文档库 最新最全的文档下载
当前位置:文档库 › 数列求前n项和方法总结

数列求前n项和方法总结

数列求前n项和方法总结
数列求前n项和方法总结

教学内容

一、本周错题讲解

二、知识点梳理

求数列前n 项和的常用方法总结

(1)公式法:

等差数列求和公式:d n n na a a n S n n 2

)1(2)(11-+=+= 等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q

q a q na S n n n 自然数方幂和公式:

)1(211+==∑=n n k S n

k n )12)(1(6112++==∑=n n n k S n k n 213)]1(21[+==∑=n n k S n k n (2)分组化归法:将数列的每一项拆成多项,然后重新分组,将一般数列求和问题转化为特殊数列求和问题。运用这种方法的关键是将通项变形。

(3)并项转化法:在数列求和过程中,将某些项分组合并后转化为特殊数列再求和。利用该法时要注意有时要对所分项数是奇数还是偶数进行讨论。

(4)倒序相加法:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

(5)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

(6)裂项相消法:实质是将数列中的每项拆成两项或多项,然后重新组合,使之能消去一些项,最终达到求和的目的.常见的裂项方法:

(1)()1111n n k k n n k ??=- ?++??

, 特别地当1k =时,()11111n n n n =-++

(2)()11n k n k n k n =+-++ 特别地当1k =时111n n n n

=+-++ 三、典型例题

例1求数列 16

14,813,412,211的前n 项和; 分析:数列的通项公式为n n n a 21+

=,而数列{}??????n n 21,分别是等差数列、等比数列,求和时一般用分组化归法;

[解析] :因为n n n a 2

1+=,所以 )2

1()813()412()211(n n n s ++++++++= )2

1814121()321(n n +++++++++= (分组) 前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此

12122

11)211(212)1(2+-+=--++=n n n n n n 例2、求和2222222210099...654321-++-+-+-=n S

[解析] :(12)(12)(34)(34)(56)(56)...(99100)(99100)

100(1100)(1234...100)50502n S =+-++-++-+++-?+=-+++++=-=-

例3、已知函数()222

x

x f x =+ (1)证明:()()11f x f x +-=;

(2)求128910101010f f f f ????????++++ ? ? ? ?????????

的值. 解析:(1)先利用指数的相关性质对函数化简,后证明左边=右边

(2)利用第(1)小题已经证明的结论可知,

1928551101010101010f f f f f f ????????????+=+==+= ? ? ? ? ? ?????????????

128910101010S f f f f ????????=++++ ? ? ? ???

?????? 令 982110101010S f f f f ????????=++++ ? ? ? ?????????

则 两式相加得:

192991010S f f ??????=?+= ? ? ???????

所以92S =. 小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.

例4求和:132)12(7531--+???++++=n n x n x x x S (1≠x )………………………①

解析:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减)

再利用等比数列的求和公式得:n n n x n x

x x S x )12(1121)1(1

----?+=-- ∴ 21)

1()1()12()12(x x x n x n S n n n -+++--=+ 例5求数列???++???++,11,,3

21

,211

n n 的前n 项和. 解:设n n n n a n -+=++=11

1 (裂项) 则 11

321

211+++???++++=n n S n (裂项求和)

=)1()23()12(n n -++???+-+-

=11-+n

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。余下的项具有如下的特点:余下的项前后的位置前后是对称的;余下的项前后的正负性是相反的。

四、课堂练习

1、在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

2、求和:()()()()123235435635235n n S n ----=-?+-?+-?++-?

解:()()()()123235435635235n n S n ----=-?+-?+-?++-?

()()123246235555n n ----=++++-++++

()2111553113114515n n n n n n ????-?? ???????????=+-?=+--?? ???????

- 3、求值:2222

22222222123101102938101

S =++++++++

4、求数列

, (8)

41,631,421,2112222++++的前n 项和

5、已知 12n n a n -=?,求数列{a n }的前n 项和S n .

五、课后作业

1、求数列]2

1)12[(...,815,413,211n n +-,的前n 项和

2、在数列{a n }中,11211++???++++=

n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

3、数列{}n a 的前n 项和为n S ,)(2,111*+∈==N n S a a n n

(1)求数列{}n a 的通项;

(2)求数列{}n a n 的前n 项和n T

求数列前N项和的七种方法含例题和答案

求数列前N 项和的七种方法 点拨: 核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 1. 公式法 等差数列前n 项和: 11()(1) 22 n n n a a n n S na d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(611 2 ++==∑=n n n k S n k n 3、21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利 用常用公式)

=x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 1++=+n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 n n 8= ,即n =8时,501)(max =n f 2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的 通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和.

几种求数列前n项和的方法

几种求数列前n 项和的常用方法 1、公式法: 如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()()11122 n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q q q ?=?=-?-=≠?--? 常见的数列的前n 项和:, 1+3+5+……+(2n-1)= ,等. 2、倒序相加法: 类似于等差数列的前n 项和的公式的推导方法。如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法. 例、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值. 解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. …. …. …. ① 将①式右边反序得:οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S ……② 又因为sin cos(90)x x =-o ,22sin cos 1x x +=,①+②得 : 2222222(sin 1cos 1)(sin 2cos 2)(sin 89cos 89)S =++++???++o o o o o o =89 ∴ S = 小结:倒序相加法,适用于倒序相加后产生相同的结果,方便求和. 3、错位相减法: 类似于等比数列的前n 项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 例、求和:()2112301n n S x x nx x x -=++++≠≠L ,(课本61页习题组4) 解:设S n =1+2x+3x 2+…+(n-1)x n-2+nx n -1 , ① 则:x S n = x +2 x 2+…+(n-1) x n-1 + n x n ②

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

数列前n项和的求和公式

For personal use only in study and research; not for commercial use 数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:????? ≠--=--==) 1(11)1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++== ∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

求数列前n项和的七种方法

求数列前N 项和的七种方法 1. 公式法 等差数列前n 项和: 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(61 1 2++==∑=n n n k S n k n 3、21 3)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++= n n S n S n f 的最大值.

解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 11++=+n n S n (利 用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64 341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设 n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ① - ② 得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相 减) 再利用等比数列的求和公式得:

求数列前N项和的常用方法

求数列前n项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

数列通项公式和前n项和求解方法

数列通项公式的求法详解 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2)K ,1716 4,1093 ,542,21 1(3) K ,52,21,32 ,1(4)K ,5 4 ,43,32,21-- 答案:(1)110-=n n a (2);1 22++=n n n a n (3);12+=n a n (4)1)1(1+? -=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

求数列前n项和的几种常用方法

2 2 2 3 求数列前n 项和的几种常用方法 江苏省 马吉超 公式法 如果数列是等差或等比数列,可直接利用前n 项求和公式,这是 的条件。 二、分组转化法 差构成,可以把原数列的求和分组转化为等差、等比或特殊数列的求 和。 求S n 1 解: S n 1 2 n n 1 n n -- d 2 2 2 1 n 2 最基本的方法。但应注意等比数列前 N 项求和公式 a 1 S n 解:①当x 1时, S n ②当x 1时, S n X 1 X 1 X 如果所给数列的每一项是由等差 等比或特殊数列对应项的和或 解: S n

1 n 2 2 2s n 2C n 1 2 C n n n 2 C n 2(c n 1 C n 三、倒序相加法 如果求和数列的首末两项的和及与首末两项等距离的两项的和 相 等,可用此法。(等差数列求和公式可用此法推导) 求所有大于2且小于10的分母为5的既约分数的和。 ⑴+⑵得 2s 12 32 384 s 192 ⑴+⑵得 1 n 一 一 n 1 2n 2 6 1 n n 1 1 --------- 2 2 解: 11 亏 49 5 12 ~5 48 5 13 ~5 47 5 47 "5 13 5 48 ~5 12 5 49 "5 11 5 解: 0 s C n m C n C n 2 C n C n 1 2C n 3c n n n 1 1 C n n C n n m C n 2 3C n 1 2 C n n 1 n C n n 0 C n n 1

2 1 四、错位相减法 求和公式可用此法推导) . n 1 2 ①一② S n 故 S n n 12n1 2 五、裂项相消法 分正负项又可以相消,则可用此法。 求9 1 占丘 2 - 21 1 n 2n n 1 形如a n b n 的数列,其中a n 是等差数列,b n 是等比数列,则 可在求和等式两边同乘 b n 的公比, 然后两等式错位相减。 (等比数列 例6求S n 1 2 2 2 2 3 S n 2 2 2 2 3 如果求和数列的每一项均能分裂成对应两项的差, 求和时,大部 解: S n 21 丄 21 2 2

数列通项、数列前n项和的求法例题练习

通项公式和前n 项和 一、新课讲授: 求数列前N 项和的方法 1. 公式法 (1)等差数列前n 项和: 11()(1) 22 n n n a a n n S na d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 (2)等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 (3)其他公式较常见公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(611 2 ++==∑=n n n k S n k n 3、21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++=n n S n S n f 的最大值.

2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 练习: 求:S n =1+5x+9x 2+······+(4n -3)x n-1 答案: 当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值

求数列前N项和的方法

求数列前N 项和的方法 1. 公式法 等差数列前n 项和: 11() (1) 2 2 n n n a a n n S n a d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S n a = ( ) 1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(2 11+= = ∑ =n n k S n k n 2、)12)(1(6 11 2 ++= = ∑ =n n n k S n k n 3、21 3 )]1(2 1[+== ∑=n n k S n k n [例1] 已知3 log 1log 2 3 -= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3 log 1log 3 3 2 3 = ?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利 用常用公式) =x x x n --1)1(= 2 11) 211(2 1 - -n =1- n 2 1 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(2 1+= n n S n , )2)(1(2 11++= +n n S n (利 用常用公式) ∴ 1 )32()(++= n n S n S n f = 64 342 ++n n n

最新求数列的前n项和列(教案-例题-习题)

精品文档 四.数列求和的常用方法 1. 公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其 公比与1的关系,必要时需分类讨论. ③常用 公式:1 2 3山 n n 1 ) 12 22 11( n 2 二丄n (n 1)(2n 1), 2 6 13 23 33 川 n 3

求数列前n项和方法

数列求和 1.直接用等差、等比数列的求和公式求和。 d n n na a a n S n n 2)1(2)(11-+=+= ?????≠--==)1(1)1() 1(11q q q a q na S n n 公比含字母时一定要讨论 例:1.已知等差数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 2. 等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 3.已知等比数列}{n a 满足,11=a 32=a ,求前n 项和}{n S 4.设4 7 10 310 ()22222()n f n n N +=+++++∈ ,则()f n 等于( ) A. 2(81)7n - B.12(81)7n +- C.32 (81)7n +- D. 4 2(81)7 n +- 2.错位相减法求和:如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 例:1.求和2 1 123n n S x x nx -=++++ 2.求和:n n a n a a a S ++++= 32321 3.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ?? ???? 的前n 项和n S . 3.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项: 111)1(1+-=+n n n n ) 121 121(21)12)(12(1+--=+-n n n n )211(21)2(1+-=+n n n n ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n !)!1(!n n n n -+=? )!1(1!1)!1(+-=+n n n n i n i n i n C C C 1 11----= 数列{}n a 是等差数列,数列? ?? ???+11n n a a 的前n 项和 例:1.数列{}n a 的前n 项和为n S ,若1 (1) n a n n = +,则5S 等于( B )

求数列的前n项和常用方法

数列求和的常用方法公式法1.:①等差数列求和公式;②等比数列求和公式,; ③常用公式:的关系,必要时需分类讨论.特别声明:运用等比数列求和公式,务必检查其公比与1n(n?1)11222233331)??1)(2??3??n?nn(n?1)1n?2(??nn1?2]?2??3[??n1. ,, 622?1 23n?xlog1例 x?x?x?????x????的前n项和. ,求、已知3log322222a?a?a? ?ann}{a=_____ 2练一练:等比数列-1,则;的前项和S=nn321n 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 111例2、1?1,?4,?7,???,?3n?2,n项和:…求数列的前 12?n aaa n S??1?3?5?7??(?1)(2n?1)练一练:求和:n3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序 n和公式的推导方法)相加法,发挥其共性的作用求和(这也是等差数列前. 22222 3例8988sin?sin?1??sin?2??sinsin3?的值、求 2xf(x)?,练一练:已知21?x111)f()?f()??(1)?f(2)?f(3)f(4)?f(f______则;= 4234.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减n.法(这也是等比数列前和公式的推导方法) 23n?1x)(?2nx??7x1????5S?1?3x?4例、求和:n2462n例5,,,???,,???前n项的和、求数列. n322222{a}T?na?(n?1)a??2a?aT?1T?4{a}的首项和公,①求数列为等比数列,练一练:设,已知,nn?11n2nn21}{T 比;②求数列.;的通项公式n 5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:1)????(;①;② knn?(n?k)k(nn?1)nn?1n11111)?(??③, 221k?12k?1kk?1111111??????; 2k1kk?k?1)k(k?1)kk?1(k1111]?[?④; 2)n?(n?1)(n1)(n?n?2)2n(?1)(n11n??;⑤1)!(n?n(?1)!n!122 1)n??)n????2(n??2(n1 . ⑥ 1?n??nn1nn?1 111、例6?,?,,?,???. 项和的前求数列n12?3?n?n1?2n122?b、7例???????a. n项的和{b,又}的前在数列{a}中,,求数列nn nn a?a1??1nn?1n1?nn练一练:111????;求和:(1)1)n?n?2)4?4?7?(3(311

求数列的前n项和列(教案+例题+习题)

四.数列求和的常用方法 1.公式法:①等差数列求和公式;②等比数列求和公式, 特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2 n n n +++ +=+,222112(1)(21)6 n n n n ++ +=++, 33332 (1)123[ ]2 n n n +++++=. 例1 、已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)21 1(21--n =1-n 21 练一练:等比数列{}n a 的前n 项和S n=2n-1,则2 232221n a a a a ++++ =_____ ; 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一 起,再运用公式法求和. 例2、 求数列的前n 项和:231 ,,71,41, 1112-+???+++-n a a a n ,… 解:设)231 ()71()41()11(12-++???++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1 111(12-+???+++++???+++ =-n a a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n + (分组求和) 当1≠a 时,2)13(1111n n a a S n n -+--==2)13(11n n a a a n -+--- 练一练:求和:1357(1)(21)n n S n =-+-+-+-- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推 导方法). 例3、求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值

求数列前n项和的几种常用方法

求数列前n 项和的几种常用方法 江苏省 马吉超 一、 公式法 如果数列是等差或等比数列,可直接利用前n 项求和公式,这是最基本的方法。但应注意等比数列前N 项求和公式q q a n s n -=? ? ? ?? -111中1 ≠q 的条件。 例1 求x x s n n x +++= 2 解:①当1=x 时,n s n =+++=111 。 ②当1≠x 时,( )x x x s n n --=11。 二、分组转化法 如果所给数列的每一项是由等差、等比或特殊数列对应项的和或差构成,可以把原数列的求和分组转化为等差、等比或特殊数列的求和。 例2 求 ()()()() 2834221n n n s ++++++++= 解:()() 222322321n n n s +++++++++= ()22 121 -++= +n n n 例3 求 ()()()n s n +++++++++++= 321321211 解: ()2 2213212 n n n n n +=+=++++ ∴() ()n n s n +++++++++= 3212121222 23 21

()()()2121121621+?+++?= n n n n n ()()6 21++= n n n 三、倒序相加法 如果求和数列的首末两项的和及与首末两项等距离的两项的和相等,可用此法。(等差数列求和公式可用此法推导) 例4 求所有大于2且小于10的分母为5的既约分数的和。 解:549 548547513512511+ +++++= s ⑴ 又 5 11 512513547548549++++++= s ⑵ ⑴+⑵得 )511549()548512()549511(2++++++= s 3212?= 384= 故 192=s 例5 求()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- 解:()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- ⑴ ()c c c c n n n n n n n n s 0 1 1 21+++++=- ⑵ 又 c c m n n m n -= ⑴+⑵得 ()()()c c c n n n n n n n s 22221 ++++++= ())(21 1 c c c c n n n n n n n +++++=- ()22n n ?+= 故 ()212-+=n n s

求前n项和公式的常用方法

求前n项和公式的常用 方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

求数列 前N 项和的常用方法 核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n 项和 如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n },公差为d ,求证:{a n }的前n 项和S n =n(a 1+a n )/2 解:S n =a 1+a 2+a 3+...+a n ① 倒序得:S n =a n +a n-1+a n-2+…+a 1② ①+②得:2S n =(a 1+a n )+(a 2+a n-1)+(a 3+a n-2)+…+(a n +a 1) 又∵a 1+a n =a 2+a n-1=a 3+a n-2=…=a n +a 1 ∴2S n =n(a 2+a n )S n =n(a 1+a n )/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a 1+a n =a 2+a n-1=a 3+a n-2=…=a n +a 1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n 项和 对等差数列、等比数列,求前n 项和S n 可直接用等差、等比数列的前n 项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列 的前n 项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n 项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和。

求数列前n项和的几种常用方法

求数列前n 项和的几种常用方法 江苏省 马吉超 一、 公式法 如果数列是等差或等比数列,可直接利用前n 项求和公式,这是最基本的方法。但应注意等比数列前N 项求和公式q q a n s n -=?? ? ? ? -111中1 ≠q 的条件。 例1 求x x s n n x +++= 2 解:①当1=x 时,n s n =+++=111 。 ②当1≠x 时,( )x x x s n n --=11。 二、分组转化法 如果所给数列的每一项是由等差、等比或特殊数列对应项的和或差构成,可以把原数列的求和分组转化为等差、等比或特殊数列的求和。 例2 求 ()()()( ) 2834221n n n s ++++++++= 解:()()2223 2 2321n n n s +++++++++= ()22 121 -++= +n n n 例3 求 ()()()n s n +++++++++++= 321321211 解: ()2 2213212 n n n n n +=+=++++ ∴() ()n n s n +++++++++= 3212 121222 2321

()()()2121121621+?+++?=n n n n n ()()6 21++= n n n 三、倒序相加法 如果求和数列的首末两项的和及与首末两项等距离的两项的和相等,可用此法。(等差数列求和公式可用此法推导) 例4 求所有大于2且小于10的分母为5的既约分数的和。 解:549 548547513512511+ +++++= s ⑴ 又 5 11 512513547548549++++++= s ⑵ ⑴+⑵得 )511549()548512()549511(2++++++= s 3212?= 384= 故 192=s 例5 求()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- 解:()c c c c c n n n n n n n n n s 1321 2 1 ++++++=- ⑴ ()c c c c n n n n n n n n s 0 1 1 21+++++=- ⑵ 又 c c m n n m n -= ⑴+⑵得 ()()()c c c n n n n n n n s 22221 ++++++= ())(21 1 c c c c n n n n n n n +++++=- ()22n n ?+=

相关文档
相关文档 最新文档