文档库 最新最全的文档下载
当前位置:文档库 › 数据结构必背算法12_图的遍历算法

数据结构必背算法12_图的遍历算法

数据结构必背算法12_图的遍历算法

图的优先遍历算法(C语言版)

#include #define MAX_VERTEX_NUM 20 #define ERROR -1 #define TRUE 1 #define FALSE 0 typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ char data; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertices; int vexnum,arcnum; }ALGraph; void CreateAL(ALGraph *G); int LocateVex(ALGraph G,char u); void DFSTraverse(ALGraph G,void (*Visit)(ALGraph G,int v)); void PrintElem(ALGraph G,int v); void DFS(ALGraph G,int v); int FirstAdjVex(ALGraph G,int v); int NextAdjVex(ALGraph G,int v,int w); int visited[MAX_VERTEX_NUM]; void (*VisitFunc)(ALGraph G,int v); int main(){ ALGraph G; CreateAL(&G); printf("The Graph is:\n"); DFSTraverse(G,PrintElem); getch(); } void CreateAL(ALGraph *T){ int i,j,m; ArcNode *p,*s; char ch[100]; printf("Please input the vexnum and arcnumm:\n"); scanf("%d%d",&(T->vexnum),&(T->arcnum)); printf("Please input the vertexs:\n"); for(i=0;i<(T->vexnum);++i){ scanf(" %c",&(T->vertices[i].data)); T->vertices[i].firstarc=NULL; }

数据结构课程设计图的遍历和生成树求解

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 6014389 题目: 图的遍历和生成树求解实现 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 12 月 09 日 完成时间: 2012 年 12 月 26 日 课程设计成绩: 指导教师签名:年月日

目录 摘要 (3) 引言 (4) 1 需求分析 (5) 1.1任务与分析 (5) 1.2测试数据 (5) 2 概要设计 (5) 2.1 ADT描述 (5) 2.2程序模块结构 (7) 软件结构设计: (7) 2.3各功能模块 (7) 3 详细设计 (8) 3.1结构体定义 (19) 3.2 初始化 (22) 3.3 插入操作(四号黑体) (22) 4 调试分析 (22) 5 用户使用说明 (23) 6 测试结果 (24) 结论 (26)

摘要 《数据结构》课程主要介绍最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。进行数据结构课程设计要达到以下目的: ?了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力; ?初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; ?提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风。 这次课程设计我们主要是应用以前学习的数据结构与面向对象程序设计知识,结合起来才完成了这个程序。 因为图是一种较线形表和树更为复杂的数据结构。在线形表中,数据元素之间仅有线性关系,每个元素只有一个直接前驱和一个直接后继,并且在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,本程序是采用邻接矩阵、邻接表、十字链表等多种结构存储来实现对图的存储。采用邻接矩阵即为数组表示法,邻接表和十字链表都是图的一种链式存储结构。对图的遍历分别采用了广度优先遍历和深度优先遍历。 关键词:计算机;图;算法。

图的遍历实现课程设计-数据结构-程序-图

数据结构课程设计 设计说明书 图的遍历的实现 学生姓名英茜 学号1118064033 班级网络1101班 成绩 指导教师申静 数学与计算机科学学院 2014年1 月4日

课程设计任务书 2013—2014学年第一学期 课程设计名称:数据结构课程设计 课程设计题目:图的遍历实现 完成期限:自2013年12月23日至2014年1月4日共 2 周 设计内容: 1. 任务说明 (1)采用邻接表存储结构创建一个图; (2)编程实现图的深度优先搜索(或广度优先搜索)遍历算法; (3) 输出遍历结果; (4) 给定具体数据调试程序。 2.要求 1)问题分析和任务定义:根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么? 2)逻辑设计:写出抽象数据类型的定义,各个主要模块的算法,并画出模块之间的调用关系图; 3)详细设计:定义相应的存储结构并写出各函数的伪码算法。 4)程序编码:把详细设计的结果进一步求精为程序设计语言程序。 5)程序调试与测试:采用自底向上,分模块进行,即先调试低层函数。 6)结果分析:程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。算法的时间、空间复杂性分析; 7)编写课程设计报告。 3. 参考资料 指导教师:申静教研室负责人:余冬梅 课程设计评阅

摘要 针对图问题中如何更好地实现图的遍历问题,以无向图为例,分别采用广度优先遍历和深度优先遍历的算法实现对各节点的遍历,以VC++为开发环境进行系统的设计和实现,其运行结果表明,系统能很好地完成遍历后节点的输出,实现了遍历的目的,系统界面友好,可操作性强。 关键词:数据结构;存储结构;邻接矩阵

树与图的简单遍历算法

树与图的简单遍历算法 发表时间:2019-01-14T09:56:22.797Z 来源:《科技新时代》2018年11期作者:闵俊齐 [导读] 树与图是两种重要的数据结构,而树可以说是一种特殊的图,它的两两结点之间存在唯一简单路径。 重庆第二外国语学校重庆 400065 摘要:树与图是两种重要的数据结构,而树可以说是一种特殊的图,它的两两结点之间存在唯一简单路径。利用其特殊性质,人们创造了许多算法来处理数据结构问题和程序调用问题。而树与图的遍历算法也是数据结构中重要的算法之一。本文从树与图的概念出发,简单的介绍了树与图的主要存储方式,并重点对二叉树的简单遍历算法、哈夫曼树的生成和图的深度优先遍历及广度优先遍历做出了介绍。 关键词:数据结构;二叉树;图;遍历算法 1.树与图的概念 树是一种数据结构,是由n(n≥0)个结点构成的具有明显层次关系的有限集合。一棵树一般由一个根节点和若干个子结点构成。结点与结点之间具有明显的并列或层次关系,这种层次关系称为父子关系。在一棵树中,没有父结点的结点被称为根结点。树有几个重要的概念,以下做出简单的介绍——树的度:某个结点拥有的子树的数量称为这个结点的度,度为零的结点也叫做叶结点,而度不为零的结点叫做分支结点。树的深度:一棵树的根结点的层次为1,其他结点的层次是其父结点的层次加1。一棵树里最大的层次的值被称为这棵树的深度。树有无序树,有序树,二叉树等。其中二叉树是每个结点最多有两个子结点的树,每个结点的子树通常被称为“左子树”和“右子树”,故二叉树中每个结点的度的最大值为2,而又有左右之分,二叉树中结点的次序不能任意颠倒。除最后一层的叶结点没有子结点外,其余每一层的每个结点都具有两个子结点的二叉树称为满二叉树。如果存在一个深度为h的二叉树,它的除h层外其余各层(1~h-1)的结点数都达到了最大值,并且它的第h层的结点全部集中在树的左边,这种二叉树就被称为完全二叉树。完全二叉树是由满二叉树引申出来的,它是一种效率很高的数据结构。本文后部分将会介绍二叉树的简单遍历算法。 图由若干个顶点组成的有限非空集合和各个顶点的边构成,通常表示为G(V,E),其中G表示一个图,V是图G中顶点的集合,E是图G中边的集合。图数据结构主要研究形状和图形数据元素之间的关系。它必须反映数据所对应的元素之间的几何关系和拓扑关系。图依照边的方向可分为有向图和无向图。有向图由顶点和弧构成。弧有弧尾和弧头,带箭头的一边称为弧头。图结构与树结构相比较,图中的任意两个元素都有可能相关。而对某个结点而言,树下层可能有多个元素,上层只有能一个元素,复杂度比树大[1]。 2二叉树与图的储存方式 2.1二叉树的储存方式 二叉树有两种储存方式:顺序存储和链式存储。 顺序储存就是按照完全二叉树的结点层次顺序存储的一种只适用于完全二叉树的储存方式,且在最坏的情况下,k个结点的单支数却只需要长度的 -1的一维数据。这种储存需要一个完全连续地址,所以会占用许多的储存空间。 在二叉树中,每个结点信息一般都由一下几个部分构成:该结点的数据元素(Data)、指向左子树的指针(L child)和指向右子树的指针(R child)。利用指针,我们可以很好的存储二叉树。若使用二叉链表,每个结点的结构如图1(a)所示。一般可以(L,D,R)来表示。在三叉链表中,可表示每个结点的父结点,结构如图1(b)所示。一般可以(L,D,P,R)来表示[5]。链式储存不需要完全连续地址,节约储存空间[2]。 图2 3.二叉树的遍历算法及哈夫曼树的生成 3.1二叉树的遍历算法 遍历,是指用某种方法沿着某条路对每一个元素做一且仅一次访问,它是二叉树的重要运算之一。二叉树的主要有三种访问方式:先序遍历、中序遍历、后序遍历。具体实现过程如下:

数据结构实验报告-图的遍历

数据结构实验报告 实验:图的遍历 一、实验目的: 1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表 2、掌握图的构造方法 3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法 4、掌握图的深度优先遍历和广度优先原理 二、实验内容: 1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。 2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图 3、深度优先遍历第一步中构造的图G,输出得到的节点序列 4、广度优先遍历第一部中构造的图G,输出得到的节点序列 三、实验要求: 1、无向图中的相关信息要从终端以正确的方式输入; 2、具体的输入和输出格式不限; 3、算法要具有较好的健壮性,对错误操作要做适当处理; 4、程序算法作简短的文字注释。 四、程序实现及结果: 1、邻接矩阵: #include #include #define VERTEX_MAX 30 #define MAXSIZE 20 typedef struct { int arcs[VERTEX_MAX][VERTEX_MAX] ; int vexnum,arcnum; } MGraph; void creat_MGraph1(MGraph *g) { int i,j,k; int n,m; printf("请输入顶点数和边数:"); scanf("%d%d",&n,&m); g->vexnum=n; g->arcnum=m; for (i=0;iarcs[i][j]=0;

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

图的生成、图的遍历

数据结构B实验报告 一、实验内容 图的生成、图的遍历 二、实验目的 掌握图的基本存储结构 掌握图的相关算法 掌握图的两种遍历方法 三、功能 本实验要求实现以下功能: 1.以邻接矩阵或者邻接表作为存储结构建立一个无向图。 2.深度优先搜索该无向图,输出遍历序列。 3.广度优先搜索该无向图,输出遍历序列。

四、主要代码 #include #include using namespace std; enum Status{UNVISITED,VISITED,SUCCESS,OVER_FLOW, RANGE_ERROR, NOT_PRESENT, ENTRY_FOUND, UNDER_FLOW}; const int DEFAULT_SIZE = 30; const int DEFAULT_INFAULTY =99999; const int MaxSize = 50; template struct Node { ElemType data; Node*next; Node();//普通构造函数 Node(ElemType e, Node*link = NULL);//带形参的构造函数 }; template Node::Node() { next = NULL; } template Node::Node(ElemType e, Node*link) { data = e; next = link; } template class LinkQueue { protected: Node *front, *rear; // 队头队尾指针 public: LinkQueue(); virtual ~LinkQueue(); int GetLength() const; bool IsEmpty() const; void Clear(); Status DelQueue(ElemType &e); Status GetHead(ElemType &e) const; Status EnQueue(const ElemType e); };

数据结构图的遍历

#include"stdlib.h" #include"stdio.h" #include"malloc.h" #define INFINITY 32767 #define MAX_VERTEX_NUM 20 typedef enum{FALSE,TRUE}visited_hc; typedef enum{DG,DN,UDG,UDN}graphkind_hc; typedef struct arccell_hc {int adj; int*info; }arccell_hc,adjmatrix_hc[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct {char vexs[MAX_VERTEX_NUM]; adjmatrix_hc arcs; int vexnum,arcnum; graphkind_hc kind; }mgraph_hc; typedef struct arcnode_hc {int adjvex; struct arcnode_hc *nextarc; int*info; }arcnode_hc; typedef struct vnode_hc {char data; arcnode_hc *firstarc; }vnode_hc,adjlist_hc[MAX_VERTEX_NUM]; typedef struct {adjlist_hc vertices; int vexnum,arcnum; graphkind_hc kind; }algraph_hc; int locatevex_hc(mgraph_hc*g,char v) {int i,k=0; for(i=0;ivexnum;i++) if(g->vexs[i]==v){k=i;i=g->vexnum;} return(k);}

数据结构课程设计-图的遍历和构建

图(Graph)是一种复杂的非线性结构。图可以分为无向图、有向图。若将图的每条边都赋上一个权,则称这种带权图网络。在人工智能、工程、数学、物理、化学、计算机科学等领域中,图结构有着广泛的应用。在图结构中,对结点(图中常称为顶点)的前趋和后继个数都是不加以限制的,即结点之间的关系是任意的。图中任意两个结点之间都可能相关。图有两种常用的存储表示方法:邻接矩阵表示法和邻接表表示法。在一个图中,邻接矩阵表示是唯一的,但邻接表表示不唯一。在表示的过程中还可以实现图的遍历(深度优先遍历和广度优先遍历)及求图中顶点的度。当然对于图的广度优先遍历还利用了队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。这不仅让我们巩固了之前学的队列的基本操作,还懂得了将算法相互融合和运用。

第一章课程设计目的 (3) 第二章课程设计内容和要求 (3) 2.1课程设计内容 (3) 2.1.1图的邻接矩阵的建立与输出 (3) 2.1.2图的邻接表的建立与输出 (3) 2.1.3图的遍历的实现 (4) 2.1.4 图的顶点的度 (4) 2.2 运行环境 (4) 第三章课程设计分析 (4) 3.1图的存储 (4) 3.1.1 图的邻接矩阵存储表示 (4) 3.1.2 图的邻接表存储表示 (5) 3.2 图的遍历 (5) 3.2.1 图的深度优先遍历 (5) 3.2.2 图的广度优先遍历 (6) 3.3图的顶点的度 (7) 第四章算法(数据结构)描述 (7) 4.1 图的存储结构的建立。 (7) 4.1.1 定义邻接矩阵的定义类型 (7) 4.1.2定义邻接表的边结点类型以及邻接表类型 (7) 4.1.3初始化图的邻接矩阵 (8) 4.1.4 初始化图的邻接表 (8) 4.2 图的遍历 (8) 4.2.1 深度优先遍历图 (8) 4.2.2 广度优先遍历图 (9) 4.3 main函数 (9) 4.4 图的大致流程表 (10) 第五章源代码 (10) 第六章测试结果 (20) 第七章思想总结 (21) 第八章参考文献 (22)

数据结构课程设计之图的遍历和生成树求解

##大学 数据结构课程设计报告题目:图的遍历和生成树求解 院(系):计算机工程学院 学生: 班级:学号: 起迄日期: 2011.6.20 指导教师:

2010—2011年度第 2 学期 一、需求分析 1.问题描述: 图的遍历和生成树求解实现 图是一种较线性表和树更为复杂的数据结构。在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在树形结构中,数据元素之间有着明显的层次关系,并且每一层上的数据元素可能和下一层中多个元素(及其孩子结点)相关但只能和上一层中一个元素(即双亲结点)相关;而在图形结构中,节点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。 生成树求解主要利用普利姆和克雷斯特算法求解最小生成树,只有强连通图才有生成树。 2.基本功能 1) 先任意创建一个图; 2) 图的DFS,BFS的递归和非递归算法的实现 3) 最小生成树(两个算法)的实现,求连通分量的实现 4) 要求用邻接矩阵、邻接表等多种结构存储实现 3.输入输出

输入数据类型为整型和字符型,输出为整型和字符 二、概要设计 1.设计思路: a.图的邻接矩阵存储:根据所建无向图的结点数n,建立n*n的矩阵,其中元素全是无穷大(int_max),再将边的信息存到数组中。其中无权图的边用1表示,无边用0表示;有全图的边为权值表示,无边用∞表示。 b.图的邻接表存储:将信息通过邻接矩阵转换到邻接表中,即将邻接矩阵的每一行都转成链表的形式将有边的结点进行存储。 c.图的广度优先遍历:假设从图中的某个顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后再访问此邻接点的未被访问的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中还有未被访问的,则另选未被访问的重复以上步骤,是一个非递归过程。 d.图的深度优先遍历:假设从图中某顶点v出发,依依次访问v的邻接顶点,然后再继续访问这个邻接点的系一个邻接点,如此重复,直至所有的点都被访问,这是个递归的过程。 e.图的连通分量:这是对一个非强连通图的遍历,从多个结点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其连通分量的顶点集。本程序利用的图的深度优先遍历算法。 2.数据结构设计: ADT Queue{ 数据对象:D={a i | a i ∈ElemSet,i=1,2,3……,n,n≥0} 数据关系:R1={| a i-1 ,a i ∈D,i=1,2,3,……,n} 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q。 QueueEmpty(Q) 初始条件:Q为非空队列。 操作结果:若Q为空队列,则返回真,否则为假。 EnQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:插入元素e为Q的新的队尾元素。 DeQueue(&Q,e) 初始条件:Q为非空队列。 操作结果:删除Q的队头元素,并用e返回其值。}ADT Queue

实验报告:图的存储结构和遍历

武汉东湖学院 实验报告 学院:计算机科学学院—专业计算机科学与技术2016年11月18日 1.实验目的 (1)了解邻接矩阵存储法和邻接表存储法的实现过程。 (2)了解图的深度优先遍历和广度优先遍历的实现过程。 2.实验内容 1.采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵 2.设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法 3.实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列 4.实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列

3.实验环境Visual C++ 6.0

4 .实验方法和步骤(含设计) 我们通过二维数组中的值来表示图中节点与节点的关系。通过上图可 知, 其邻接矩阵示意图为如下: V0 v1 v2 v3 v4 v5 V0 1 0 1 0 1 V1 1 0 1 1 1 0 V2 0 1 0 0 1 0 V3 1 1 0 0 1 1 V4 0 1 1 1 0 0 V5 1 1 此时的 “1 ” 表示这两个节点有关系,“ 0”表示这两个节点无关系 我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:

5.程序及测试结果 #include #include int visited [6]; typedef struct { int a[6][6]; int n; }mgraph; typedef struct ANode { int adjvex; struct ANode *nextarc; }ArcNode; typedef struct Vnode { ArcNode *firstarc; }VNode; typedef VNode AdjList [6]; typedef struct { AdjList adjlist; int n; }ALGraph; void mattolist (mgraph g,ALGraph *&G) { int i,j; ArcNode *p; G=(ALGraph*)malloc(sizeof(ALGraph)); for(i=0;iadjlist[i].firstarc=NULL; for(i=0;i=0;j--) if(g.a[i][j]!=0) { p=(ArcNode*)malloc(sizeof(ArcNode)); p->adjvex=j; p->nextarc=G->adjlist[i].firstarc; G->adjlist[i].firstarc=p; } G->n=g.n; } void dispadj(ALGraph *G) { int i; ArcNode *p;

图的遍历实验报告

实验四:图的遍历 题目:图及其应用——图的遍历 班级:姓名:学号:完成日期: 一.需求分析 1.问题描述:很多涉及图上操作的算法都是以图的遍历操作为基础的。试写一个程序,演示在连通的无向图上访问全部结点的操作。 2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。 3.测试数据:教科书图7.33。暂时忽略里程,起点为北京。 4.实现提示:设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。 5.选作内容: (1).借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。 (2).以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。 二.概要设计 1.为实现上述功能,需要有一个图的抽象数据类型。该抽象数据类型的定义为: ADT Graph { 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R: R={VR} VR={ | v,w v且P(v,w),表示从v到w得弧,谓词P(v,w)定义了弧的意义或信息} } ADT Graph 2.此抽象数据类型中的一些常量如下: #define TRUE 1 #define FALSE 0 #define OK 1 #define max_n 20 //最大顶点数 typedef char VertexType[20]; typedef enum{DG, DN, AG, AN} GraphKind; enum BOOL{False,True}; 3.树的结构体类型如下所示:

数据结构 图的存储、遍历与应用 源代码

实验四图的存储、遍历与应用姓名:班级: 学号:日期:一、实验目的: 二、实验内容: 三、基本思想,原理和算法描述:

四、源程序: (1)邻接矩阵的存储: #include #include #define INFINITY 10000 //定义最大值无穷大 #define MAX_VERTEX_NUM 20 //最大顶点个数 typedef int AdjMatrix[MAX_VERTEX_NUM ][MAX_VERTEX_NUM ]; typedef struct{ int vexs[MAX_VERTEX_NUM ]; //顶点向量 AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧或边数 }MGraph; void CreatGragh(MGraph G) //用邻接矩阵构造图 { int i,j,k,w; printf("请输入顶点个数和边数:\n"); scanf("%d %d",&G.vexnum,&G.arcnum); printf("请按顺序输入顶点中间用‘空格’间隔\n"); for(i=0;i #include

图的遍历数据结构实验研究报告

南昌航空大学实验报告 课程名称:数据结构实验名称:实验八图地遍历 班级:学生姓名:学号: 指导教师评定:签名: 题目:假设无向图采用邻接表结构表示.编程分别实现图地深度优先搜索算法和广度优先搜索算法. 一、需求分析 1.用户可以根据自己地需求分别输入任意地一个有向图(可以是非连通图也可以是连通 图). 2.通过用广度优先遍历和深度优先遍历已有地图,并输出. 3.并且以邻接表地形式输出该已有地图. 4.程序执行地命令包括: (1)输入图地结点和弧构造图(2)输出图(2)广度优先遍历图(3)深度优先遍历图 二、概要设计 ⒈为实现上述算法,需要链表地抽象数据类型: ADT Graph { 数据对象V:V是具有相同特征地数据元素地集合,称为顶点集. 数据关系R: R={VR} VR={|v,w∈V且P(v,w),表示从x到w地弧,谓词P(v,w)定义了弧 地意义或信息 }b5E2R。 基本操作P: Creatgraph(&G,V,VR) 初始条件:V是图地顶点集,VR是图中弧地集合. 操作结果:按V和VR地定义构造图G. destroygraph(&G) 初始条件:图G存在. 操作结果:销毁图G. displaygraph(G) 初始条件:图G存在. 操作结果:显示图G. locatevex(G,u) 初始条件:图G存在,u和G中地顶点有相同地特征. 操作结果:若G中存在顶点u,则返回该顶点在图中位置,否则返回 其他信息.

getvex(G,v) 初始条件:图G存在,v是G中地某个顶点. 操作结果:返回v地值. DFStraverse (G) 初始条件:图G存在. 操作结果:对图进行深度优先遍历.在遍历过程中对每个顶点访问一 次. BFStraverse (&S,e) 初始条件:图G存在. 操作结果:对图进行广度优先遍历.在遍历过程中对每个顶点访问一 次. }ADT Graph 2. 本程序有三个模块: ⑴主程序模块 main(){ 初始化; { 接受命令; 显示结果; } } ⑵创建图地模块:主要建立一个图; ⑶广度优先遍历和深度优先遍历模块:输出这两种遍历地结果; (4)输出图模块:显示已创建地图. 三、详细设计 ⒈元素类型,结点类型 struct arcnode { int adjvex; /*该弧所指向地顶点地位置*/ int info; struct arcnode *nextarc; /*指向下一条弧地指针*/ }; struct vexnode { int data; /*顶点地信息*/ struct arcnode *firstarc; /*指向第一条依附该顶点地弧地指针*/ }; struct graph { struct vexnode *vexpex; int vexnum,arcnum; /*图地当前地顶点数和弧数*/ }; /*定义队列*/ struct queue { int *elem;

图地深度广度遍历(算法与大数据结构课程设计)

图的操作 一、问题描述 图是一种较线性表和树更为复杂的数据结构。在图形结构中,节点间的关系可以是任意的,图中任意两个数据元素之间都可以相关。由此,图的应用极为广泛。现在邻接矩阵和邻接表的存储结构下,完成图的深度、广度遍历。 二、基本要求 1、选择合适的存储结构完成图的建立; 2、建立图的邻接矩阵,能按矩阵方式输出图,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 3、建立图的邻接表,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 三、测试数据 四、算法思想 1、邻接矩阵 顶点向量的存储。用两个数组分别存储数据(定点)的信息和数据元素之间的关系(边或弧)的信息。 2、邻接表 邻接表是图的一种链式存储结构。在邻接表中,对图中每个定点建立一个单链表,第i 个单链表中的节点表示依附于定点vi的边。每个节点由3个域组成,其中邻接点域(adjvex)指示与定点vi邻接的点在图中的位置,链域(nextarc)指示下一条边或弧的节点;数据域(info)存储和边或弧相关的信息,如权值等。每个链表上附设一个头节点。在表头节点中,

除了设有链域(firstarc)指向链表中第一个节点之外,还设有存储定点vi的名或其他有关信息的数据域(data)。 3、图的深度遍历 深度优先搜索遍历类似于树的先根遍历,是树的先跟遍历的推广。假设初始状态是图中所有顶点未曾被访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,甚至图中所有和v相通的顶点都被访问到;若此时图有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 4、图的广度遍历 广度优先遍历类似于树的按层次遍历过程。假设从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先与“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图有顶点未被访问,则另选图中一个曾被 访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 五、模块划分 一、基于邻接矩阵的深广度遍历 1.Status InitQueue(LinkQueue *Q) 根据已知Q初始化队列 2.Status QueueEmpty (LinkQueue Q) 判断队列是否为空 3.Status EnQueue(LinkQueue *Q, QElemType e) 将e压入队尾 4.Status DeQueue(LinkQueue *Q, QElemType *e) 取队头元素e 5.int LocateVex(MGraph G,VertexType v) 定位定点v 6.void CreateGraph(MGraph *G) 建立无向图的邻接矩阵 7.void PrintGraph(MGraph G) 输出邻接矩阵的无向图 8.int FirstAdjVex(MGraph G,int v) 第一个邻接点的定位 9.int NextAdjVex(MGraph G,int v,int w) 查找下一个邻接点

邻接矩阵表示图,深度,广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

相关文档