文档库 最新最全的文档下载
当前位置:文档库 › 集成运放芯片资料简介

集成运放芯片资料简介

集成运放芯片资料简介
集成运放芯片资料简介

集成运放芯片资料简介

AD824 JFET输入,单电源,低电压,低功耗,精密四运算放大器 MC33171 单电源,低电压,低功耗运算放大器

AD826 低功耗,宽带,高速双运算放大器 MC33172 单电源,低电压,低功耗双运算放大器

AD827 低功耗,高速双运算放大器 MC33174 单电源,低电压,低功耗四运算放大器AD828 低功耗,宽带,高速双运算放大器 MC33178 大电流,低功耗,低噪音双运算放大器

AD844 电流反馈型,宽带,高速运算放大器 MC33179 大电流,低功耗,低噪音四运算放大器

AD846 电流反馈型,高速,精密运算放大器 MC33181 JFET输入,低功耗运算放大器

AD847 低功耗,高速运算放大器 MC33182 JFET输入,低功耗双运算放大器

AD8531 COMS单电源,低功耗,高速运算放大器 MC33184 JFET输入,低功耗四运算放大器

AD8532 COMS单电源,低功耗,高速双运算放大器 MC33201 单电源,大电流,低电压运算放大器

AD8534 COMS单电源,低功耗,高速四运算放大器 MC33202 单电源,大电流,低电压双运算放大器

AD9617 低失真,电流反馈型,宽带,高速,精密运算放大器 MC33204 单电源,大电流,低电压四运算放大器

AD9631 低失真,宽带,高速运算放大器 MC33272 单电源,低电压,高速双运算放大器

AD9632 低失真,宽带,高速运算放大器 MC33274 单电源,低电压,高速四运算放大器

AN6550 低电压双运算放大器 MC33282 JFET输入,宽带,高速双运算放大器

AN6567 大电流,单电源双运算放大器 MC33284 JFET输入,宽带,高速四运算放大器

AN6568 大电流,单电源双运算放大器 MC33502 BIMOS,单电源,大电流,低电压,双运算放大器

BA718 单电源,低功耗双运算放大器 MC34071A 单电源,高速运算放大器

BA728 单电源,低功耗双运算放大器 MC34072A 单电源,高速双运算放大器

CA5160 BIMOS,单电源,低功耗运算放大器 MC34074A 单电源,高速四运算放大器CA5260 BIMOS,单电源双运算放大器 MC34081 JFET输入,宽带,高速运算放大器CA5420 BIMOS,单电源,低电压,低功耗运算放大器 MC34082 JFET输入,宽带,高速双运算放大器

CA5470 BIMOS单电源四运算放大器 MC34084 JFET输入,宽带,高速四运算放大器CLC400 电流反馈型,宽带,高速运算放大器 MC34181 JFET输入,低功耗运算放大器

CLC406 电流反馈型,低功耗,宽带,高速运算放大器 MC34182 JFET输入,低功耗双运算放大器

CLC410 电流反馈型,高速运算放大器 MC34184 JFET输入,低功耗四运算放大器CLC415 电流反馈型,宽带,高速四运算放大器 MC35071A 单电源,高速运算放大器

CLC449 电流反馈型,宽带,高速运算放大器 MC35072A 单电源,高速双运算放大器CLC450 电流反馈型,单电源,低功耗,宽带,高速运算放大器 MC35074A 单电源,高速四运算放大器

CLC452 单电源,电流反馈型,大电流,低功耗,宽带,高速运算放大器 MC35081 JFE T输入,宽带,高速运算放大器

CLC505 电流反馈型,高速运算放大器 MC35082 JFET输入,宽带,高速双运算放大器

EL2030 电流反馈型,宽带,高速运算放大器 MC35084 JFET输入,宽带,高速四运

算放大器

EL2030C 电流反馈型,宽带,高速运算放大器 MC35171 单电源,低电压,低功耗运算放大器

EL2044C 单电源,低功耗,高速运算放大器 MC35172 单电源,低电压,低功耗双运算放大器

EL2070 电流反馈型,宽带,高速运算放大器 MC35174 单电源,低电压,低功耗四运算放大器

EL2070C 电流反馈型,宽带,高速运算放大器 MC35181 JFET输入,低功耗运算放

大器

EL2071C 电流反馈型,宽带,高速运算放大器 MC35182 JFET输入,低功耗双运算

放大器

EL2073 宽带,高速运算放大器 MC35184 JFET输入,低功耗四运算放大器

EL2073C 宽带,高速运算放大器 MM6558 低电压,低失调电压,精密双运算放大器EL2130C 电流反馈型,宽带,高速运算放大器 MM6559 低电压,低失调电压,精密双运算放大器

EL2150C 单电源,宽带,高速运算放大器 MM6560 低电压,低失调电压,精密双运算放大器

EL2160C 电流反馈型,宽带,高速运算放大器 MM6561 低功耗,低电压,低失调电压,精密双运算放大器

EL2165C 电流反馈型,宽带,高速,精密运算放大器 MM6564 单电源,低电压,低功耗,低失调电压,精密双运算放大器

EL2170C 单电源,电流反馈型,低功耗,宽带,高速运算放大器 MM6572 低噪音,低电压,低失调电压,精密双运算放大器

EL2175C 电流反馈型,宽带,高速,精密运算放大器 NE5230 单电源,低电压运算放大器

EL2180C 单电源,电流反馈型,低功耗,宽带,高速运算放大器 NE5512 通用双运算放大器

EL2224 宽带,高速双运算放大器 NE5514 通用四运算放大器

EL2224C 宽带,高速双运算放大器 NE5532 低噪音,高速双运算放大器

EL2232 电流反馈型,宽带,高速双运算放大器 NE5534 低噪音,高速运算放大器

EL2232C 电流反馈型,宽带,高速双运算放大器 NJM2059 通用四运算放大器

EL2250C 单电源,宽带,高速双运算放大器 NJM2082 JFET输入,高速双运算放大

EL2260C 电流反馈型,宽带,高速双运算放大器 NJM2107 低电压,通用运算放大器EL2270C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2112 低电压,通用四运算放大器

EL2280C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2114 低噪音双运算放大器

EL2424 宽带,高速四运算放大器 NJM2115 低电压,通用双运算放大器

EL2424C 宽带,高速四运算放大器 NJM2119 单电源,精密双运算放大器

EL2444C 单电源,低功耗,高速四运算放大器 NJM2122 低电压,低噪音双运算放大器

EL2450C 单电源,宽带,高速四运算放大器 NJM2130F 低功耗运算放大器

EL2460C 电流反馈型,宽带,高速四运算放大器 NJM2132 单电源,低电压,低功耗双运算放大器

EL2470C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器 NJM2136 低电压,低功耗,宽带,高速运算放大器

EL2480C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器 NJM2137 低电压,低功耗,宽带,高速双运算放大器

HA-2640 高耐压运算放大器 NJM2138 低电压,低功耗,宽带,高速四运算放大器HA-2645 高耐压运算放大器 NJM2140 低电压双运算放大器

HA-2839 宽带,高速运算放大器 NJM2141 大电流,低电压双运算放大器

HA-2840 宽带,高速运算放大器 NJM2147 高耐压,低功耗双运算放大器

HA-2841 宽带,高速运算放大器 NJM2162 JFET输入,低功耗,高速双运算放大器HA-2842 宽带,高速运算放大器 NJM2164 JFET输入,低功耗,高速四运算放大器HA-4741 通用四运算放大器 NJM3404A 单电源,通用双运算放大器

HA-5020 电流反馈型,宽带,高速运算放大器 NJM3414 单电源,大电流双运算放大器

HA-5127 低噪音,低失调电压,精密运算放大器 NJM3415 单电源,大电流双运算放大器

HA-5134 低失调电压,精密四运算放大器 NJM3416 单电源,大电流双运算放大器HA-5137 低噪音,低失调电压,高速,精密运算放大器 NJM4556A 大电流双运算放大器

HA-5142 单电源,低功耗双运算放大器 NJM4580 低噪音双运算放大器

HA-5144 单电源,低功耗四运算放大器 NJU7051 CMOS单电源,低功耗,低电压,低失调电压运算放大器

HA-5177 低失调电压,精密运算放大器 NJU7052 CMOS单电源,低功耗,低电压,低失调电压双运算放大器

HA-5221 低噪音,精密运算放大器 NJU7054 CMOS单电源,低功耗,低电压,低失调电压四运算放大器

HA-5222 低噪音,精密双运算放大器 NJU7061 CMOS单电源,低功耗,低电压,低失调电压运算放大器

HA-7712 BIMOS,单电源,低功耗,精密运算放大器 NJU7062 CMOS单电源,低功耗,低电压,低失调电压双运算放大器

HA-7713 BIMOS,单电源,低功耗,精密运算放大器 NJU7064 CMOS单电源,低功耗,低电压,低失调电压四运算放大器

HA16118 CMOS单电源,低电压,低功耗双运算放大器 NJU7071 CMOS单电源,低功耗,低电压,低失调电压运算放大器

AD704 低偏置电流,低功耗,低失调电压,精密四运算放大器 MAX430 CMOS单电源运算放大器

AD705 低偏置电流,低功耗,低失调电压,精密运算放大器 MAX432 CMOS单电源运算放大器

AD706 低偏置电流,低功耗,低失调电压,精密双运算放大器 MAX4330 单电源,低电压,低功耗运算放大器

AD707 低失调电压,精密运算放大器 MAX4332 单电源,低电压,低功耗双运算放大器

AD708 低失调电压,精密双运算放大器 MAX4334 单电源,低电压,低功耗四运算放大器

AD711 JFET输入,高速,精密运算放大器 MAX473 单电源,低电压,宽带,高速运算放大器

AD712 JFET输入,高速,精密双运算放大器 MAX474 单电源,低电压,宽带,高速双运算放大器

AD713 JFET输入,高速,精密四运算放大器 MAX475 单电源,低电压,宽带,高速四运算放大器

AD744 JFET输入,高速,精密运算放大器 MAX477 宽带,高速运算放大器

AD745 JFET输入,低噪音,高速运算放大器 MAX478 单电源,低功耗,精密双运算放大器

AD746 JFET输入,高速,精密双运算放大器 MAX478A 单电源,低功耗,精密双运算放大器

AD795 JFET输入,低噪音,低功耗,精密运算放大器 MAX479 单电源,低功耗,精密四运算放大器

AD797 低噪音运算放大器 MAX479A 单电源,低功耗,精密四运算放大器

AD8002 电流反馈型,低功耗,宽带,高速双运算放大器 MAX480 单电源,低功耗,低电压,低失调电压,精密运算放大器

AD8005 电流反馈型,低功耗,宽带,高速双运算放大器 MAX492C 单电源,低功耗,低电压,精密双运算放大器

AD8011 电流反馈型,低功耗,宽带,高速运算放大器 MAX492E 单电源,低功耗,低电压,精密双运算放大器

AD8031 单电源,低功耗,高速运算放大器 MAX492M 单电源,低功耗,低电压,精密双运算放大器

AD8032 单电源,低功耗,高速双运算放大器 MAX494C 单电源,低功耗,低电压,精密四运算放大器

AD8041 单电源,宽带,高速运算放大器 MAX494E 单电源,低功耗,低电压,精密四运算放大器

AD8042 单电源,宽带,高速双运算放大器 MAX494M 单电源,低功耗,低电压,精密四运算放大器

AD8044 单电源,宽带,高速四运算放大器 MAX495C 单电源,低功耗,低电压,精密运算放大器

AD8047 宽带,高速运算放大器 MAX495E 单电源,低功耗,低电压,精密运算放大器AD8055 低功耗,宽带,高速运算放大器 MAX495M 单电源,低功耗,低电压,精密运算放大器

AD8056 低功耗,宽带,高速双运算放大器 MC1458 通用双运算放大器

AD8072 电流反馈型,宽带,高速双运算放大器 MC1458C 通用双运算放大器

AD812 电流反馈型,低电压,低功耗,高速双运算放大器 MC33071A 单电源,高速运

算放大器

AD817 低功耗,宽带,高速运算放大器 MC33072A 单电源,高速双运算放大器

AD818 低功耗,宽带,高速运算放大器 MC33074A 单电源,高速四运算放大器

AD820 JFET输入,单电源,低电压,低功耗,精密运算放大器 MC33078 低噪音双运算放大器

AD822 JFET输入,单电源,低电压,低功耗,精密双运算放大器 MC33079 低噪音四运算放大器

AD823 JFET输入,单电源,低电压,低功耗,精密,高速双运算放大器 MC33102 低功耗双运算放大器

HA16119 CMOS单电源,低电压,低功耗双运算放大器 NJU7072 CMOS单电源,低功耗,低电压,低失调电压双运算放大器

HFA1100 电流反馈型,宽带,高速运算放大器 NJU7074 CMOS单电源,低功耗,低电压,低失调电压四运算放大器

HFA1120 电流反馈型,宽带,高速运算放大器 OP-07 低漂移,精密运算放大器HFA1205 电流反馈型,低功耗,宽带,高速双运算放大器 OP-113 BICMOS单电源,低噪音,低失调电压,精密运算放大器

HFA1245 电流反馈型,低功耗,宽带,高速双运算放大器 OP-150 COMS,单电源,低电压,低功耗

ICL7611 CMOS低电压,低功耗运算放大器 OP-160 电流反馈型,高速运算放大器ICL7612 CMOS低电压,低功耗运算放大器 OP-162 单电源,低电压,低功耗,高速,精密运算放大器

ICL7621 CMOS低电压,低功耗双运算放大器 OP-177 低失调电压,精密运算放大器

ICL7641 CMOS低电压四运算放大器 OP-183 单电源,宽带运算放大器

ICL7642 CMOS低电压,低功耗四运算放大器 OP-184 单电源,低电压,高速,精密运算放大器

ICL7650S 稳压器 OP-191 单电源,低电压,低功耗运算放大器

LA6500 单电源,功率OP放大器 OP-193 单电源,低电压,低功耗,精密运算放大器LA6501 单电源,功率OP放大器 OP-196 单电源,低电压,低功耗运算放大器

LA6510 2回路单电源功率OP放大器 OP-200 低功耗,低失调电压,精密双运算放大器"

LA6512 高压,功率OP放大器双运算放大器 OP-213 BICMOS单电源,低噪音,低失调电压,精密双运算放大器

LA6513 高压,功率OP放大器双运算放大器 OP-250 COMS,单电源,低电压,低功耗双运算放大器

LA6520 单电源,功率OP放大器三运算放大器 OP-260 电流反馈型,高速双运算放大器

LF356 JFET输入,高速运算放大器 OP-262 单电源,低电压,低功耗,高速,精密双运算放大器

LF356A JFET输入,高速运算放大器 OP-27 低噪音,低失调电压,精密运算放大器LF411 JFET输入,高速运算放大器 OP-270 低噪声,低失调电压,精密双运算放大器

LF411A JFET输入,高速运算放大器 OP-271 精密双运算放大器

LF412 JFET输入,高速双运算放大器 OP-275 高速双运算放大器

LF412A JFET输入,高速双运算放大器 OP-279 单电源,大电流双运算放大器

LF441 低功耗,JFET输入运算放大器 OP-282 JFET输入,低功耗双运算放大器

LF441A 低功耗,JFET输入运算放大器 OP-283 单电源,宽带双运算放大器

LF442 低功耗,JFET输入双运算放大器 OP-284 单电源,低电压,高速,精密双运算放大器

LF442A 低功耗,JFET输入双运算放大器 OP-290 单电源,低功耗,精密双运算放大器

LF444 低功耗,JFET输入四运算放大器 OP-291 单电源,低电压,低功耗双运算放大器

LF444A 低功耗,JFET输入四运算放大器 OP-292 BICMOS单电源,通用双运算放大器

LM2902 单电源四运算放大器 OP-293 单电源,低电压,低功耗,精密双运算放大器LM2904 单电源双运算放大器 OP-295 BICMOS低功耗,精密双运算放大器

LM324 单电源四运算放大器 OP-296 单电源,低电压,低功耗双运算放大器

LM358 单电源双运算放大器 OP-297 低电压,低功耗,低漂移,精密双运算放大器LM4250 单程控、低功耗运算放大器 OP-37 低噪音,低失调电压,高速,精密运算放大器

LM607 低失调电压,精密运算放大器 OP-400 低功耗,低失调电压,精密四运算放大器

LM6118 宽带,高速双运算放大器 OP-413 BICMOS单电源,低噪音,低失调电压,精密四运算放大器

BiCMOS

BiCMOS是继CMOS后的新一代高性能VLSI工艺。CMOS以低功耗、高密度成为80年VLSI的主流工艺。随着尺寸的逐步缩小,电路性能不断得到提高,但是当尺寸降到1um以下时,由于载流子速度饱和等原因,它的潜力受到很大的限制。把CMOS和Bipolar集成在同一芯片上,发挥各自的优势,克服缺点,可以使电路达到高速度、低功耗。BiCMOS工艺一般以CMOS工艺为基础,增加少量的工艺步骤而成。

BiCMOS(Bipolar CMOS)是CMOS和双极器件同时集成在同一块芯片上的技术,其基本思想是以CMOS器件为主要单元电路,而在要求驱动大电容负载之处加入双极器件或电路。因此BiCMOS电路既具有CMOS电路高集成度、低功耗的优点,又获得了双极电路高速、强电流驱动能力的优势。

各种集成电路简介

各种集成电路简介 转帖]三.(精华)各种集成电路简介第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的 78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识)有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为 100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。

79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。第二节语音集成电路电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。别看语音IC应用电路很简单,但是它确确实实是一片含有成千上万个晶体管芯的

各种集成电路介绍

第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 第二节语音集成电路 电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。

集成运放电路试题及答案

第三章集成运放电路 一、填空题 1、(3-1,低)理想集成运放的A ud=,K CMR=。 2、(3-1,低)理想集成运放的开环差模输入电阻ri=,开环差模输出电阻ro=。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或 两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大(a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大(a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 11、(3-3,中)集成放大器的非线性应用电路有、等。

常用集成电路的型号及功能说明

型号功能 ACP2371NI 多制式数字音频信号处理电路ACVP2205 梳状滤波、视频信号处理电路 AN5071 波段转换控制电路 AN5195K 子图像信号处理电路 AN5265 伴音功率放大电路 AN5274 伴音功率放大电路 AN5285K 伴音前置放大电路 AN5342K 图像水平轮廓校正、扫描速度调制电路AN5348K AI信号处理电路 AN5521 场扫描输出电路 AN5551 枕形失真校正电路 AN5560 50/60Hz场频自动识别电路 AN5612 色差、基色信号变换电路 AN5836 双声道前置放大及控制电路 AN5858K TV/AV切换电路 AN5862K(AN5862S) 视频模拟开关 AN5891K 音频信号处理电路 AT24C02 2线电可擦、可编程只读存储器 AT24C04 2线电可擦、可编程只读存储器 AT24C08 2线电可擦、可编程只读存储器 ATQ203 扬声器切换继电器电路 BA3880S 高分辨率音频信号处理电路 BA3884S 高分辨率音频信号处理电路 BA4558N 双运算放大器 BA7604N 梳状切换开关电路 BU9252S 8bitA/D转换电路 CAT24C16 2线电可擦、可编程只读存储器 CCU-FDTV 微处理器 CCU-FDTV-06 微处理器 CD54573A/CD54573CS 波段转换控制电路 CH0403-5H61 微处理器 CH04801-5F43 微处理器 CH05001(PCA84C841) 微处理器 CH05002 微处理器 CH7001C 数字NTSC/PAL编码电路 CHT0406 微处理器 CHT0803(TMP87CP38N*) 8bit微处理器 CHT0807(TMP87CP38N) 8bit微处理器 CHT0808(TMP87CP38N) 8bit微处理器 CHT0818 微处理器 CKP1003C 微处理器 CKP1004S(TMP87CK38N) 微处理器 CKP1006S(TMP87CH38N) 微处理器

课程介绍-清华大学模拟集成电路分析与设计

清华大学微电子学研究所Feb. 25, 2008模拟集成电路分析与设计

课程概况 z微电子学专业核心课程之一 z3学分48学时:每周3学时X16周 z目标:培养学生具有初步的模拟集成电路分析能力和设计能力,了解模拟集成电路基本模块的分析方法和设计过程 z上课时间:每周一上午第二大节(9:50~ 12:15)z上课地点:六教6A301 z习题课:四次习题课 习题课 z答疑时间:周三下午2:00~3:30 z答疑地点:任课教师办公室 答疑地点

教材与参考书 z教材: Behzad Razavi,“Design of Analog CMOS Integrated Circuits”, 西安电子科技大学出版社英版中版 (英文影印版或者中文版),2001年 池保勇,“模拟集成电路分析与设计”,(编写中)z参考书: P R Gray“Analysis and Design of Analog P.R. Gray, Analysis and Design of Analog Integrated Circuits”, Fourth Edition,高等教育出 版社英文影印版或者中文版,2001年 () P.E. Allen, “CMOS Analog Circuit Design”, Second Edition, 电子工业出版社,2002年 ,

课程内容 CMOS电路为主,适当介绍Bipolar电路

考核 z总原则:学到东西、相对公平 总原则学到东西相对公平 z平时表现(5%)+作业(10%)+课程设计(25%)+期中考试(开卷,25%)+期末考试(闭卷,35%) 试(闭卷 z作业:10次作业,每次1分 z课程设计:设计思路和结果、口头报告及文档z期中考试:开卷考试(Lecture 1-7) 期中考试(Lecture17) z期末考试:闭卷考试(期中考试后的内容)

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

集成电路的介绍

概述集成电路是一种采用特殊工艺,将晶体管、电阻、 电容等元件集成在硅基片上而形成的具有一定功能的器件,英 文为缩写为IC,也俗称芯片。集成电路是六十年代出现的, 当时只集成了十几个元器件。后来集成度越来越高,也有了 今天的P-III。 分类 集成电路根据不同的功能用途分为模拟和数字两大派 别,而具体功能更是数不胜数,其应用遍及人类生活的方方 面面。集成电路根据内部的集成度分为大规模中规模小规模 三类。其封装又有许多形式。“双列直插”和“单列直插” 的最为常见。消费类电子产品中用软封装的IC,精密产品 中用贴片封装的IC等。 对于CMOS型IC,特别要注意防止静电击穿IC,最好也不要 用未接地的电烙铁焊接。使用IC也要注意其参数,如工作电压, 散热等。数字IC多用+5V的工作电压,模拟IC工作电压各异。 集成电路有各种型号,其命名也有一定规律。一般是由前缀、数 字编号、后缀组成。前缀表示集成电路的生产厂家及类别,后缀 一般用来表示集成电路的封装形式、版本代号等。常用的集成电 路如小功率音频放大器LM386就因为后缀不同而有许多种。 LM386N是美国国家半导体公司的产品,LM代表线性电路,N代表 塑料双列直插。 集成电路型号众多,随着技术的发展,又有更多的功能更强、集成度更高的集成电路涌现,为电子产品的生产制作带来了方便。在设计制作时,若没有专用的集成电路可以应用,就应该尽量选用应用广泛的通用集成电路,同时考虑集成电路的价格和制作的复杂度。在电子制作中,有许多常用的集成电路,如NE555(时基电路)、LM324(四个集成的运算放大器)、TDA2822(双声道小功率放大器)、KD9300(单曲音乐集成电路)、LM317(三端可调稳压器)等。 这里有些集成电路的样子:

集成运放电路试题及答案

第三章集成运放电路一、填空题 1、(3-1,低)理想集成运放的A ud = ,K CMR = 。 2、(3-1,低)理想集成运放的开环差模输入电阻ri= ,开环差模输出电阻ro= 。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大 (a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大 (a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

集成运放电路实验报告

实验报告姓名:学号: 日期:成绩: 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 =∞ 开环电压增益A ud =∞ 输入阻抗r i 输出阻抗r =0 o =∞ 带宽 f BW

失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图6-1所示。对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图6-1 反相比例运算电路 图6-2 反相加法运算电路 2) 反相加法电路 电路如图6-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U - =

常用集成电路功能

鹏运发科技有限公司收音机用集成电路 序号产品型号功能与用途封装形式境外同类产品 1 YD1000 DTS用AM/FM单片立体声收音机电路 TSSOP24 DTS是数字化影院系统 2 YD1191 AM/FM单片收音机电路 SOP28 CXA1191 3 YD1600 AM单片收音机电路 SIP9 LA1600 4 YD1619 AM/FM单片收音机电路 SOP28/SDIP30 CXA1619 5 YD1800 AM/FM单片收音机电路 SDIP22 LA1800 6 YD2003 AM/FM单片收音机电路 DIP16 TA2003 7 YD2111 AM/FM单片立体收音机电路 SDIP24/SSOP24 TA2111 8 YD2149 DTS用AM/FM单片立体声收音机电路 SDIP24/SSOP24 TA2149 9 YD7088 FM自动搜索单片收音机电路 SOP16 TDA7088T 10 YD72130 AM/FM频率锁相环 SDIP24 LC72130 11 YD72131 AM/FM频率锁相环 SDIP22 LC72131 12 YD7343 FM立体声解调电路 SIP9 TA7343 13 YD7640 AM/FM单片收音机电路 DIP16 TA7640 音频功率放大集成电路 序号产品型号功能与用途封装形式境外同类产品 1 YD1001 720mW单声道音频功放电路 DIP8 2 YD1006 18W单声道音频功放电路 TO-220B 3 YD1008 22W单声道音频功放电路 TO-220B 4 YD1026 具有待机、静音功能的25W双声道音频功放电路 FZIP12 5 YD131 6 2W双声道音频功放电路 FDIP14 μPC1316C 6 YD1519 具有待机、静音功能的6W双声道音频功放电路 FSIP9 TDA1519 7 TDA2003 10W单声道音频功放电路 TO-220B TDA2003 8 YD2025 2.3W单声道音频功放电路 DIP16 TEA2025B 9 YD2025A 2.4W单声道音频功放电路 DIP16 TEA2025B 10 YD2025H 2.4W单声道音频功放电路 HDIP12 11 YD2030 18W单声道音频功放电路 TO-220B TDA2030 12 YD2030A 20W单声道音频功放电路 TO-220B TDA2030A

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的要紧参数 第六节场效应管简介 第一节学习要求 1. 掌握差不多镜象电流源、比例电流源、微电流源电路结构及差不多特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握差不多型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的要紧技术指标及集成运算放大电路的一般电路

结构。 学习重点: 掌握集成运放的差不多电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采纳直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采纳了温度补偿的手段 ----输入级是差放电路。 3. 大量采纳BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采纳复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、差不多镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 3 / 34

集成电路技术应用专业简介

集成电路技术应用专业简介 专业代码610120 专业名称集成电路技术应用 基本修业年限三年 培养目标 本专业培养德、智、体、美、劳全面发展,具有良好职业道德和人文素养,掌握微电子工艺和集成电路设计领域相关专业理论知识,具备微电子工艺管理、集成电路设计及应用等能力,从事微电子制造和封装测试工艺维护管理、集成电路辅助逻辑设计、版图设计和系统应用等方面工作的高素质技术技能人才。 就业面向 主要面向半导体制造、集成电路设计等企事业单位,在微电子工艺技术员、集成电路逻辑和版图设计助理工程师、系统应用工程师等岗位,从事微电子工艺制造和封装测试、集成电路逻辑设计、版图设计、FPGA开发与应用、芯片应用方案开发等工作。主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.掌握半导体器件、集成电路的基础理论知识; 3.具备微电子工艺加工及相关设备操作能力; 4.具备集成电路逻辑设计及仿真能力; 5.具备集成电路版图设计与验证的能力;

6.具备FPGA开发与应用的能力; 7.具备芯片应用方案开发能力。 核心课程与实习实训 1.核心课程 半导体器件物理、集成电路制造工艺、半导体集成电路、VerilogHDL应用、集成电路版图设计技术、系统应用与芯片验证。 2.实习实训 在校内进行集成电路制造工艺、半导体集成电路项目、项目化版图设计与验证等实训。 在集成电路企业及相关科研院所进行实习。 衔接中职专业举例 电子与信息技术电子技术应用 接续本科专业举例 电子科学与技术微电子科学与工程 声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。如有侵权,请联系,删除处理。

常用的集成电路

常用的集成电路 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器电容器等元器件,并按照多层布线或隧道布线的方法将各元器件组合成完整的电子电路。它在电路中用字母“IC”(也有用“N”等)表示。 电子制作中常用的集成电路有稳压集成电路、运放集成电路、语音集成电路、数字集成电路和时基集成电路等。 1.数字集成电路 数字集成电路可分为TTL数字集成电路、CMOS数字集成电路和ECL数字集成电路,它们的逻辑电平不同。较常用的是TTL数字集成电路和CMOS数字集成电路。图1是几种常用数字集成电路外形图。

图 1 TTL数字集成电路 TTL电路是晶体管-晶体管逻辑电路的英文缩写。TTL数字集成电路属于双极型晶体管集成电路,它又分为N-TTL、LS-TTL、ALS-TTL、AS-TTL、S-TTL等多种,其工作频率低于100MHz。 常用的TTL数字集成电路有74LS××系列、74S××系列、74ALS××系列、74AS××系列和74F××系列等。 COMS数字集成电路

CMOS电路是互补型金属氧化物半导体电路的英文缩写。CMOS数字集成电路属于单极型晶体管集成电路,其工作频率低于100kHz。它有多种类型,但最常见的是门电路。CMOS门电路中的逻辑门有非门、与门、与非门、或非门、或门、异或门、异或非门(同或门)、施密特触发门、缓冲器、驱动器等。 常用的CMOS数字集成电路有4000B系列、40H××系列(TC40H××、LR40H××、LS40H××、CC40H××)、74HC××系列等。 2.遥控集成电路 遥控集成电路包括红外线遥控集成电路、无限遥控集成电路和超声波遥控集成电路。 红外线遥控集成电路 红外线遥控集成电路分为红外线遥控发射集成电路和红外线遥控接收集成电路。 红外线遥控发射集成电路的作用是将代表各种指令的编码信号调制在红外线载体(红外线发光二极管)上,通过发射驱动电路向外辐射包含指令的红外光波。常用的红外线遥控发射集成电路有MN6014W、M3004LAB1 红外线遥控接收集成电路的作用是将光敏管接收的红外光波(已调制的含有控制指令的红外光波)转换为电信号,再将其解调还原为编码信号,送到译码电路译码后得到各种控制指令。常用的红外线遥控接收集成电路有AN5020、AN5026、CX20106A、KA2182、KA2183、μPC1373、μPC1490HA、LA7224、MC3373、TA8141、TC9134P、TC9149、TC9150、TDA2320、TDA3048等型号。 无线遥控集成电路 无线遥控电路是用无线电波作为载体来传输控制指令的。无线遥控集成电路也分为无线遥控发射集成电路和无线遥控接收集成电路。 无线遥控发射集成电路内部通常由射频振荡器、缓冲器、可控振荡器等组成。常用的无限遥控发射集成电路型号有T630、TDC1808、MC2831A、MC2833P、BA1404等。 常用的无线遥控接收集成电路有SL517、T631、M303R、TDC1809、μPC1651、C1676、MC3362、MC3363、MC3367、MC3372、TDA7021等型号。 超声波遥控集成电路 超声波遥控是利用超声波来传送控制指令的。 超声波接收集成电路内部由放大电路、检波电路、整形电路和双稳态电路等组成,常用的型号有NYKD 等。 超声波发射集成电路内部由振荡器、单脉冲放大器等组成。常用的型号有NYKO等。NYKO通常与NYKD配合使用。 3.语音集成电路 语音集成电路也称语音掩膜ROM或语音合成集成电路,其内部有存储器等电路,是一种大规模CMOS 集成电路,分为语言集成电路和音乐集成电路。厂家在生产语音集成电路时,将语言或音乐等信息以数字代码形式储存固化在集成电路内部,当该集成电路受到触发时,即可输出所储存的信息。

硅集成电路基本工艺流程简介

硅集成电路基本工艺流程简介 近年来,日新月异的硅集成电路工艺技术迅猛发展,一些新技术、新工艺也在不断地产生,然而,无论怎样,硅集成电路制造的基本工艺还是不变的。以下是关于这些基本工艺的简单介绍。 IC制造工艺的基本原理和过程 IC基本制造工艺包括:基片外延生长、掩模制造、曝光、氧化、刻蚀、扩散、离子注入及金属层形成。 一、硅片制备(切、磨、抛) 1、晶体的生长(单晶硅材料的制备): 1) 粗硅制备: SiO2+2H2=Si+2H2O99% 经过提纯:>99.999999% 2) 提拉法 基本原理是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体.

2、晶体切片:切成厚度约几百微米的薄片 二、晶圆处理制程 主要工作为在硅晶圆上制作电路与电子元件,是整个集成电路制造过程中所需技术最复杂、资金投入最多的过程。 功能设计à模块设计à电路设计à版图设计à制作光罩 其工艺流程如下: 1、表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2、初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化Si(固) + O2 àSiO2(固) 湿法氧化Si(固) +2H2O àSiO2(固) + 2H2 3、CVD法沉积一层Si3N4。 CVD法通常分为常压CVD、低压CVD 、热CVD、电浆增强CVD及外延生长法(LPE)。 着重介绍外延生长法(LPE):该法可以在平面或非平面衬底上生长出十分完善的和单晶衬底的原子排列同样的单晶薄膜的结构。在外延工艺中,可根据需要控制外延层的导电类型、电阻率、厚度,而且这些参数不依赖于衬底情况。 4、图形转换(光刻与刻蚀) 光刻是将设计在掩模版上的图形转移到半导体晶片上,是整个集成电路制造流程中的关键工序,着重介绍如下: 1)目的:按照平面晶体管和集成电路的设计要求,在SiO2或金属蒸发层上面刻蚀出与掩模板完全对应的几何图形,以实现选择性扩散和金属膜布线。 2)原理:光刻是一种复印图像与化学腐蚀相结合的综合性技术,它先采用照相复印的方法,将光刻掩模板上的图形精确地复印在涂有光致抗蚀剂的SiO2层或金属蒸发层上,在适当波长光的照射下,光致抗蚀剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂融解。然后利用光致抗蚀剂的保护作用,对SiO2层或金属蒸发层进行选择性化学腐蚀,然后在SiO2层或金属蒸发层得到与掩模板(用石英玻璃做成的均匀平坦的薄片,表面上涂一层600 800nm厚的Cr层,使其表面光洁度更高)相对应的图形。 3)现主要采有紫外线(包括远紫外线)为光源的光刻技术,步骤如下:涂胶、前烘、曝光、显影、坚模、腐蚀、去胶。 4)光刻和刻蚀是两个不同的加工工艺,但因为这两个工艺只有连续进行,才能完成真正意义上的图形转移。在工艺线上,这两个工艺是放在同一工序,因此,有时也将这两个工艺步骤统称为光刻。 湿法刻蚀:利用液态化学试剂或溶液通过化学反应进行刻蚀的方法。 干法刻蚀:主要指利用低压放电产生的等离子体中的离子或游离基(处于激发态的分子、原子及各种原子基团等)与材料发生化学反应或通过轰击等物理作用而达到刻蚀的目的。 5) 掺杂工艺(扩散、离子注入与退火) 掺杂是根据设计的需要,将需要的杂质掺入特定的半导体区域中,以达到改变半导体电学性质,形成PN结、电阻欧姆接触,通过掺杂可以在硅衬底上形成不同类型的半导体区域,构成各种器件结构。掺杂工艺的基本思想就是通过某种技术措施,将一定浓度的三价元素,如硼,或五价元素,如磷、砷等掺入半导体衬底,掺杂方法有两种:

第六章 集成运放组成的运算电路典型例题

第六章集成运放组成的运算电路 运算电路 例6-1例6-2例6-3例6-4例6-5例6-6例6-7例6-8例6-9 例6-10例6-11 乘法器电路 例6-12例6-13例6-14 非理想运放电路分析 例6-15 ; 【例6-1】试用你所学过的基本电路将一个正弦波电压转换成二倍频的三角波电压。要求用方框图说明转换思路,并在各方框内分别写出电路的名称。 【相关知识】 波形变换,各种运算电路。 【解题思路】 利用集成运放所组成的各种基本电路可以实现多种波形变换;例如,利用积分运算电路可将方波变为三角波,利用微分运算电路可将三角波变为方波,利用乘方运算电路可将正弦波实现二倍频,利用电压比较器可将正弦波变为方波。 【解题过程】 先通过乘方运算电路实现正弦波的二倍频,再经过零比较器变为方波,最后经积分运算电路变为三角波,方框图如图(a)所示。

【其它解题方法】 先通过零比较器将正弦波变为方波,再经积分运算电路变为三角波,最后经绝对值运算电路(精密整流电路)实现二倍频,方框图如图(b)所示。 实际上,还可以有其它方案,如比较器采用滞回比较器等。 【例6-2】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 & 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。

(2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即。根据以上分析,可画出的波形如图(c)所示。 图(c) 。 (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。 【例6-3】在图(a)示电路中,已知, ,,设A为理想运算放大器,其输出电压最大值为,试分别求出当电位器的滑动端移到最上端、中间位置和最下端时的输出电压的值。

模拟集成电路学习历程--吐血推荐

我想说的是三本经典教材。没有看完,应该说根本不能入门,现在我想谈谈对三本教材的学习经验论坛上有很多大虾的心得。我还想谈谈! 我是从艾伦的开始,可以说艾伦的书是模拟CMOS IC 设计的最基本的书,它完全是从集成电路的角度,而且和工艺结合的很紧,好像和分立的电路完全分开,我觉得艾伦的书最经典的分析在于大信号的分析,让你了解集成电路的设计要考虑的问题,而不是对实际电路的具体分析,此书更好的是书中的电路直接来自工程实践的,从设计的角度谈的很多,很好。特别是5,6,7。但是如果基础不够,那刚开始时有难度! 那就再看GRAY的,此书是三本中,最基本的,是从分立到集成的桥梁,看艾伦的如果某些地方有难度,特别是级零点,小信号的分析(刚从分立的模拟电路设计转入集成电路设计的朋友,喜欢从小信号来分析电路参数的),强烈推荐GRAY(理论大师,讲解的特别清晰、详细). 以上两本书看完了后,你可能跃跃欲试,想设计个电路看看,然后电路结构想改进,电路的拓扑结构越来越难,小信号的分析有难度的,大信号也不能一目了然了,遇到了瓶颈了,怎么办?看拉扎维的!!!(有网友说拉是用艺术的眼光来设计电路的)此书从大局的角度来分析电路的。 三本书后,基本上你算入门了,可以跟大牛做项目了,然后多看IEEE的资料,(基准源,运放,比较器)是要继续训练的,(有位大侠谈过了,看帖子,模拟电路的四重境界--文章结尾有)。然后再从CMOS 到BICMOS等等!! 我再推荐两本好书(专业性更强)introducation to cmos op-amps and comparators;design of analog y chip 本人刚刚学习,说得不好,不专业,还请各位朋友多多提醒 模拟电路的四重境界 复旦攻读微电子专业模拟芯片设计方向研究生开始到现在五年工作经验,已经整整八年了,其间聆听过很多国内外专家的指点。最近,应朋友之邀,写一点心得体会和大家共享。 我记得本科刚毕业时,由于本人打算研究传感器的,后来阴差阳错进了复旦逸夫楼专用集成电路与系统国家重点实验室做研究生。现在想来这个实验室名字大有深意,只是当时惘然。电路和系统,看上去是两个概念,两个层次。我同学有读电子学与信息系统方向研究生的,那时候知道他们是“系统”的,而我们呢,是做模拟“电路”设计的,自然要偏向电路。而模拟芯片设计初学者对奇思淫巧的电路总是很崇拜,尤其是这个领域的最权威的杂志JSSC (IEEE Journal of solid state circuits),以前非常喜欢看,当时立志看完近二十年的文章,打通奇经八脉,总是憧憬啥时候咱也灌水一篇,那时候国内在此杂志发的文章凤毛麟角,就是在国外读博士,能够在上面发一篇也属优秀了。 读研时,我导师是郑增钰教授,李联老师当时已经退休,逸夫楼邀请李老师每个礼拜过来指导。郑老师治学严谨,女中豪杰。李老师在模拟电路方面属于国内先驱人物,现在在很多公司被聘请为专家或顾问。李老师在87年写的一本(运算放大器设计);即使现在看来也是经典之作。李老师和郑老师是同班同学,所以很要好,我自然相对于我同学能够幸运地得到李老师的指点。李老师和郑老师给我的培养方案是:先从运算放大器学起。所以我记得我刚开始从小电流源开始设计。那时候感觉设计就是靠仿真调整参数。但是我却永远记住了李老师语重心长的话:运放是基础,运放设计弄好了,其他的也就容易了。 当时不大理解,我同学的课题都是AD/DA,锁相环等“高端”的东东,而李老师和郑老师却要我做“原始”的模块,我仅有的在(固体电子学) (国内的垃圾杂志)发过的一篇论文就是轨到轨(rail-to-rail)放大器。做的过程中很郁闷,非常羡慕我同学的项目,但是感觉李

模拟集成电路设计的九个层次

[转贴] 模拟集成电路设计的九个层次来源: 一篇好文章, 摘录于此,以示激励. 一段 你刚开始进入这行,对PMOS/NMOS/BJT什么的只不过有个大概的了解,各种器件的特性你也不太清楚,具体设计成什么样的电路你也没什么主意,你的电路图主要看国内杂志上的文章,或者按照教科书上现成的电路,你总觉得他们说得都有道理。你做的电路主要是小规模的模块,做点差分运放,或者带隙基准的仿真什么的你就计算着发文章,生怕到时候论文凑不够。总的来说,基本上看见运放还是发怵。你觉得spice 是一个非常难以使用而且古怪的东西。 二段 你开始知道什么叫电路设计,天天捧着本教科书在草稿纸上狂算一气。你也经常开始提起一些技术参数,Vdsat、lamda、early voltage、GWB、ft之类的。总觉得有时候电路和手算得差不多,有时候又觉得差别挺大。你也开始关心电压,温度和工艺的变化。例如低电压、低功耗系统什么的。或者是超高速高精度的什么东东,时不时也来上两句。你设计电路时开始计划着要去tape out,虽然tape out看起来还是挺遥远的。这个阶段中,你觉得spice很强大,但经常会因为AC仿真结果不对而大伤脑筋。 三段 你已经和PVT斗争了一段时间了,但总的来说基本上还是没有几次成功的设计经验。你觉得要设计出真正能用的电路真的很难,你急着想建立自己的信心,可你不知道该怎么办。你开始阅读一些JSSC或者博士论文什么的,可你觉得他们说的是一回事,真正的芯片或者又不是那么回事。你觉得Vdsat什么的指标实在不够精确,仿真器的缺省设置也不够满足你的要求,于是你试着仿真器调整参数,或者试着换一换仿真器,但是可它们给出的结果仍然是有时准有时不准。你上论坛,希望得到高手的指导。可他们也是语焉不详,说得东西有时对有时不对。这个阶段中,你觉得spice虽然很好,但是帮助手册写的太不清楚了。 四段 你有过比较重大的流片失败经历了。你知道要做好一个电路,需要精益求精,需要战战兢兢的仔细检查每一个细节。你发现在设计过程中有很多不曾设想过的问题,想要做好电路需要完整的把握每一个方面。于是你开始系统地重新学习在大学毕业时已经卖掉的课本。你把能能找到的相关资料都仔细的看了一边,希望能从中找到一些更有启发性的想法。你已经清楚地知道了你需要达到的电路指标和性能,你也知道了电路设计本质上是需要做很多合理的折中。可你搞不清这个“合理”是怎么确定的,不同指标之间的折中如何选择才好。你觉得要设计出一个适当的能够正常工作的电路真的太难了,你不相信在这个世界上有人可以做到他们宣称的那么好,因为聪明如你都觉得面对如此纷杂的选择束手无策,他们怎么可能做得到?这个阶段中,你觉得spice功能还是太有限了,而且经常对着"time step too small"的出错信息发呆,偶尔情况下你还会创造出巨大的仿真文件让所有人和电脑崩溃。 五段 你觉得很多竞争对手的东西不过如此而已。你开始有一套比较熟悉的设计方法。但是你不知道如何更加优化你手头的工具。你已经使用过一些别人编好的脚本语言,但经常碰到很多问题的时候不能想起来用awk 或者perl搞定。你开始大量的占用服务器的仿真时间,你相信经过大量的仿真,你可以清楚地把你设计的模块调整到合适的样子。有时候你觉得做电路设计简直是太无聊了,实在不行的话,你在考虑是不是该放弃了。这个阶段中,你觉得spice好是好,但是比起fast spice系列的仿真器来,还是差远了;你开始不相信AC仿真,取而代之的是大量的transient仿真。 六段 你开始明白在这个世界中只有最合适的设计,没有最好的设计。你开始有一套真正属于自己的设计方法,你会倾向于某一种或两种仿真工具,并能够熟练的使用他们评价你的设计。你开始在设计中考虑PVT的变化,你知道一个电路从开始到现在的演化过程,并能够针对不同的应用对他们进行裁减。你开始关注功耗

相关文档