冷却得以快速发展,应用颇广。但随着人们对燃气轮机性能的要求不断提高,继续使用空气冷却将消耗掉大量的压缩气,这对燃气轮机的整体性能的提高不利。据估计,按现有传统复合冷却技术,当高性能涡轮系统RIT > 1763 K时约有35 %的压缩空气用于热通道组件的冷却,用于燃烧的空气更少,这将大大减少了涡轮系统的循环热效率和输出功率。另外,冷却空气的流道由于提高燃气轮机的初温和高压冷却空气的流动以及冷却空气与主流燃气的掺混带来较大的热力和气动损失。这些因素将降低燃气轮机的热效率,且各种损失还随冷却介质流量的增加而增加,将与提高RIT的收益相抵消。 为了解决这一问题,一方面需要改进气冷结构和发展新型结构,另一方面则可以采用其它介质来代替空气作冷却介质。新介质被要求既易得可用,冷却效果好,损失较小,又能保持已有冷却技术的结构简单性和可靠性。 对大型陆用燃气轮机来讲,水蒸气是叶片冷却介质的首选。使用蒸汽作为冷却介质的优点有蒸汽来源丰富,且可再次利用,在任何采用空气冷却的系统中使用,不会使冷却叶片转子的结构和制造工艺变得复杂。与空气相比,水蒸气冷却运行能耗低、损失小,克服了空气冷却的所有不足,可通过增加冷却蒸汽流量来更多地提高RIT。因为蒸汽压力不受压气机出口压力的限制,所以冷却蒸汽流量的增加,冷却通道的流阻不会遇到什么困难。 此外,许多专家和科研人员另辟蹊径,从已发展成熟的空气冷却技术着手对进一步提高燃气初温做了大量研究,并取得了一些进展。结果表明向空气中加入水雾时冷却效果较纯空气的冷却效果好,但由于水滴吸热蒸发后变成水蒸气,引入一个新组分,其换热强化机理和液滴动力学方面极为复杂,直至目前几乎所有的试验研究,尚不适用于实际燃气轮机涡轮叶片冷却。由此向高性能大型燃气轮机的冷却蒸汽中添加水雾以强化换热的想法就产生了,这种新的想法被称为汽雾冷却技术。研究表明,汽雾冷却与传统空气冷却相比,换热系数

燃气轮机涡轮叶片多轴疲劳_蠕变寿命研究_彭立强

第22卷第2期燃气涡轮试验与研究Vol.22,No.2 2009年5月Gas Turbine Experiment and Research May,2009 燃气轮机涡轮叶片多轴疲劳/蠕变寿命研究 彭立强,王健 (大连理工大学汽车工程学院,辽宁大连116023) 摘要:本文针对电厂用燃气轮机涡轮转子叶片工作环境,对Manson-Coffin多轴疲劳预测方程和SWT公式进行修正,同时采用尚德广多轴疲劳损伤参量,给出涡轮叶片新的疲劳寿命预测方法,以适应涡轮叶片高温变幅非比例加载 下的疲劳损伤情况。通过算例计算了某涡轮叶片疲劳寿命及10000h的总损伤,其结果与叶片实际疲劳破坏相吻合, 验证了该高温多轴疲劳损伤计算模型的准确性。 关键词:涡轮叶片;高温多轴疲劳;疲劳寿命;蠕变;燃气轮机 中图分类号:TK47文献标识码:A文章编号:1672-2620(2009)02-0034-04 Research of Multiaxial Fatigue-creep Life Prediction for Turbine Blade PENG Li-qiang,WANG Jian (School of Automotive Engineering,Dalian University of Technology,Dalian116023,China) Abstract:This paper amended Manson-Coffin equation of multiaxial fatigue prediction and SWT formula, based on the working condition of gas turbine blade in power generation application.Also,this paper brought forward a new method of fatigue life prediction of turbine blade for non-proportional loading of turbine blade fatigue damage at high temperature with using SHANG De-guang multiaxial fatigue damage model.A prediction was made to turbine blade fatigue life and the total damage after10000hours,which was consistent with the actual blade fatigue damage.So the model of multiaxial fatigue prediction was validated. Key words:turbine blade;multiaxial fatigue at high temperature;fatigue life;creep;gas turbine 1引言 燃气轮机作为大型动力装置,广泛应用于发电及各种工业领域。电厂用燃气-蒸汽轮机联合循环发电机组中的燃气轮机涡轮叶片是燃气轮机中承受温度载荷最剧烈和工作环境最恶劣的部件之一,在高温下要承受很大、很复杂的应力和应变。涡轮叶片在工作时不仅要承受很大的离心载荷、热载荷、气动载荷等,同时还要承受燃气腐蚀、氧化等作用。燃气轮机涡轮叶片疲劳寿命研究对确保热力发电设备的安全、经济运行具有重要意义。 高温疲劳主要研究材料在疲劳和蠕变共同作用下的力学行为。应该指出,“高温”这个概念通常是指使金属点阵中的原子具有较大的热运动能力的温度环境,它因不同的材料而异。一般认为,当合金的工作温度与合金熔点的比值大于0.5时,材料的蠕变现象不可忽略,这时认为零件处于高温工作状态。多轴疲劳是指多向应力或应变作用下的疲劳,也称复合疲劳。 当前,涡轮叶片疲劳寿命预测理论主要基于局部-应力应变的疲劳寿命预测模型,该方法通常采用经典Manson-Coffin方程的Morrow修正公式,同时利用Von-Mises等效应变方法[1]或采用SWT损伤公式[2]。以上方法基本为高温单轴寿命预测方法,经修正和改进后可推广到高温多轴疲劳寿命预测中。然而,直接采用单轴推广过来的疲劳损伤参量来预 收稿日期:2008-10-20;修回日期:2009-04-10 基金项目:国家重点基础研究发展计划—— —973计划(2007CB70770103) 作者简介:彭立强(1983-),男,山东巨野人,硕士研究生,主要从事燃气轮机零部件强度及疲劳寿命研究。34

航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析 【摘要】本文针对实际使用中航空发动机涡轮叶片断裂的故障,从理论上分析造成断裂的机理,分析实际中引起涡轮叶片断裂的原因,并提出预防措施,对飞行安全起到一定的参考价值。 【关键词】航空发动机;涡轮叶片;断裂分析 0 引言 涡轮叶片是航空发动机最主要的结构件之一,由于其长期工作在高温燃气包围下,承受转子高速旋转时叶片自身的离心力、气动力、热应力以及振动负荷,是发动机中工作条件最为恶劣的零件。 在实际的使用过程中,由于各种原因,涡轮叶片可能发生断裂。当涡轮叶片断裂时,不仅会出现发动机振动进而引起飞机振动,还会打坏其他机件、甚至导致飞机着火等现象,这将严重影响到飞行安全。长期以来,由于涡轮叶片断裂引发的飞行事故在飞行中屡见不鲜。 本文从涡轮叶片的工作条件出发,分析了引起涡轮叶片断裂故障的原因,并举例分析,在此基础上指出预防措施。 1 涡轮叶片故障机理 从理论上看,涡轮叶片断裂的故障机理有疲劳、超应力、蠕变、腐蚀、磨损等。 1.1 疲劳 发动机工作时,由于经常起动、加速、减速、停车以及其他条件的影响,发动机内流扰动、自激振动、流动畸变、转子不平衡、燃气温度分布不均等激励因素的作用,会使涡轮各部件承受复杂的循环载荷作用,使得叶片经受大量弹性应力循环,最终引起高周疲劳、低周疲劳或热疲劳,使得涡轮叶片断裂。其中,高周疲劳是指失效循环数范围在105—107周次的疲劳。低周疲劳是指失效循环数低于104—105周次的疲劳。高周疲劳和低周疲劳都能够引起涡轮叶片断裂,实际使用中,断裂还会来自于高低周复合疲劳[1-3]。热疲劳是来自于涡轮叶片温度的循环变化。涡轮叶片的温度的循环变化来自于燃气温度的变化。 1.2 超应力 涡轮叶片的组成包括叶根、叶身和叶冠。由于其形状的不规则,叶片中存在应力集中部位。尽管在设计中已经采取了一些措施,实际上,超应力仍然是造成涡轮叶片断裂的一个原因。

相关文档