文档库 最新最全的文档下载
当前位置:文档库 › 电压环与电流环设计

电压环与电流环设计

电压环与电流环设计
电压环与电流环设计

控制电路设计

一、电流环的设计

电流环的设计核心是控制主电路上电感电流的平均值,使它处于稳定状态,根据主电路与设计思路得电流控制环的系统框图如下:

IL

其中Vcv 为电压环的输出电压(即系统的参考电压),Vs 为锯齿波的幅值,IL 为电感上的电流,K1为采样的放大倍数。设置PI 为单零点—单极点补偿网络。如下图所示:

因为系统的开关频率为100KHZ ,为了避免开关频率对控制环路的影响,穿越频率fci 必须远远小于开关频率,当然为了对系统动态响应的速度,我们希望fci 越大越好,在一般的开关电源中,fci 都小于开关频率的1/10,此处我们设置为开关频率的1/10,即10KHZ 。补偿网络的传递函数为:211111

()R C S G s R C S

+= , 由系统框图可以得系统的开环传递函数为:21211(1)11

()1S R C S G S K R C S V SL

+=

, 式中:Vs=5V ;L=15uH;

K1=1/100; S=jw;代入上式,当fci=10KHz 时,2()G S =1,令补偿零点角频率1211w R C =

在fci/2处,即121

1

w R C ==5KHz ,经计算得11R C =62.710-?,21R C =4210-?,所以

2

1

R R =74,令1R =1K ,得2R =74K ,1C =2.7 nf, 代入得开环传递函数为:

224

5000

()/10

S G S S -+=,经MATLAB 画出BODE 图如下:

从上图可以看出,在(1/2)fci 频率处,开环传递函数的斜率由-40dB 变成-20dB ,可以达到较快的动态响应,由于传递函数以-20dB 的斜率穿越0dB 线,也可以获得足够的相位裕量(64度)。同时由于从0Hz~(1/2)fci 之间,开环传递函数以-40dB 斜率衰减,可以获得很高的静态增益,从而使得静态误差非常的小。根据乃奎斯特环路稳定性判据,系统是稳定的,设计也合理。 二、电压环的设计

在电压环的设计中,电流环可视为控制对象的一个环节,因此先得求取电流控制环的闭环传递函数,由前面的电流控制环的开环传递

函数2245000()/10S G S S -+=

得闭环传递函数为:3

245000

()/105000

S G S S S -+=++,同理MATLAB 得其BODE 图如下:

根据该闭环传递函数的BODE 图,为了便于分析我们用传递函数

44

1

()1/10G S S =

+近邻代替它来处理,4()G S 的BODE 图如下所示:

再根据整个电路,可以得电压环控制系统的构图如下 :

Vo

框图中Vref 为系统给定电压(2.5V ),CA 电流环控制单元,K2为输出电压采样放大倍数,Vo 为输出电压,1/SC 为输出阻抗。PI 调节器采用与电流环结构一样的单极点—单零点补偿网络,如下图所示:

由于在fci 以下,电流环增益为1,相位为0,在电压环的设计中,电流环为单位1,为了使整个系统得到较高的中频带宽,设电压环的穿越频率fcv=1KHz,电压环PI 补偿零点角频率242

1

w R C ==(1/2)fcv,设计方法与电流环的设计一样:

在f

()2R C S G S K R C S SC

+=

, 其中

K2=2.5/12=1/4.8,C=4700uf, S=jw ,当fcv=1KHz 时,5()G jw =1,代入计算得42R C =1/500,32R C =59.9110-?,所以4

3

R R =20,取3R =1K ,4R =20K ,2C =0.1uf,将计算结果代入523500

()/(1.1210)

S G S S -+=

?,得BODE 图如下:

由此得出的结果与电流环控制环类似,系统是稳定的。

当f>fci 时,把整个电流环加入系统中,得整个电压环的开环传递函数为:

6234

5001

()/(1.1210)1/10S G S S S -+=

?+,得到BODE 图如下:

由整个BODE 图可知,系统在0—500Hz 时以-40dB 斜率下降,具有较高的静态

增益,从而使得静态误差非常的小,在(1/2)fcv(500Hz)频率处,开环传递函数的斜率由-40dB 变成-20dB ,并以-20dB 的斜率穿越0dB 线,可以获得足够的相位裕量58度。当f>fci 时,开环传递函数的以-40dB 斜率下降,从而系统有较大的抗干扰能力。

双闭环V-M调速系统中主电路,电流调节器及转速调节器的设计

中北大学 电力拖动自动控制系统课程设计说明书 学生姓名:学号: 学院:信息与通信工程学院 专业:自动化 题目:双闭环V-M调速系统中主电路, 电流调节器及转速调节器的设计 指导教师: 2011年8月25日

中北大学 电力拖动自动控制系统课程设计任务书 11/12 学年第一学期 学院:信息与通信工程学院 专业:自动化 学生姓名:学号: 课程设计题目:双闭环V-M调速系统中主电路, 电流调节器及转速调节器的设计 起迄日期:8月22 日~8月26日 课程设计地点:中北大学 指导教师: 下达任务书日期: 2011年08月22日 课程设计任务书

一、 设计题目: 双闭环V-M 调速系统中主电路,电流调节器及转速调节器的设计。 二、 已知条件及控制对象的基本参数: (1)已知电动机参数为:nom p =3kW ,nom U =220V ,nom I =17.5A ,nom n =1500r/min ,电枢绕组电阻a R =1.25Ω,2GD =3.532N m 。采用 三相全控桥式电路,整流装置内阻rec R =1.3Ω。平波电抗器电阻L R =0.3Ω。整流回路总电感L=200mH 。 (2)这里暂不考虑稳定性问题,设ASR 和ACR 均采用PI 调 节器,ASR 限幅输出im U * =-8V ,ACR 限幅输出ctm U =8V ,最大给定nm U *=10V ,调速范围D=20,静差率s=10%,堵转电流 dbl I =2.1 nom I ,临界截止电流 dcr I =2nom I 。 (3)设计指标:电流超调量δi %≤5%,空载起动到额定转速时的转速超调量δn ≤10%, 空载起动到额定转速的过渡过程时间 t s ≤0.5。 三、 设计要求 (1)用工程设计方法和[西门子调节器最佳整定法]* 进行设计,决定ASR 和ACR 结构并选择参数。 (2)对上述两种设计方法进行分析比较。 (3)设计过程中应画出双闭环调速系统的电路原理图及动态结构图

锁相环电路设计

锁相环的原理 2007-01-23 00:24 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的 输入信号与部的振荡信号同步,利用锁相环 路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为: (8-4-1) (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压u D为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。即u C(t)为: (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:

电流调节器设计举例

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电得双闭环直流调速系统,整流装置采用三相桥式电路,基本 数据如下: 直流电动机: 220V、136A、 1460r /min, Ce=0、132V﹒min/r,允许过载倍数λ=1、5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0、5 时间常数 电流反馈系数β=0、062V/A(β≈10V/1.5I N) 试按工程方法设计电流调节器,设计要求如下 要求稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统结构图如下

双闭环直流调速系统电流环得设计 1.确定时间常数 (1)整流装置滞后时间常数Ts 。 -I dL U d0 U n + - - + - U i ACR 1/R T l s+1 R T m s U *i U c K s T s s+1 I d 1 C e + E β T 0i s+1 1 T 0i s+1 ASR 1 T 0n s+1 α T 0n s+1 U *n n

三相桥式电路得平均失控时间Ts=0、0017s。 (2)电流滤波时间常数 三相桥式电路每个波头得时间就是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因此取=2ms=0、002s。 (3)电流环小时间常数;按小时间常数近似处理,取=0、0037s。 2.选择电流调节器结构 根据设计要求:5%,而且 因此可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选择电流调节器参数 ACR超前时间常数:== 0、03s。 电流环开环增益:要求5%时,应取

=0、5因此 于就是,ACR得比例系数为 4.校验近似条件 电流环截止频率s-1 (1)晶闸管装置传递函数近似条件 ﹤ 现在 = s-1> 满足近似条件 (2)忽略反电动势对电流环影响得条件:; 现在, = 满足近似条件。 (3)小时间常数近似处理条件: =

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

锁相环电路

手机射频部分的关键电路----锁相环电路 锁相坏电路是一种用来消除频率误差为目的反馈控制电路,目前市场销售的手机基本上都是采用这种电路来控制射频电路中的压控振荡器。使其输出准确稳定的振荡频率。如锁相坏(PLL)电路出现故障将导致本振的频率输出不准确,则导致手机无信号。 目前通信终端设备中对频率的稳定采用的是频率合成CSYN技术。频率合成的基本方法有三种:第一种直接频率合成;第二种锁相频率合成(PLL);第三种直接数字频率合成(DDS)。由于锁相频率合成技术在电路设计方面(简单),成本方面控制灵敏度方面,频谱纯净度方面等。都要胜于直接频率合成,与直接数字频率合成。所以被移动通信终端设备广范采用。它在手机电路中的作用是控制压控振荡器输出的频率,相位与基准信号的频率,相位保持同步。 锁相坏电路的构成与工作原理: 1、构成:它是由鉴相器(PD)低通滤波器(LPF) 压控振荡器(VCO)三部分组成。 鉴相器:它是一个相位比较器。基准频率信号和压控振荡器输出的取样频率在其内部 进行相位比较,输出误差电压。 低通滤波器:是将鉴相器输出的锁相电压进行滤波,滤除电流中的干扰和高频成分。得到一个纯净的直流控制电压。 压控振荡器:产生手机所要的某一高频频率。 (注:SYNEN、SYNCLK、SYNDATA来自CPU控制分频器,对本振信号进行N次分频)。 当VCO产生手机所须的某一高频频率。一路去混频管,另一路反馈给锁相环,中的分频器进行N次分频。在这里为什么要进行N次分频呢?首先要说明一下基准频率与VCO振荡取样频率在鉴相要满足3个条件。 ①频率相同。②幅度相同。③相位不同。为了满足鉴相条件,所以在电路中设置了分 频器。VCO振荡频率取样信号送入分频器完成N次分频后,得到一个与基准频率相位不同,但频率

电流调节器设计举例样本

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 直流电动机: 220V、136A、1460r/min,Ce=0.132V﹒min/r,容许过载倍数λ=1.5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0.5 时间常数 电流反馈系数β=0.062V/A(β≈10V/1.5I N) 试按工程办法设计电流调节器,设计规定如下 规定稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统构造图如下

双闭环直流调速系统电流环设计 1.拟定期间常数 (1)整流装置滞后时间常数Ts 。 三相桥式电路平均失控时间 T s =0.0017s 。 -I dL U U + - - + - U ACR 1/R T s+1 R T s U * U K T s+1 I 1 + E β T s+1 1 T s+1 ASR 1 T s+1 α T s+1 U * n

(2)电流滤波时间常数 三相桥式电路每个波头时间是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因而取=2ms=0.002s。 (3)电流环小时间常数;按小时间常数近似解决,取=0.0037s。2.选取电流调节器构造 依照设计规定:5%,并且 因而可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选取电流调节器参数

ACR超前时间常数:== 0.03s。电流环开环增益:规定5%时,应取=0.5因而 于是,ACR比例系数为 4.校验近似条件 电流环截止频率s-1(1)晶闸管装置传递函数近似条件﹤ 当前= s-1> 满足近似条件

双闭环直流调速系统调节器设计教材

课程设计任务书 信息工程与自动化学院学院自动化专业10 年级 学生姓名:_11 _______ 课程设计题目:______ 双闭环直流调速系统调节器设计_________ 课程设计主要内容: 根据要求完成调节器的计算与工程设计,实现1、稳态:无静差;2、动态指标:电流超调<5%;转速超调<10%;、振荡次数N<2次。并绘制相关电路原理图。 电机参数及指标要求: 设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路, 电动机参数:U N=220V, P N=500Kw,l dN=760A,n N=375r/min,Ce=1.82V.min/r, 过载倍数入=1.5,整流装置放大系数Ks= 75,电枢回路总电阻R= 0.14 欧,时间常数TI=0.031s,Tm=0.112s,电流反馈滤波时间常数Toi=0.002s, 转速反馈滤波时间常数Ton二0.02s,要求实现稳态无静差,电流超调量。 i %< 5%,空载起动到额定转速时的转速超调量(T n%w 10%,取转速调节器和电流调节器的饱和值为12V,输出限幅值为10V,额定转速时转速给定 Un*10V。 设计指导教师(签字):张寿明

教学基层组织负责人(签字):__________________________ 2013年12月10日摘要:双闭环直流调速控制系统有较好性能,因而得到广泛应用。在实 际应用中,选定电动机后,其参数是不可变的,只能通过改变双闭环直流调速系统内环电流调节器和外环的转速调节器的参数来提高整个系统的性能。建立系统的数学模型,分别按 二阶最佳和三阶最佳设计方案,采用PI 控制算法,对电流调节器和转速调节器进行设计,对所建立的模型在Matlab6 .5的环境下进行仿真,试验证明此设计是可行的。: 关键 字: 双闭环;直流调速系统;调节器 注:本系统设计由课本P95习题及运控大作业提供数据及初步模型

几个常用的电压电流转换电路

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

锁相环应用电路仿真

高频电子线路实训报告锁相环路仿真设计 专业 学生姓名 学号 2015 年 6 月24日

锁相环应用电路仿真 锁相环是一种自动相位控制系统,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环及其应用电路是“通信电子电路”课程教学中的重点容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真电路引入课堂教学和课后实验。实践证明,这些仿真电路可以帮助学生对相关容的理解,并为进行系统设计工作打下良好的基础。锁相环的应用电路很多,这里介绍锁相环调频、鉴频及锁相接收机的Multisim仿真电路。 1.锁相环的仿真模型 首先在Multisim软件中构造锁相环的仿真模型(图1)。基本的锁相环由鉴相器(PD)、环路滤波器(I P)和压控振荡器(VCO)三个部分组成。图中,鉴相器由模拟乘法器A 实现,压控振荡器为V3,环路滤波器由R1、C1构成。环路滤波器的输出通过R2、R3串联分压后加到 压控振荡器的输入端,直流电源V2用来调整压控振荡器的中心频率。仿真模型中,增加R2、R3及的目的就是为了便于调整压控振荡器的中心频率。 图1 锁相环的仿真模型 2.锁相接收机的仿真电路 直接调频电路的振荡器中心频率稳定度较低,而采用晶体振荡器的调频电路,其调频围又太窄。采用锁相环的调频器可以解决这个矛盾。其结构原理如图2所示。

图2 锁相环调频电路的原理框图 实现锁相调频的条件是调制信号的频谱要处于低通滤波器通带之外,也就是说,锁相环路只对慢变化的频率偏移有响应,使压控振荡器的中心频率锁定在稳定度很高的晶振频率上。而随着输人调制信号的变化,振荡频率可以发生很大偏移。 图3 锁相环调频的仿真电路 根据图2建立的仿真电路如图3所示。图中,设置压控振荡器V1在控制电压为0时,输出频率为0;控制电压为5V时,输出频率为50kHz。这样,实际上就选定了压控振荡器的中心频率为25kHz,为此设定直流电压V3为2.5V。调制电压V4通过电阻Rs接到VCO的输人端,R实际上是作为调制信号源V4的阻,这样可以保证加到VCO输人端的电压是低通滤波器的输出电压和调制电压之和,从而满足了原理图的要求。本电路中,相加功能也可以通过一个加法器来完成,但电路要变得相对复杂一些。 VCO输出波形和输人调制电压的关系如图4所示。由图可见,输出信号频率随着输人信号的变化而变化,从而实现了调频功能。

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

电流环设计

(1)确定时间常数 1)整流装置滞后时间常数s T 。按表2-2,三相桥式电路的平均失控时间s T =0.0017s 。 2)电流滤波时间常数oi T 。三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2)oi T =3.33ms ,因此取oi T =2ms=0.002s 。 3)电流环小时间常数之和i T ∑。按小时间常数近似出黎,取∑i T =s T +oi T =0.0037s 。 (2)选择电流调节器结构 根据设计要求i σ≤5%,并保证稳态电流误差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数见式(3-48)。 检查对电源电压的抗扰性能:i l T T ∑≈0.0037 0.03≈8.11,参看表3-2的典型Ⅰ型系统动态抗扰性能,各项指标都是可以接受的。 (3)计算电流调节器参数 电流调节器超前时间常数:s T l 03.0i ==τ。 电流环开环增益:要求i σ≤5%是,按表3-1,应取i I T K ∑=0.5,因此 1-i I 135.10.0037 0.5T 0.5K s ≈== ∑ 于是,ACR 的比例系数为 1.5350.044 360.60.03135.1K R K K s i I i ≈???== βτ (4)校验近似条件 电流环截止频率:-1I ci 135.1s K ==ω 1)校验晶闸管整流装置传递函数的近似条件 ci ω>≈?=1-1-s 196.1s s 0.0017313T 1 满足近似条件 2)校验忽略反电动势变化对电流环动态影像的条件 ci l m s s T ω<≈??=--1136.9203 .022.013T 13 满足近似条件

电流-电压变换电路.

电流/电压转换电路 一.实验目的 掌握工业控制中标准电流信号转换成电压信号的电流/电压变换器的设计与调试。二.实验原理 在工业控制中各类传感器常输出标准电流信号4~20mA,为此,常要先将其转换成±10V ;的电压信号,以便送给各类设备进行处理。这种转换电路以4mA 为满量程的0%对应-10V ;12mA 为50%对应0V ;20mA 为100%对应+10V。参考电路见图3-20-1所示。 O 图3-20-1 电流/电压变换电路 图中A 1运放采用差动输入,其转换电压用电阻R 1两端接电流环两端,阻值用500Ω,可由二只1K Ω电阻并联实现。这样输入电流4mA 对应电压2V ,输入

电流20mA 对应电压10V 。A 1设计增益为1,对应输出电压为-2V~-10V。故要求电阻R 2,R 3,R 4和R 5+RW 阻值相等。这里选R 2=R3=R4=10KΩ;选R 5=9.1K?,R W1=2KΩ。R w1是用于调整由于电阻元件不对称造成的误差,使输出电压对应在-2V~-10V。变化范围为-2-(-10)=8V. 而最终输出应为-10V~+10V,变化范围10V-(-10V=20V,故A 2级增益为20V/8V=2.5倍,又输入电流为12mA 时,A 1输出电压为-12mA×0.5mA=-6V. 此时要求A 2输出为0V 。故在A 2反相输入端加入一个+6V的直流电压,使 A2输出为0。A 2运放采用反相加法器,增益为2.5倍。取R 6=R7=10K?,R 9=22K?,R W2=5K?,R 8=R6//R7//R9=4K?,取标称值R 8=3.9K?。 反相加法器引入电压为6V ,通过稳压管经电阻分压取得。稳压管可选稳定电压介于6~8V间的系列。这里取6V2,稳定电压为6.2V 。工作电流定在5mA 左右。电位器电流控制在1~2mA左右。这里I RW3=6.2V/2K=3.1mA。则有(12V-VZ )/R10=IZ +IRW3 故 R 10= 12V V Z 126. 2 ==0. 71K ? I Z +I RW 35+3. 1 取标称值R 10=750?. 式中12V 为电路工作电压。 R W2用于设置改变增益或变换的斜率(4mA为-10V ,20mA 为+10,通过调整R W2使变换电路输出满足设计要求。三.设计任务 1.预习要求 熟悉有关运放的各类应用电路,按设计要求写出设计过程和调试过程及步骤。2.设计要求

PLL(锁相环)电路原理及设计 [收藏]

PLL(锁相环)电路原理及设计[收藏] PLL(锁相环)电路原理及设计 在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。 一PLL(锁相环)电路的基本构成 PLL(锁相环)电路的概要 图1所示的为PLL(锁相环)电路的基本方块图。此所使用的基准信号为稳定度很高的晶体振荡电路信号。 此一电路的中心为相位此较器。相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。 (将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。) 利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。 PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。 只要是基准频率的整数倍,便可以得到各种频率的输出。 从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。在此,假设基准振荡器的频率为fr,VCO的频率为fo。 在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。此时的相位比较器的输出PD 会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。相反地,如果frlt;fo时,会产生负脉波信号。

电压调节器设计

基于PWM控制的交流发电机电压调节器 摘要:本文介绍了基于SG3525 PWM控制器的交流发电机电压调节器的硬件电 路。较为详细地分析了通过检测交流发电机的输出平均电压来改变输出PWM波 的占空比,进而控制电机励磁绕组产生合适的励磁电流来使输出电压稳定于规定 的水平。 关键词:电压调节器;PWM Alternator voltage regulator based on the PWM Controller Abstracts:This article introduces the design of hardware of the alternator voltage regulator system based on the SG3525 PWM controller for synchronous machines. Detailed analysis of how to change the average duty cycle of the PWM wave by detecting the average output voltage of the alternator, and thus control the motor field winding to generating the appropriate excitation current,so that the output voltage is stabilized at the required level. Key words: Voltage regulator; PWM 前言: 电压调节电路是航空发电机Array的重要组成部分。其基本组成有 电压检测、比较、放大与执行和 控制几个环节,如图1所示。本 文的交流发电机调压系统是以 SG3525芯片为核心的。交流发电 机的输出平均电压经电压采样电 路反馈到SG3525的1脚,即误差 放大器的反相端。当输出电压有 波动时,误差放大器会放大误差, 后续电路将会自动调节其输出 图1 电压调节器方块图 PWM波的占空比,进而使功率驱 动电路的输出波形的导通时间改变,从而调节了发电机的励磁电流,使其输出电压回复为正常值。 1 输出电压检测电路 本调节器输出电压的检测采用 平均电压检测,如图2所示。电压 Ud由三相电压经变压整流后取得, 其平均值取决于三个线电压的大 小。 图2 平均电压检测电路

PMSM电流环速度环位置环设计与实现中的心得体会

一:电流环参数的调节 1:PMSM传动控制系统中,电机运行速度范围很宽,电流频率范围从零到上百赫兹,要在这么宽的频率范围内准确地检测电机电流,常选用霍尔元件实现电机电流的检测。 霍尔检测方法优点:动态响应好,信号传输线性及频带范围宽等优点。 为保证电机对称运行,电流三相各反馈信道的反馈系数必须相等,这就要精心选择调理电路组件,仔细调整反馈回路参数。信号调理电路使用模拟放大器时,放大器的零漂是影响电机低速运行性能的主要因素,要仔细调整放大器,将零点漂移控制在10mv以内。 2:PMSM调速系统需要电机有很宽的调速范围,达到10^4:1以上,要在这么宽的速度范围内检测出电机的速度,以实现调速系统的控制确实是个很重要的问题。尽管T法在低速时有很好的测速精度,但研究调速系统控制的论文极少见使用(T或M/T)法测速的,基本上都是采用M法测速。实际上,当电机处于极低转速时,电机能否稳定运行不仅仅取决于位置传感器及其所送来的脉冲信号,还有速度调节器的作用,以及电流环与电机转子惯性环节的影响,所以,M法仍可用于低速范围内电机速度的检测与反馈。 3:电流调节器参数对电流环的动态响应具有决定性影响。 电流调节器比例系数越大,电流阶跃跟踪响应速度越快,响应的超调越大,振荡次数越多。电流调节器的积分系数越大,电流阶跃跟踪响应的稳态误差越小,但太大会引起电流环振荡。 PMSM调速控制系统的电流环控制对象为PWM逆变器、电机电枢绕组、电流检测环节组成。在实际系统运行过程中,电流环的相应受电机反电势的影响,电流环动态响应不好,为提高永磁同步电机调速系统电流环动态响应性能,抑制反电动势对电流环的影响,在实际系统电流调节器制作时,比例和积分系数均做了调整,增大比例系数,减小积分时间常数。 电流环响应若不加微分负反馈环节,电流环动态响应将会出现振荡与超调。然而实际应用中,通常不加微分反馈环节,因为微分极易引起系统的振荡。而且按照电流环I型系统的校正原则,采用PI控制才能实现电流环系统的稳定性和高动态响应。 二、速度环参数的调节 采用II型系统设计的速度环,实际应用中,在速度阶跃过程中,速度调节器会出现饱和,系统的实际运行情况和设计时所采用的线性对象具有很大的差别,调节器设计时的初始条件和实际系统退饱和后调节器参与调节时的初始条件有很大差别。因此按照II型系统设计的速度环需要作很大的调整才能满足实际系统的需要。但该设计方法关于调节器的形式选择仍然适用。 从自动控制原理可知,调速控制系统的速度超调是使用PI调节器并要求有快速响应的必然结果,原因是速度调节器要退出饱和,参与调解。 随着速度调节器输出限幅的增加,速度响应加快,到达指定速度时的振荡程度增加。输出限幅数值决定电机在动态过程中加速力矩的大小,影响电机在加减速过程中的加速度,影响调速系统的速度响应过程。输出限幅值要合理设置,应该充分利用电机的过载能力,以提高调速控制系统的速度响应性能。同时,在调速控制系统中可设置速度微分负反馈(肖老师建议速度环一般不要加前馈),可以

电压频率与频率电压转换电路

电压频率与频率电压 转换电路 2011年8月24日

目录: 摘要: (2) Abstract: (2) 一、设计方案 (3) (一)、电压频率转换电路 (3) 1.基于555定时器的电压频率转换: (3) 2.基于LM331的电压频率转换: (4) (二)、频率电压转换电路 (5) 1.基于LM2907的频率电压转换: (5) 2.基于LM331的频率电压转换 (5) 二、主体电路设计 (8) 三、电路安装 (9) (一)、电压频率转换电路 (9) (二)、频率电压转换电路 (10) 四、系统调试: (10) (一)VFC: (10) (二)FVC: (11) 1

摘要: 本系统利用了LM331的原理及性能设计了频率电压以及电压频率转换电路,实现了0Hz--10kHz频率与0—10V电压的相互转换,电路简单,转换结果线性度好。 关键字:LM331 频率电压转换滤波 Abstract: The system uses the principle and characteristic of LM331 to design the frequency-to-voltage and the voltage-to- frequency conversion circuits, realizes the frequency of 0Hz--10kHz and the voltage of 0 - 10V’s transformation , the circuits are simple and result have good linearity. Key-word: LM331 frequency voltage transformation filter 2

《电力拖动自动控制系统》-第二章转速、电流双闭环直流调速系统和调节器的工程设计方法

第二章转速、电流双闭环直流调速系统和调节器 的工程设计方法 内容提要: 转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。我们将重点学习: ●转速、电流双闭环直流调速系统及其静特性 ●双闭环直流调速系统的数学模型和动态性能分析 ●调节器的工程设计方法 ●按工程设计方法设计双闭环系统的调节器 ●弱磁控制的直流调速系统 2.1 转速、电流双闭环直流调速系统及其静特性 问题的提出: 第1章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。 1. 主要原因 是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。 2.理想的启动过程 a) 带电流截止负反馈的单闭环调速系统 b) 理想的快速起动过程 2-1 直 流调速系统起动过程的电流和转速波形 性能比较: 带电流截止负反馈的单闭环直流调速系统起动过程如图所示,起动电流达到最大值Idm 后,受电流负反馈的作用降低下来,电机的电磁转矩也随之减小,加速过程延长。理想起动过程波形如图所示,这时,起动电流呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。 3. 解决思路 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用

双环反馈控制的SPWM逆变电源中电流环的设计(精)

双环反馈控制的 SPWM 逆变电源中电流环的设计 陈元娣,朱忠尼,林 洁 (空军雷达学院电子对抗系, 武汉 430019 摘要:针对目前电流环的设计方法不明确的问题, 通过建立 DC/AC系统的动态模型并对该模型进行理 论上的推导和分析得出了电流环的设计方法. 该方法在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器, 将使系统的稳定性更好, 参数调整比较方便, 能满足一定的带宽和动态特性. 通过仿真实验验证了理论推导的正确性. 关键词:逆变器 ; 双环反馈 ; 电流环中图分类号:TM464 文献标识码:A 近年来, SPWM 正弦波逆变器的反馈控制技术发生 2个较大变化, ①单环控制变为多环控制, ②有效值恒定反馈变为“瞬时” 值反馈, 目的是为了提高系统的动态响应速度和改善并控制在任意负载, 特别是非线性负载下的输出波形 . 对于双环 系统, 一般采取电压外环, 电流内环的设计. 电压环的作用是跟踪和稳定输出电压,它的设计大多采取 PI 调节器模式. 电流环的作用是使逆变器的动态响应加快, 负载适应能力加强, 并具有输出电流限制能力, 可提高系统的可靠性, 因此, 电流环的设计是双环反馈控制的关键技术之一.对于电流环的设计, 常见有 P 和 PI 2种设计方法 , 在实际应用中到底选哪种方法合适,目前还没有成熟的结论. 本文通过建立 DC/AC系统的动态模型, 对该模型进行理论上的简化和特性分析.理论分析表

明:在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器; 当系统参数基本明确或系统的惯性较小 (如大功率逆变器情况下, 可以考虑采取 P 调节器, 可以降低系统的调节难度, 提高系统的响应速度.通过对实际系统的仿真验证了本文结论的正确性. 1系统动态模型的简化设计原则 图 1是 SPWM 正弦波逆变器的功率电路原理 框图. 图 2是其等效模型, 图中 T 1=L /r 为滤波器电感的时间常数, r 为滤波电感直流电阻, T 为电压检测电路 的延迟时间常数, LT 为电流环, SPWM 控制器加逆 变器的等效模型为 G 1= K PWM U ab s Ls +r s s

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

电流环调节器设计过程

电流环PID 调节器设计大致流程 以下设计过程主要参考文献[1],首先给出永磁同步电机参数表如下: 电机的反电势会使电流输出与给定存在偏差,但低速时反电势较小,可通过调节器的控制消除, 因此设计时可忽略不计。电流环传函结构图如图1所示,其中,v K 是逆变器电压放大倍数,表示逆变器直流侧电压与三角载波电压幅值之比,v τ是逆变器时间常数,与开关频率有关,s R 是电枢绕组电阻,q L 是交轴电感,β 是反馈系数, oi T 是反馈滤波时间常 数,ACR G 是电流调节器传递函数。 图1 未加校正时的电流环开环传函如下: (1)()(1)v iob v q s oi K G S L S R T S βτ= +++ (1) 式中: v τ、oi T 是小时间常数, 因此可将控制对象等效: ()[()1] v iob q s v oi K G L S R T S βτ=+++ (2) 电流调节器可选用 PI 调节器进行设计: 1p i ACR i K K S G K S += (3) 用 PI 调节器的零点来抵消控制对象的大时间常数极点, 如下: 11q p i s L K K S S R += + (4) 得到电流环的开环传递函数: [()1]*v ik i oi v s K G K S T S R βτ=++ (5) 系统要求电流环具有较快的响应速度, 同时超调又不可过大, 因此令: ()0.5v oi v i s K T K R βτ+= (6)

设定逆变器开关频率为f=18kHz ,于是逆变器时间常数155.6v us f τ==,将15.5dc v s U K U ==、0.6β=、 0.11ms oi T =和表1的电机参数代入到式(4)、式(6)中,得 6.5p K =,0.0022i K =。 加入 PI 调节器之前的系统开环幅相频率特性曲线如图2 所示, 系统明显不稳定; 加入 PI 调节器后得到的系统开环的幅相频率特性曲线如图 3 所示, 可见所设计的电流环是稳定的, 且有 45°左右的相角裕度。 图2 原系统幅相频率特性曲线 图3 补偿后电流环幅相频率特性曲线 参考文献: [1]刘军,敖然,韩海云,秦海鹏,朱德明.永磁同步电动机伺服系统电流环优化设计[J ]. 微特电机,2012,40(6):17-20. [2]熊小娟,韩亚荣,邱鑫.永磁同步电机伺服系统电流环设计及性能分析[J ]. 科技传播,2010,5(上):62-63. [3]陈荣,邓智泉,严仰光.永磁同步服系统电流环的设计[J ]. 南京航空航天大学学报,2004,36(2):220-225.

电压环与电流环设计

控制电路设计 一、电流环的设计 电流环的设计核心是控制主电路上电感电流的平均值,使它处于稳定状态,根据主电路与设计思路得电流控制环的系统框图如下: IL 其中Vcv 为电压环的输出电压(即系统的参考电压),Vs 为锯齿波的幅值,IL 为电感上的电流,K1为采样的放大倍数。设置PI 为单零点—单极点补偿网络。如下图所示: 因为系统的开关频率为100KHZ ,为了避免开关频率对控制环路的影响,穿越频率fci 必须远远小于开关频率,当然为了对系统动态响应的速度,我们希望fci 越大越好,在一般的开关电源中,fci 都小于开关频率的1/10,此处我们设置为开关频率的1/10,即10KHZ 。补偿网络的传递函数为:211111 ()R C S G s R C S += , 由系统框图可以得系统的开环传递函数为:21211(1)11 ()1S R C S G S K R C S V SL += , 式中:Vs=5V ;L=15uH;

K1=1/100; S=jw;代入上式,当fci=10KHz 时,2()G S =1,令补偿零点角频率1211w R C = 在fci/2处,即121 1 w R C ==5KHz ,经计算得11R C =62.710-?,21R C =4210-?,所以 2 1 R R =74,令1R =1K ,得2R =74K ,1C =2.7 nf, 代入得开环传递函数为: 224 5000 ()/10 S G S S -+=,经MATLAB 画出BODE 图如下: 从上图可以看出,在(1/2)fci 频率处,开环传递函数的斜率由-40dB 变成-20dB ,可以达到较快的动态响应,由于传递函数以-20dB 的斜率穿越0dB 线,也可以获得足够的相位裕量(64度)。同时由于从0Hz~(1/2)fci 之间,开环传递函数以-40dB 斜率衰减,可以获得很高的静态增益,从而使得静态误差非常的小。根据乃奎斯特环路稳定性判据,系统是稳定的,设计也合理。 二、电压环的设计 在电压环的设计中,电流环可视为控制对象的一个环节,因此先得求取电流控制环的闭环传递函数,由前面的电流控制环的开环传递

相关文档
相关文档 最新文档