文档库 最新最全的文档下载
当前位置:文档库 › 中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)
中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性

结论:A C B D

A C

B D

x x x x

y y y y

+=+

?

?

+=+

?

类型二、特殊平行四边形存在性

1. 矩形存在性

常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.

2. 菱形存在性

常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解.

3. 正方形存在性

常用解题思路:兼具矩形和菱形二者.

【例1】(2018·郑州预测卷)如图,直线y=

3

3

4

x

-+与x轴交于点C,与y轴交于点B,抛物线y= 2

3

4

ax x c

++经过B、C两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一个动点,当△BEC的面积最大时,求出点E的坐标和最大值;

(3)在(2)条件下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使以点P、Q、A、M为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

【答案】见解析.

【解析】解:(1)∵直线y =3

34

x -+与x 轴交于点C ,与y 轴交于点B ,

∴B (0,3),C (4,0),

将B (0,3),C (4,0)代入y = 23

4ax x c +

+得: 16303a c c ++=??

=?,解得:383

a c ?

=-

???=?, ∴抛物线的解析式为:233

384

y x x =-++.

(2)过点E 作EF ⊥x 轴于F ,交BC 于M ,

设E (x ,233384x x -++),则M (x ,3

34x -+),

∴ME =233384x x -++-(334x -+)=233

82

x x -+

∴S △BEC =

12

×EM ×OC =2EM

=2(23382

x x -+)

=()2

3234

x -

-+

,

∴当x =2时,△BEC 的面积取最大值3,此时E (2,3).

(3)由题意得:M (2,3

2),抛物线对称轴为:x =1,A (-2,0),

设P (m ,y ),y =233

384

m m -++,Q (1,n )

①当四边形APQM 为平行四边形时,

有:212m -+=+,解得:m =-3, 即P (-3,218

-

); ②当四边形AMPQ 为平行四边形时,

有:-2+m =2+1,即m =5 即P (5, 218

-

); ③当四边形AQMP 为平行四边形时,

有:2-2=1+m ,得:m =-1, 即P (-1,

158

); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-

),(5, 218

-),(-1,158).

【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).

(1)求抛物线的解析式与顶点M 的坐标; (2)求△BCM 的面积与△ABC 面积的比;

(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.

【答案】见解析.

【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:

9303a b c a b c c -+=??

++=??=-?

, 解得:a =1,b =-2,c =-3,

即抛物线的解析式为:y=x2-2x-3,顶点M的坐标为:(1,-4);(2)连接BC,BM,CM,过M作MD⊥x轴于D,如图所示,

S△BCM=S梯形ODMC+S△BDM-S△BOC=3,

S△ACB=6,

∴S△BCM:S△ACB=1:2;

(3)存在.

①当点Q在x轴上方时,过Q作QF⊥x轴于F,如图所示,

∵四边形ACPQ为平行四边形,

∴QP∥AC,QP=AC

∴△PFQ≌△AOC,

∴FQ=OC=3,

∴3=x2﹣2x﹣3,

解得x或x=1,

∴Q,3)或(1,3);

②当点Q在x轴下方时,过Q作QE⊥x轴于E,如图所示,

同理,得:

△PEQ≌△AOC,

∴EQ=OC=3,

∴﹣3=x2﹣2x﹣3,

解得:x=2或x=0(与C点重合,舍去),

∴Q(2,﹣3);

综上所述,点Q的坐标为:,3)或(1,3)或(2,﹣3).

【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.

(1)求抛物线的解析式;

(2)如图2所示,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别交于点F、G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;

(3)点M是(1)中所求抛物线对称轴上一动点,点N是反比例函数y=k

x

图象上一点,若以点B、C、

M、N为动点的四边形是矩形,请直接写出满足条件的k的值.

【答案】见解析.

【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:

5025550a b a b --=??+-=?

,解得:1

4a b =??

=-?, 即抛物线的解析式为:y =x 2-4x -5.

(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5), ∵CE ∥x 轴,则C 、E 关于直线x =2对称, ∴E (4,-5), CE =4,

由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5, 设H (m ,m 2-4m -5), ∵FH ⊥CE , ∴F (m ,m -5),

∴FH = m -5-(m 2-4m -5)= -m 2+5m , S 四边形CHEF =

1

2

·FH ·CE =1

2

(-m 2+5m )×4 =-2(m -52)2+25

2

当m =52时,四边形CHEF 的面积取最大值252,此时H (52,35

4

-).

(3)设M (2,m ),N (n ,

k

n

),B (5,0),C (0,-5), ①当BC 为矩形对角线时,此时:2+n =5+0,m +k

n

=0-5,即n =3,

设BC 与MN 交于点H ,则H (52,52-),MH =1

2

BC =2,

∴2

22

552222m ??

???-++= ? ? ??????

, 解得:m =1或m =-6,

当m =1时,k =-18;m =-6时,k =3, ②当BC 为矩形边时,分两种情况讨论:

(i )当点M 在直线BC 下方时,即四边形BCMN 为矩形,

则∠BCM=90°,2+5=n+0,m=k

n

-5,

过M作MH⊥y轴于H,则由OB=OC知,∠OCB=45°,

∴∠MCH=∠CMH=45°,即CH=MH,

∴-5-m=2,解得:m=-7,n=7,k=-14;

(ii)当点M在直线BC上方时,即四边形BCNM为矩形,

则∠CBM=90°,n+5=2,k

n

=m-5,

设对称轴与x轴交于点H,同理可得:BH=MH,

∴3=m,n=-3,k=6;

综上所述,k的值为:-18,3,-14或6.

【变式2-1】(2019·驻马店二模)如图,抛物线y=-x2+bx+c经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.

(1)求经过A,B,C三点的抛物线的函数表达式.

(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.

(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,

N 为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.

【答案】见解析.

【解析】解:(1)∵抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,

∴10930b c b c --+=??-++=?,解得:23b c =??=?

即抛物线的解析式为:y =-x 2+2x +3.

(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4), 可得直线BD 的解析式为:y =-2x +6,

设P (m ,-2m +6),由勾股定理得:PE 2=()()2

2

126m m -+-+,PC 2=()2

2263m m +-+-, 由PE =PC ,得:()()2

2

126m m -+-+=()2

2263m m +-+-, 解得:m =2,即P (2,2).

(3)∵M 在x 轴上,N 在直线PF 上, ∴∠NFM =90°,

由四边形MFNG 是正方形,知MF =MG , 设M (n ,0),则G (n ,-n 2+2n +3), MG =|-n 2+2n +3|,MF =|n -2|, ∴|-n 2+2n +3|=|n -2|,

解得:n n n n ,

故点M 的坐标为:0),0),(12,0),(12

-,0).

【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .

(1)求抛物线的解析式;

(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值.

(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.

图1 图2

【答案】见解析.

【解析】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),

∴301640

c a b c a b c =??

++=??-+=?,解得:3

9434c b a ?

?=?

?=-???

=-??

即抛物线的解析式为:y =34-

x 29

4

-x +3. (2)由A (-4,0),C (0,3)得直线AC 的解析式为:y =3

34

x +, ∵点P 的横坐标为t , ∴M (t ,

3

34

t +), ∵PN ∥y 轴, ∴∠PMC =∠MCO , ∵MC 平分∠PMO , ∴∠PMC =∠OMC , ∴∠MCO =∠OMC , 即OM =OC =3,

∴OM 2=9,

即2

2

3394t t ??++= ???

,解得:t =0(舍)或t =7225,

∴当MC 平分∠PMO 时,t =72

25

. (3)设P (t , 34-

t 29

4

-t +3), ①当CE 为菱形的边时,四边形CEPD 为菱形,

则PD ∥y 轴,CD =PD ,

则D (t ,3

34

t +),

∴PD =34-

t 294-t +3-(334

t +)=3

4-t 23-t , 由勾股定理得:CD =54t -,

∴34-

t 23-t =54t -,解得:t =0(舍)或t =7

3-, 即PD =

3512,菱形面积为:3512×73=245

36

; ②当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,

则D (-t , 34-

t 294-t +3),将D 点坐标代入y =3

34

x +,得: 34-

t 294-t +3=()3

34

t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12

×4×3=6;

综上所述,菱形的面积为:

245

36

或6.

1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .

(1)求抛物线的解析式;

(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.

【答案】见解析.

【解析】解:(1)∵矩形OBDC 的边CD =1, ∴OB =1,

由AB =4,得OA =3, ∴A (﹣3,0),B (1,0),

∵抛物线y =ax 2+bx +2与x 轴交于A ,B 两点, ∴a +b +2=0,9a -3b +2=0, 解得:a =23-

,b =4

3

-, ∴抛物线解析式为y =23-

x 24

3

-x +2; (2)以AC 为边或对角线分类讨论: A (﹣3,0),C (0,2),

抛物线y =23-

x 24

3

-x +2的对称轴为x =﹣1, 设M (m , y M ),N (-1,n ),y M =23-

m 24

3

-m +2 ①当四边形ACMN 为平行四边形时,

有:31

2M

m y n -+=-??=+?,

解得:m =2,y M =103-

,即M (2,10

3

-); ②当四边形ACNM 为平行四边形时,

有:312M

m

y n --=??+=?,

解得:m =-4,y M =103-

,即M (-4,10

3

-); ③当四边形AMCN 为平行四边形时,

有:31

2M

m y n -=-??=+?,

解得:m =-2,y M =2,即M (-2,2); 综上所述,点M 的坐标为(2,103-

)或(﹣4,10

3

-)或(﹣2,2). 2.(2019·开封模拟)如图,直线y =﹣x +4与抛物线y =﹣1

2

x 2+bx +c 交于A ,B 两点,点A 在y 轴上,

点B 在x 轴上.

(1)求抛物线的解析式;

(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;

(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.

【答案】见解析

.

【解析】解:(1)在y=﹣x+4中,

当x=0时,y=4,当y=0时,x=4,

即点A、B的坐标分别为(0,4)、(4,0),

将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,

抛物线的解析式为:y=﹣1

2

x2+x+4;

(2)∵OA=OB=4,

∴∠ABO=45°,

∵∠ABP=90°,

则∠PBO=45°,

若直线PB交y轴于点M,

则OM=OB=4,

可得直线BP的解析式为:y=x-4,

联立:y=x-4,y=﹣1

2

x2+x+4,得:

x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).

(3)存在;

由y=﹣1

2

x2+x+4知抛物线的对称轴为:x=1,

设E(1,m),F(n,﹣1

2

n2+n+4),O(0,0),B(4,0),

①当四边形OBEF是平行四边形时,有:EF=4,

∴n-1=-4,即n=-3,

F点坐标为(-3,

7

2 -);

②当四边形OBFE是平行四边形时,有:EF=4,

n-1=4,即n=5,

F点坐标为(5,

7

2 -);

③当四边形OFBE 是平行四边形时,

有:410F

n m y =+??=+?,

即n =3,

F 点坐标为(3,52

);

综上所述:点F 的坐标为(5,72-

),(﹣3,72-),(3,52

). 3.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC ∥x 轴.

(1)求抛物线的解析式;

(2)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M ,若以M ,A ,C ,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.

【答案】见解析.

【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC ∥x 轴 ∴点E 的纵坐标为2, ∵点E 在直线y =﹣x 上, ∴点E (﹣2,2),

∵将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:

93204222a b a b -+=??

-+=?,解得:234

3a b ?=-????=-??

抛物线的解析式为:224

233

y x x =--+;

(2)由224

233

y x x =--+知,抛物线的对称轴为x =-1,

设N (-1,n ),M (m ,224

233

m m --+),

∵A (﹣3,0),C (0,2),

(1)当四边形ACNM 是平行四边形时,有:

312M

m n y --=??

=+?,得:m =-4,y M = 10

3-; 即M (-4,10

3

-

). (2)当四边形ACMN 是平行四边形时,有:

312M

m n y -+=-??

+=?,得:m =2,y M = 10

3-; 即M (2,10

3

-

). (3)当四边形ANCM 是平行四边形时,有:

312M

m

n y -=-+??

=+?,得:m =-2,y M = 2; 即M (-2,2).

综上所述,M 点的坐标是(-4,103-

),(2,10

3

-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F

(1)求抛物线的解析式;

(2)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.

【答案】见解析.

【解析】解:(1)将y =0代入y =x +3,得x =﹣3.

∴A(﹣3,0).

∵抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,

10

9310

a b

a b

+-=

?

?

--=

?

,解得:

1

3

2

3

a

b

?

=

??

?

?=

??

抛物线的解析式为y=1

3

x2+

2

3

x﹣1;

(2)点G的坐标为(2,1),(﹣

,﹣

1),(

﹣1),(﹣4,3).

①当四边形DCEG是菱形时,CD=CE=EG=4,

设E(m,m+3),则G(m,m+7),

由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,

此时G(-4,3);

②当四边形DCGE是菱形时,CG2=16,

设E(m,m+3),则G(m,m-1),

即m2+ m2=16,

解得:m

=m=

此时,G

(

1)或G(

-1);

③当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,

即m+3=1,m=-2,

此时G(2,1);

综上所述,点G的坐标为:(-4,3)、

(

1)、(

-1)、(2,1).

5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.

(1)求抛物线的解析式;

(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.

【答案】见解析.

【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:

-1-b+c=0,c=3,解得:b=2,c=3,

即抛物线的解析式为:y=﹣x2+2x+3.

(2)由y=﹣x2+2x+3知,点M(1,4),

分两种情况讨论,

①当四边形MAPQ是矩形时,过M作MH⊥x轴于H,则MH=4,AH=2,

易证得:∠APO=∠MAH,

∴tan∠APO= tan∠MAH,

即OA MH

OP AH

=2,

∴OP=1

2

即P(0,-1

2),

由A(-1,0)、M(1,4),P(0,-1

2

)得:点Q坐标为(2,

7

2

),

∵点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,

∴T(0,9

2 );

②当四边形AMPQ是矩形时,

同理可得:T(0,

1

2 -);

综上所述,点T的坐标为(0,9

2

),(0,

1

2

-).

6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例

函数

k

y

x

=(x>0)的图象交于点B(a,4).

(1)求一次函数和反比例函数的表达式;

(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数

k

y

x

=(x>0)的图象于点N,若以A,

O,M,N为顶点的四边形是平行四边形,求点M的横坐标.

【答案】见解析.

【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,

即一次函数的解析式为:y=x+2,

将B(a,4)代入y=x+2,得:a=2,

即B(2,4),

将B(2,4)代入

k

y

x

=得:x=8,

即反比例函数的解析式为:

8 y

x =.

(2)设M(m,m+2),则N(

8

2

m+

,m+2),

由题意知,MN∥OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,

8

2

m

m

-

+

=2,

解得:m

=2或m=

-2(舍)或m

=m=

-(舍),

∴点M的坐标为:

(2

+2).

7.(2019·许昌月考)如图1,二次函数y=4

3

x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,

与y轴交于点C.

(1)求该二次函数的解析式;

(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);

(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).

图1 图2

【答案】见解析.

【解析】解:(1)∵二次函数y=4

3

x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),

4

930

3

4

10

3

b c

b c

?

?++=

??

?

??-+=

??

,解得:

8

3

4

b

c

?

=-

?

?

?=-

?

即抛物线的解析式为:y=4

3

x2﹣

8

3

x﹣4;

(2)过点D作DM⊥y轴于点M,

2019年中考数学专题复习 函数与几何综合 含解析

函数与几何综合专题 解答题 1.已知抛物线y=ax2+bx+c(b<0)与x轴只有一个公共点. (1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式; (2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形. ①求点A的坐标和抛物线的解析式; ②证明:对于每个给定的实数k,都有A、D、C三点共线. 2.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含a的式子表示); (2)求抛物线的对称轴; (3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a 的取值范围. 3.在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A. (1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线y=x2﹣2x的“不动点”的坐标; ②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交 于点C,且四边形OABC是梯形,求新抛物线的表达式.

4.已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点. (Ⅰ)当b=2时,求抛物线的顶点坐标; (Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值; (Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值. 5.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD. (1)求该抛物线的表达式; (2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t. ①当点P在直线BC的下方运动时,求△PBC的面积的最大值; ②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说 明理由. 6.将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q. (1)试确定三角板ABC的面积; (2)求平移前AB边所在直线的解析式; (3)求s关于m的函数关系式,并写出Q点的坐标.

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

2021年中考数学必会专题系列10:直角三角形的存在性问题探究(有讲解答案)

专题十:直角三角形的存在性问题探究 引入: x+b交线段引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=-1 2 OC于点B,交x轴于点A,D是射线CE上一点.若△ABD恰为等腰直角三角形,则b的值为. 方法梳理 是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点. 解决方法如下 方法一:利用勾股定理进行边长的计算,从而来解决问题; 方法二:往往可以利用到一线等三角之K字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理; 方法三:可利用直径所对的圆周角为90°来处理. 导例解析:分三种情况讨论:①当∠ABD=90°时,如图1,b=4 ;②当∠ADB=90°时,如 3 ;③当∠DAB=90°时,如图3,b=2 图2,b=8 3

精讲精练 类型一:利用勾股定理来解决直角三角形的存在性问题 例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B. (1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式; (2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标. 第2题图 【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a,b,c 的方程组,解方程组可得答案; (2)首先利用勾股这事不师古求得BC,PB,PC的长,然后分别从点B为直角顶点,点C 为直角顶点,点P为直角顶点去分析求得答案. 类型二:构造相似来解决直角三角形存在性问题 x2+bx+8与x轴交于点A(-6,0),点B(点A在点B左侧),例2.如图①,抛物线y=-1 3 与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE,EC. (1)求抛物线的解析式及点C的坐标; (2)如图②,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使△AEG是以

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学中的存在性问题

2010年中考数学中的存在性问题 一、存在性问题的内涵 所谓存在性问题是指根据题目所给的条件,探究是否存在符合要求的结论.存在性问题是相对于中学数学课本中有明确结论的封闭型问题而言的.存在性问题可抽象为“已知事项M,是否存在具有某种性质的对象Q。”解题时要说明Q存在,通常的方法是将对象Q构造出来;若要说明Q不存在,可先假设存在Q,然后由此出发进行推论,并导致矛盾,从而否定Q的存在。此类问题的叙述一般是“是否存在……,如果存在,请求出……(或请证明);如果不存在,请说明理由.” 二、存在性问题的解决策略 1、直接求解法 存在性问题是探索型问题中的一种典型性问题.存在性问题探索的方向是明确的.探索的结果有两种:一种是存在:另一种是不存在.直接求解法就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法。 2、假设求解法 先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理;若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在。即假设结论存在,根据条件推理、计算,如果求得出一个结果,并根据推理或计算过程每一步的可逆性,证得结论存在;如果推得矛盾的结论或求不出结果,则说明结论不存在. 三、中考数学中的存在性问题的类型 1、定性分类 (1)肯定型存在性问题 肯定型存在性问题是解决其余两类存在性问题的基础,具体地构造出(或求出,寻找出)满足条件的数学对象,是证明肯定型存在性问题的主要方法。这种处理方法一般分为两大步,第一步是构造出满足要求的数学对象;第二步是通过验证,证明构造的对象满足问题的要求。 例1、(2010年陕西卷)问题探究 (1)请你在图①中做一条 ..直线,使它将矩形ABCD分成面积相等的两部分; (2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。 问题解决 (3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由

中考数学专题训练:类比探究类问题解析版

类比探究类问题解析版 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动 点,连结EM并延长交线段CD的延长线于点F. (1) 如图1,求证:AE=DF; (2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明 理由; 2,过点M作 MG⊥EF交线段BC的延长线于点G. (3) 如图3,若AB=3 ① 直接写出线段AE长度的取值范围; ② 判断△GEF的形状,并说明理由. 【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。 ∵AM=DM,∴△AEM≌△DFM(ASA)。∴AE=DF。 (2)△GEF是等腰直角三角形。理由如下: 过点G作GH⊥AD于H, ∵∠A=∠B=∠AHG=90°, ∴四边形ABGH是矩形。∴GH=AB=2。 ∵MG⊥EF,∴∠GME=90°。 ∴∠AME+∠GMH=90°。 ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵AD=4,M是AD的中点,∴AM=2。∴AN=HG。 ∴△AEM≌△HMG(AAS)。∴ME=MG。∴∠EGM=45°。 由(1)得△AEM≌△DFM,∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴∠EGF=2∠EGM =90°。 ∴△GEF是等腰直角三角形。

(3)①23 3 <AE≤23。 ②△GEF是等边三角形。理由如下: 过点G作GH⊥AD交AD延长线于点H, ∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。 ∴GH=AB=23。 ∵MG⊥EF,∴∠GME=90°。∴∠AME+∠GMH=90°。∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵∠A=∠GHM=90°,∴△AEM∽△HMG。∴MG GH EM AM =。 在Rt△GME中,∴tan∠MEG=MG GH23 3 EM AM2 ===。∴∠MEG=600。 由(1)得△AEM≌△DFM.∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴△GEF是等边三角形。 2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积. 【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF(SAS)。∴CE=CF。 (2)证明:如图,延长AD至F,使DF=BE.连接CF。 由(1)知△CBE≌△CDF,

中考数学专题训练函数综合题人教版

中考数学专题训练(函数综合) 1.如图,一次函数b kx y +=与反比例函数 x y 4 = 的图像交于A 、B 两点,其中点A 的横坐标为1, 又一次函数b kx y +=的图像与x 轴交于点()0,3-C . (1)求一次函数的解析式; (2)求点B 的坐标. 2.已知一次函数y=(1-2x )m+x+3图像不经过第四象限,且函数值y 随自变量x 的减小而减小。 (1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 ,求这个一次函数的解析式。 3. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2), 点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D . (1)求点C 、D 的坐标; (2)求图象经过B 、D 、A 三点的二次函数解析式及它的顶点坐标. 4.如图四,已知二次函数 2 23y ax ax =-+的图像与x 轴交于点A 与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为y kx b =+ 又tan 1OBC ∠=. (1)求二次函数的解析式和直线DC 的函数关系式; (2)求ABC △的面积. ( 图四)

5.已知在直角坐标系中,点A 的坐标是(-3,1),将线段OA 绕着点O 顺时针旋转90° 得到OB . (1)求点B 的坐标; (2)求过A 、B 、O 三点的抛物线的解析式; (3)设点B 关于抛物线的对称轴λ的对称点为C ,求△ABC 的面积。 6.如图,双曲线x y 5 = 在第一象限的一支上有一点C (1,5),过点C 的直线)0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B . (1)求点A 的横坐标a 与k 之间的函数关系式; (2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积. 7.在直角坐标系中,把点A (-1,a )(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点的纵坐标为2. (1)求这条抛物线的解析式; (2)设该抛物线的顶点为点P ,点B 为)1m ,(,且3

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学专题存在性问题解题策略角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且0 45=∠CAB →CBE ACD ??≌,此为 “一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角” 相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的对边与A ∠的邻边之比;同理,a b B = ∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1; 图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2;

A 图1-2-2 3.tan α=k →构直角三角形→造“一线三直角”相似,如图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似 ”,其核心结构如图1-2-8所示. 方式(三):整体旋转法( *) DAC DEA →DA 2=DC ?DE →DG 2+AG 2=DC ?DE 定 定 定 定 定 定 定 定 A A A 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

初三数学专题讲义存在性问题

初三数学讲义 存在性问题 教学过程: 一、教学衔接(课前环节) 1、回收上次课的教案,了解家长的反馈意见; 2、检查学生的作业,及时指点 3、捕捉学生的思想动态和了解学生的本周学校的学习内容 二、知识点解析 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。 这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 一、函数中的存在性问题(相似) 1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值; (2)判断△ACD 的形状,并说明理由; (3)在线段AC 上是否存在点M ,使△AOM∽△ABC?若存在,求出点M 的坐标;若不存在,说明理由.

二、函数中的存在性问题(面积) 2. 如图,抛物线()20y ax bx a >=+与双曲线k y x =相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan∠AOX=4.过点A 作直线AC∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

中考数学复习专题40:存在性问题(含中考真题解析)

专题40 存在性问题 ?解读考点 1.BC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由; (2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示). 【答案】(1)AB=B E;(2)BD=.

试题解析:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF,∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠BAE,∴AB=BE; (2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠ADF=∠AEF,∴∠DEB=∠AEF,在△BDE与△AFE中,∵∠DEB=∠AEF, ∠BDE=∠AFE,∴△BDE∽△AFE,∴BD DE AF FE = ,在直角△DEF中,∵∠DEF=90°, DE=kDF,∴ EF= =DF, ∴ BD m = =,∴ BD=. 考点:1.相似三角形的判定与性质;2.探究型;3.存在型;4.综合题;5.压轴题.2.在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B 的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应 点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为 c bx ax+ + =2 y. (1)求点D的坐标(用含m的式子表示); (2)若点G的坐标为(0,﹣3),求该抛物线的解析式;

中考数学专题训练 函数基础训练题

中考数学专题训练函数基础训练题(1) 1.函数y= x - 3 1 的自变量x的取值范围是;函数y=1 + x的自变量x的取值范 围是;抛物线y x =-+ 312 2 ()的顶点坐标是____________; 2.抛物线y=3x2-1的顶点坐标为对称轴是; 3.设有反比例函数y k x = +1 ,(,) x y 11 、(,) x y 22 为其图象上的两点,若x x 12 <<时, y y 12 >,则k的取值范围是___________; 4.如果函数x x x f- + =15 ) (,那么= ) 12 (f________. 5.已知实数m满足m2-m-2=0,当m=_______,函数y=x m+(m+1)x+m+1的图象与x 轴无交点。 6.函数 3 1 - - = x x y的定义域是___________.若直线y=2x+b过点(2,1),则b= ; 7.如果反比例函数的图象经过点)3 ,2(- A,那么这个函数的解析式为___________. 8.已知m为方程x2+x-6=0的根,那么对于一次函数y=mx+m:①图象一定经过一、 二、三象限;②图象一定经过二、三、四象限;③图象一定经过二、三象限;④图象一 定经过点(-l,0);⑤y一定随着x的增大而增大;⑤y一定随着x的增大而减小。以 上六个判断中,正确结论的序号是(多填、少填均不得分) 9.有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4; 乙:与X轴两个交点的横坐标都是整数;丙:与Y轴交点的纵坐标也都是整数,且以 这三个交点为顶点的三角形面积为3。请你写出满足上述全部特点的一个二次函数解析 式:; 10.已知二次函数()0 2 1 ≠ + + =a c bx ax y与一次函 ()0 2 ≠ + =k m kx y的图象相交于点A(-2,4),B(8,2) (如图所示),则能使 1 y> 2 y成立的x的取值范围 是. 11.在平面直角坐标系中,点P(-2,1)在() A、第一象限 B、第二象限 C、第三象限 D、第四象限 12.二次函数y=x2-2x+3的最小值为()A、4 B、2 C、1 D、-1 13.有意义,则x的取值范围是( ) (A)x≤3 (B)x≠3 (C)x>3 (D)x≥3 14.二次函数y=x2+10x-5的最小值为( ) (A)-35 (B)-30(C)-5 (D)20 15.已知甲,乙两弹簧的长度y(cm)与所挂物体质量x(kg) 之间的函数解析式分别为y=k1x+a1和y=k2x+a2, 图 象如右,设所挂物体质量均为2kg时,甲弹簧长为y1 , 乙弹簧长为y2则y1与y2的大小关系为( ) (A)y l>y2(B)y1=y2(C)y1<y2(D)不能确定 16.函数y= 4 1 - x 中自变量x的取值范围是() A.x4 - ≤ B. 4 - ≥ X C. x>-4 D. 4 - ≠ x 17.点P(-1,3)关于y轴对称的点是() A. (-1,-3) B. (1,-3) C. (1,3) D. (-3,1) 18.函数y= 2 1 - x 中,自变量x的取值范围是() A. x>2 B. x<2 C. x≠2 D. x≠-2 19.抛物线y=x2-2x-1的顶点坐标是() A.(1,-1) B.(-1,2) C.(-1,-2) D.(1,-2) 20.抛物线6 3 2- - =x x y的对称轴是直线() 2 3 ) (= x A 2 3 ) (- = x B3 ) (= x C3 ) (- = x D 21.给出下列函数:(1)y=2x; (2)y=-2x+1; (3)y= x 2 (x>0) (4)y=x2(x<-1)其中,y随x 的增大而减小的函数是() A、(1)、(2). B、(1)、(3). C、(2)、(4). D 、(2)、(3)、(4) 22.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图 象,图中s和t分别表示运动路程和时间,根据图象判断快 者的速度比慢者的速度每秒快() 23.A 2.5米B2米C1.5米 D 1米 24.当K<0时,反比例函数y= x k 和一次函数y=kx+2的图象在致是图中的()

中考数学专题练习函数含答案

中考数学专题练习函数含 答案 The document was prepared on January 2, 2021

《函数》 一、选择题(每小题3分,共24分) 1.在平面直角坐标系中,点A(-2,3)在第( )象限. A.一 B.二 C.三 D.四 2.线段EF 是由线段PQ 平移得到的,点P (﹣1,4)的对应点为E (4,7),则点Q (﹣3,1)的对应点F 的坐标为( ) A .(﹣8,﹣2) B .(﹣2,﹣2) C .(2,4) D .(﹣6,﹣1) 3.函数1 x y x = +中的自变量x 的取值范围是( ) A .x ≥0 B .1x ≠- C .0x > D .x ≥0且1x ≠- 4. 若点 在函数 的图象上,则 的值是( ) B.-2 D. -1

5. 对于一次函数24y x =-+,下列结论错误的是( ) A .函数值随自变量的增大而减小 B .函数的图象不经过第三象限 C .函数的图象与x 轴的交点坐标是(0,4) D .函数的图象向下平移4个单位长度,可以得到2y x =-的图象 6. 对于函数x y 6 = ,下列说法错误的是 ( ) A. 图像分布在一、三象限 B. 图像既是轴对称图形又是中心对称图形 C. 当x >0时,y 的值随x 的增大而增大 D. 当x <0时,y 的值随x 的增大而减小 7. 关于抛物线2(1)2y x =--,下列说法错误的是( ) A .顶点坐标为(1,2-) B .对称轴是直线1x = C .开口方向向上 D .当x >1时,y 随x 的增大而减小

8. 设点()11,y x A 和()22,y x B 是反比例函数x k y = 图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题(每小题3分,共24分) 9. 点 P (a ,a -3)在第四象限,则a 的取值范围是 . 10.在平面直角坐标系中,与点M (-2,1)关于y 轴对称的点的坐标是 . 11.一次函数62+=x y 的图象与x 的交点坐标是 . 12.反比函数k y x =的图象经过点(2,-1),则k 的值为 . 13.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 . 14.小明放学后步行回家,如果他离家的路程s (米)与步行时间(t 分钟)的函数图象如图,他步行回家的平均速度是 米/分钟. 15.如图,已知A 点是反比例函数(0)k y k x =≠的图象上一点,AB y ⊥轴于 B ,且ABO △的面积为3,则k 的值为 .

2017-2018学年最新中考数学压轴题解题策略《面积的存在性问题》

面积的存在性问题解题策略 中考数学压轴题解题策略 专题攻略 面积的存在性问题常见的题型和解题策略有两类: 第一类,先根据几何法确定存在性,再列方程求解,后检验方程的根. 第二类,先假设关系存在,再列方程,后根据方程的解验证假设是否正确.例题解析 例?如图1-1,矩形ABCD的顶点C在y轴右侧沿抛物线 y=x2-6x+10滑动,在滑动过程中CD//x轴,CD=1,AB 在CD的下方.当点D在y轴上时,AB落在x轴上.当矩形 ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求 点C的坐标. 图1-1 【解析】先求出CB=5,再进行两次转化,然后解方程. 把上下两部分的面积比为1∶4转化为S上∶S全=1∶5或S上∶S全=4∶5.把面积比转化为点C的纵坐标为1或4. , 4)或(3-3, 4).如图1-2,C (3, 1).如图1-3,C(33

图1-2 图1-3 例?如图2-1,二次函数y =(x +m )2+k 的图象与x 轴交于A 、B 两点,顶点M 的坐标为(1,-4),AM 与y 轴相交于点C ,在抛物线上是否还存在点P ,使得S △PMB =S △BCM ,如存在,求出点P 的坐标. 图2-1 【解析】△BCM 是确定的,△PBM 与三角形BCM 有公共边BM ,根据“同底等高的三角形面积相等”和“平行线间的距离处处相等”,过点C 画BM 的平行线与抛物线的交点就是点P .一目了然,点P 有2个. 由y =(x -1)2-4=(x +1)(x -3),得A (-1,0),B (3,0).由A 、M ,得C (0,-2). 如图2-2,设P (x , x 2-2x -3),由PC //BM ,得∠CPE =∠BMF .所以CE BF PE MF =. 解方程2(1)4242 x x --+=,得25x =±.所以(25,225)P ++或(25,225)--. 图2-2

中考数学专题训练函数基础训练题

中考数学专题训练 函数基础训练题2 1. 若抛物线y=x 2-6x+c 的顶点在x 轴上,则c 的值是 ( ) A. 9 B. 3 C.-9 D. 0 2. 已知一次函数y=k 1 x+b,y 随x 的增大而减小,且b>0,反比例函数,y=x k 2 中的k 2与k 1值相等,则它们 在同一坐标系中的图像只可能是 ( ) 3. 函数2+=x y 中,自变量x 的取值范围是( ) (A )x >-2 (B )x ≥-2 (C )x <-2 (D )x ≤-2 4. 已知照明电压为220(V ), 则通过电路中电阻R 的电流强度I (A )与电阻R (Ω)的大小关系用图象表示大致是 ( ) 5. 已知甲,乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间 的函数解析式分别为y=k 1x +a 1和y =k 2x +a 2, 图象如右,设所挂物体质量均为2kg 时,甲弹簧长为y 1 ,乙弹簧长为y 2则y 1与y 2的大小关系为( ) (A )y l > y 2 (B )y 1=y 2 (C )y 1< y 2 (D)不能确定 6. 已知抛物线的解析式为()3142 +-=x y ,则这条抛物线的 顶点坐标是 . 7. 已知实数m 满足m 2-m -2=0,当m=___ ____,函数y=x m +(m+1)x+m+1的图象与x 轴无交点; 8. 已知m 为方程x 2+x-6=0的根,那么对于一次函数y =mx +m :①图象一定经过一、二、三象限;②图象一定经过二、三、四象限;③图象一定经过二、三象限;④图象一定经过点(-l ,0);⑤y 一定随着x 的增大而增大;⑤y 一定随着x 的增大而减小。以上六个判断中,正确结论的序号是 (多填、少填均不得分) 9.函数y =4 1 -x 中自变量x 的取值范围是_____。 10.已知二次函数()021≠++=a c bx ax y 与一次函数()02≠+=k m kx y 的图象相交于点A (-2,4), B (8,2)(如图所示),则能使1y >2y 成立的x 的取值范围是 . 11.对于反比例函数x y 2 - =与二次函数32+-=x y ,请说出它们的两个相同点 ① ,② ; 再说出它们的两个不同点① ,② . 12.函数23-= x y 的自变量x 的取值范围是 ; 13.如果反比例函数的图象经过点)3,2(-A ,那么这个函数的解析式为___________. 14.为了增强公民的节水意识,某制定了如下用水收费标准:每户每月的用水超过10吨时,水价为每 吨元,超过10吨时,超过的部分按每吨元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,则y 关于x 的函数关系式是_______; 15.双曲线x k y = 经过点(-2,3),则k =_________; 16.已知二次函数2 2 24m mx x y +--=与反比例函数x m y 4 2+= 的图象在第二象限内的一个交点的横坐标是-2,则m 的值是__________。 17.已知一次函数b kx y +=在3=x 时的值为5,在4-=x 时的值为9-,求这个一次函数的解析式。 18.已知一抛物线与x 轴的交点是A (-1,0)、B (m ,0)且经过第四象限的点C (1,n ),而m+n=-1,mn=-12,求此抛物线的解析式; 19.已知抛物线y=(m-1)x 2+mx+m 2-4的图象过原点,且开口向上, (1)求m 的值,并写出函数解析式; (2)写 出函数图象的顶点坐标及对称轴;

相关文档
相关文档 最新文档