文档库 最新最全的文档下载
当前位置:文档库 › 晶胞典型例题

晶胞典型例题

晶胞典型例题
晶胞典型例题

qqqeee 晶胞典型例题

1.现有四种晶体,其离子排列方式如图所示,其中化学式不属AB 型的是

A B C D

2. 据报道,某种合金材料有较大的储氢容量,其晶体结构的最小单元如左下图所示。则这种合金的化学式为

A .LaNi 6

B .LaNi 3

C .LaNi 4

D .LaNi 5

3.某离子晶体中晶体结构最小的重复单元如右上图:A 为阴离子,在正方体内,B 为阳离子,分别在顶点和面心,则该晶体的化学式为 A .B 2A B .BA 2 C .B 7A 4 D .B 4A 7

4.某离子化合物的晶体中,最小重复单元及其八分之一结构单元如左下图所示,具有该晶体结构的化合物可能是

A .CaF 2

B .CO 2

C .NaCl

D .CsCl

5.科学家最近发现一种由钛原子和碳原子构成的气态团簇分子,如右上图所示:图中顶角和面心的原子都是钛原子,棱的中心和体心的原子都是碳原子该分子的化学式是 A .Ti l3C 14 B .Ti 14C 13 C .Ti 4C 5 D .TiC

6.在氯化钠晶体(左下图)中,与氯离子距离最近的钠离子有 个;与氯离子距离最近的氯离子有 个。

7.二氧化碳晶体中(右上图),与二氧化碳分子距离最近的二氧化碳分子有 个。

Ni 原子

La

原子

8.石墨(左下图)是层状晶体,每一层内,碳原子排列成正六边形,许多个正六边形排列成平面网状结构。如果每两个相邻碳原子间可以形成一个碳碳单键,则石墨晶体中每一层碳原子数与碳碳单键数的比是 ( ) A .1∶1 B .1∶2 C .1∶3 D .2∶3

9.金刚石(右上图)结构中,一个碳原子与 个碳原子成键,则每个碳原子实际形成的化学键为 根;a mol 金刚石中,碳碳键数为 mol 。

10.某离子晶体晶胞结构如左下图所示,x 位于立方体的顶点,Y 位于立方体中心。试分析: (1)晶体中每个Y 同时吸引着__________个X ,每个x 同时吸引着__________个Y ,该晶体的化学式为__________ 。

(2)晶体中在每个X 周围与它最接近且距离相等的X 共有__________个。

(3)晶体中距离最近的2个X 与1个Y 形成的夹∠XYX 的度数为__________。 (4)设该晶体的摩尔质量为M g·mol -1,晶体密度为ρ·cm -3,阿伏加德罗常数为N A 则晶体中两个距离最近的X 中心间的距离为__________ 。

11.食盐晶体如右上图所示。在晶体中,? 表示Na +,ο 表示Cl -。已知食盐的密度为ρ g / cm 3,

NaCl 摩尔质量M g / mol ,阿伏加德罗常数为N ,则在食盐晶体里Na +和Cl -的间距大约是 A .

3

2N

M

ρcm B . 3

2N

M

ρcm C . 3

2M

N

ρcm D . 3

8N

M

ρcm 团簇分子是由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的分子,气态表示它所处的状态。解题可简单地理解为:它就是一个独立的分子,不和其它微粒形成化学键,所以不要用均摊等方法来分析结构(有一个原子就是一个原子,和纳米颗粒类似)。

(完整版)常见晶胞模型

氯化钠晶体 离子晶体 (1)NaCI晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 (2) (3)NaCI晶胞中每个CI-等距离且最近的Na+(即CI-配位数)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4个; 占有的CI-4个。 在该晶体中每个Na+周围与之最接近且距离相等的Na+ 与每个Na+等距离且最近的CI-所围成的空间几何构型为 CsCI晶体(注意:右侧小立方体为CsCI晶胞;左侧为8个晶胞) (1)CsCI晶胞中每个Cs+等距离且最近的C「(即Cs+配位 数)为8个 CsCI晶胞中每个CI-等距离且最近的Cs+(即CI-配位数)为 8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个这 几个Cs+在空间构成的几何构型为正八面体。 ? Cs* OCI- (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的CI- 1个CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4 个S2「,有4个 Zn2+ (2)Zn2+的配位数为4个, S2_的配位数为4个 O£n?,?

原子晶体 (1) 金刚石晶体 a 每个金刚石晶胞中含有 8个碳原子,最小的碳环为 6元环,并且不在同一平面(实际为椅 式结 构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个 C 结合,形成正四面体。键角109° 28' b 、 每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、 12g 金刚石中有2mol 共价键,碳原子与共价键之比为 (2) Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的 C 原子全部换成Si 原 子,健长稍长些便可得到晶体硅的晶胞。 (3) 某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互不相邻的立方 体体心的为C 原子,反之亦可) a 每个SiC 晶胞中含有 4个硅原子,含有 A 个碳原子 b 、1mol SiC 晶体中有4mol Si —C 共价键 (4)SiO 2晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可 得到SiO 2晶胞。 a 每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为正四面体型,SiO 2 晶体中最小的环为 _J2_ 元环 b 、每个Si 原子被 亚个十二元环共用,每个 O 原子被_6_个 十二元环共用 c 、每个SiO 2晶胞中含有_8_个Si 原子,含有J6_个O 原子 d 、1mol Si O 2晶体中有_4 mol 共价键 (5)晶体硼 已知晶体硼的基本结构单元是由 B 原子构成的正二十面体,其中有 20个等边三角形的面和一定 数目的顶点,每个顶点各有一个 B 原子。通过观察图形及推算,可知此结构单元是由 12个B 原子构成,其中B —B 键间的夹角是 60 ° 。假设将晶体硼结构单元中每个顶角均削去,余下 部分 的结构与G 。相同,贝U Go 由_12_个正五边形和 20个正六边形构成。 金刚石 金刚石晶胞 金刚石晶胞分位置注释 Si O

(完整版)高二化学常见晶胞

高二化学 常见晶胞 类 型 实例 结构 要点 原子晶体 金刚石 1、每一个碳原子采用 杂化与其他 个碳原子等距离紧邻,由非极性键结合成的最小环的结构中 有 个碳原子。平均每个碳原子被 个六元环共用,每根C-C 键被 个六元环共用。 2、1mol 金刚石中,碳碳键为 mol 。 二氧 化硅 1、每一个硅原子紧邻 个氧原子,每一个氧原子紧邻 个硅原子,形成了由Si-O 键(极性或非极性)键构成的 元环的最小环状结构。一个环上有 个硅原子, 个氧原子。 2、1molSiO 2中,硅氧键为 mol 。 分 子晶体 干冰 1、一个二氧化碳晶胞中含有 个二氧化碳分 子 2、二氧化碳晶胞中与二氧化碳最近的二氧化碳分子有 个 C 60 1、一个C 60分子中含有____根双键,____根单键。 2、C 60晶胞中与一个C 60最近的C 60分子有___个 冰 1、一个水分子形成________个氢键,平均1mol 冰中含有 mol 氢键。 离子晶体 NaCl 1、每个钠离子紧邻 个Cl -,每个Cl -又紧邻 个 Na +,这些氯离子或Na +构成的空间几何构型是 ;2、与每一个Na +等距离的围绕且又最近的Na +为 个;同理Cl -也然。

CsCl 1、每一个 Cl-紧邻个Cs+,每一个Cs+紧邻 个Cl-,这些Cs+或Cl-构成了体。 2、与每一个Cs+(或Cl-)等距离的围绕且又最近的Cs+(或Cl-)为个,这些Cs+(或Cl-)构成的空间构型是体。 CaF21、1个晶胞中含有个Ca2+,个F-,Ca2+的配位数为个,F-配位数为个 2、设CaF2晶胞边长为a pm, 求晶体密度为g/cm3 金属晶体简单立 方堆积 1、代表物质:Po 2、空间利用率: 3、配位数: 体心立 方堆积 1、代表物质:Na、K、Fe、W 2、空间利用率: 3、配位数: 六方密 堆积 ABABAB 1、代表物质:Mg、Zn、Ti 2、空间利用率: 3、配位数: 面心立 方密堆 积 ABCABC 1、代表物质:Cu、Ag、Au 2、空间利用率: 3、配位数: 混 合晶体石墨 1、碳原子的杂化方式为,键角为。 2、在石墨晶体的片层结构中,每个六元碳环占有 的碳原子数为个,每个六元碳环所含有的共价 健数是个。

晶体的常识教案

第三章晶体结构与性质 第一节晶体的常识 教学目标: 1、了解晶体的有关常识,知道什么是晶体,什么是晶胞。 2、从微观角度认识晶体的排列方式,会简单计算晶胞的化学式。 3、了解人类探索物质结构的价值,认同“物质结构的探索是无止境的”观点,认识在分子等层次研究物质的意义。 教学重点:晶体、晶胞概念。 教学难点:计算晶胞的化学式。 教学过程: [导课]走进化学实验室,你能见到许多固体,如蜡状的白磷(P4)、黄色的硫黄、紫黑色的碘(I2)和高锰酸钾(KMnO4)、蓝色的硫酸铜(CuSO4·5H20)、白色的碳酸钙等。放眼世界,自然界中绝大多数矿物也都是固体。你一定还能说出生活中常见的更多的固体,如金属、玻璃、陶瓷、砖瓦、水泥、塑料、橡胶、木材…… 你是否知道固体有晶体和非晶体之分?绝大多数常见的固体是晶体,只有如玻璃之类的物质属于非晶体(又称玻璃体)。晶体与非晶体有什么本质的差异呢?今天我们开始学习…。 [板书]第三章晶体结构与性质 第一节晶体的常识 [投影] [思考] [ [ 发生的过程。不过,“自发”过程的实现,仍需要一定的条件。例如,水能白发地从高处流向低处,但不打开拦截水流的闸门,水库里的水就不能下泻。晶体呈现自范性的条件之一是晶体生长的速率适当。熔融态物质冷却凝固,有时得到晶体,但凝固速率过快,常常只得到看不到多面体外形的粉末或没有规则外形的块状物。 [板书]1、晶体的自范性即晶体能白发地呈现多面体外形的性质。 [投影]

[讲述]最有趣的例子是天然的水晶球。水晶球是岩浆里熔融态的Si02侵入地壳内的空洞冷却形成的。剖开水晶球,常见它的外层是看不到晶体外形的玛瑙,内层才是呈现晶体外形的水晶。其实,玛瑙和水晶都是二氧化硅晶体,不同的是,玛瑙是熔融态Si02快速冷却形成的,而水晶则是热液缓慢冷却形成的。 [讨论]除以上水晶和玛瑙是熔融态冷却得到的,根据所学知识还有那些方法得到晶体? [汇报并板书] 2、得到晶体一般有三条途径:(1)熔融态物质凝固;(2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。 [投影]硫晶体、碘晶体、硫酸铜晶体的获得 [分组实验1] 在一个小烧杯里加入少量碘,用一个表面皿盖在小烧杯上,并在表面皿上加少量冷水。把小烧杯放在石棉网上加热,观察实验现象。 [分组实验2]用显微镜观察几种晶体结构:(K2Cr2O7、KNO3、萘) [板书]3、晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象。 [投影] [自学] [提问]什么是晶体的各向异性? [板书]4、晶体的特点①外形和内部质点排列的高度有序性;②各向异性;③晶体的熔点较固定。 [讲述]各向异性:像人们在观察大幅图案画时的视觉感受,对不同的图案画的感受当然是不同的,而对于同一幅图案画来说,由不同的方向审视时,也会产生不同的感受。所以,晶体的某些物理性质的各向异性同样反映了晶体内部质点排列的有序性,而且通过这些性质可以了解晶体的内部排列与结构的一些信息。而非晶体则不具有物理性质各向异性的特点。区分晶体和非晶体最可靠的科学方法是对固体进行X—射线衍射实验,有兴趣的同学可以阅读相关的科学视野。 [分组探讨]1、某同学在网站土找到一张玻璃的结构示意图如图3—5所示,这张图说明

常见晶胞模型

氯化钠晶体 (1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。

金刚石 金刚石晶胞 金刚石晶胞分位置注释 (1)金刚石晶体 a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。键角109°28’ b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的C 原子全部换成Si 原子,健长稍长些便可得到晶体硅的晶胞。 (3)某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互不相邻的立方体体心的为C 原子,反之亦可) a 、每个SiC 晶胞中含有 4 个硅原子,含有 4 个碳原子 b 、1mol SiC 晶体中有4 mol Si —C 共价键 (4)SiO 2 晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可得到SiO 2晶胞。 a 、每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为__正四面体_型,S iO 2晶体中最小的环为 12 元环 b 、每个Si 原子被 12 个十二元环共用,每个O 原子被 6 个 十二元环共用 c 、每个SiO 2晶胞中含有 8 个Si 原子,含有 16 个O 原子 d 、1mol Si O 2晶体中有 4 mol 共价键 (5)晶体硼 已知晶体硼的基本结构单元是由B 原子构成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点各有一个B 原子。通过观察图形及推算,可知此结构单元是由__12_个B 原子构成,其中B —B 键间的夹角是__60°__。假设将晶体硼结构单元中每个顶角均削去,余下部分的结构与C 60相同,则C 60由_12_个正五边形和_20个正六边形构成。

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

高中化学 常见晶胞模型

离子晶体 氯化钠晶体 (1)NaCl晶胞每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+ 共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1) CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。 CaF 2 晶体 (1)) Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF 2 晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数) 为8个 CaF 2 晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。 原子晶体 金刚石金刚石晶胞金刚石晶胞 (1)金刚石晶体 a、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平 面(实际为椅式结构),碳原子为sp3杂化,每个C以共价键跟相邻的_4_个C 结合,形成正四面体。键角109°28’ b、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c、12g金刚石中有2mol共价键,碳原子与共价键之比为 1:2

高中化学复习压轴题热点练习:晶胞的有关计算

热点6 晶胞的有关计算 1.某晶体的晶胞结构如图所示。X (?)位于立方体顶点,Y()位于立方体中心。试分析: (1)晶体中每一个Y 同时吸引着________个X,每个X 同时吸引着________个Y,该晶体的化学式是____________。 (2)晶体中在每个X 周围与它最近且距离相等的X 共有________个。 (3)晶体中距离最近的2个X 分别与1个Y 形成的两条线的夹角为_______。 答案 (1)4 8 XY 2(或Y 2X) (2)12 (3)109°28′ 解析 (1)同时吸引的微粒个数即指在某微粒周围距离最近的其他种类的微粒个数,观察图可知,Y 位于立方体的体心,X 位于立方体的顶点,每个Y 同时吸引着4个X,而每个X 同时被8个立方体共用,每个立方体的体心都有1个Y,所以每个X 同时吸引着8个Y,X 、Y 的个数比为1∶2,所以化学式为XY 2或Y 2X 。 (2)晶体中每个X 周围与它最接近的X 之间的距离应为如图所示立方体的面对角线。位置关系分别在此X 的上层、下层和同一层,每层均有4个,共有12个。 (3)若将4个X 连接,构成1个正四面体,Y 位于正四面体的中心,可联系CH 4的键角,知该夹角为109°28′。 2.(1)单质O 有两种同素异形体,其中沸点高的是________(填分子式),原因是________________________;O 和Na 的氢化物所属的晶体类型分别为________和________。 (2)Al 单质为面心立方晶体,其晶胞参数a =0.405 nm,晶胞中铝原子的配位数为________。列式表示Al 单质的密度____________g·cm -3 (不必计算出结果)。 答案 (1)O 3 O 3相对分子质量较大,范德华力大 分子晶体 离子晶体 (2)12 4×27 6.02×1023 ×(0.405×10-7) 3 解析 (1)O 元素形成O 2和O 3两种同素异形体,固态时均形成分子晶体,而分子晶体中,相对分子质量越大,分子间作用力越大,物质的沸点越高,故O 3的沸点高于O 2。O 元素形成的氢化物有H 2O 和H 2O 2,二者均能形成分子晶体。Na 元素形成的氢化物为NaH,属于离子晶体。 (2)面心立方晶胞中粒子的配位数是12。一个铝晶胞中含有的铝原子数为8×18+6×1 2=4(个),一个晶 胞的质量为 4 6.02×10 23×27 g,再利用密度与质量、晶胞参数a 的关系即可求出密度,计算中要注意1 nm =10-7 cm 。 3.氧化锌(ZnO)、氮化镓(GaN)及新型多相催化剂组成的纳米材料能利用可见光分解水,生成氢气和氧 气。 (1)ZnO 是两性氧化物,能跟强碱溶液反应生成 [Zn(OH)4]2- 。不考虑空间构型,[Zn(OH)4]2- 的结构可用示意图表示为____________,某种ZnO 晶体的晶

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”,n(Si)∶ n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相 连接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型)离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有 个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs +、个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位 数为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位 数为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位 数为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

晶体晶胞结构

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C 例4、某元素的全部电离能(电子伏特)如下:

I1 I2 I3 I4 I5 I6 I7 I8 23.6 35.1 54.9 77.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”如:锂 和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以 及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。 9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

晶胞计算习题答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 1、【答案】(1)mol-1(2)①8 4 ②48③ 【解析】(1)铜晶胞为面心立方最密堆积,1个晶胞能分摊到4个Cu原子;1个晶胞的体积为a3cm3;一个晶胞的质量为a3ρ g;由=a3ρ g,得N A=mol -1。 (2) ①每个Ca2+周围吸引8个F-,每个F-周围吸收4个Ca2+,所以Ca2+的配位数为8,F-的配位数为4。②F-位于晶胞内部,所以每个晶胞中含有F-8个。含有Ca2+为×8+×6=4个。 ③ρ===a g·cm-3, V=。 2、【解析】 试题分析:本考查学生对知识综合利用能力,要求对晶胞知识能够融会贯通。依题意画出侧面图,设正立方体边长为a,则体积为a3。,AC=4r, 故原子半径,根据均摊法得,每个正立方体包括金属原子 8×1/8+6×1/2=4(个),球体体积共

4×空间利用率为:. 考点:均摊法计算 点评:本题考查相对综合,是学生能力提升的较好选择。 3、(1)34.0% (2)2.36 g/cm3 【解析】(1)该晶胞中Si原子个数=4+8×1/8+6×1/2=8,设Si原子半径为xcm,该晶胞中硅原子总体积=,根据硬球接触模型可知,体对角线四分之一处的原子与顶点上的原子紧贴,设晶胞边长为a,所以,解得a=,晶胞体积=()3,因此空间利用率=×100%=34.0%。(2)根据以上分析可知边长=,所以密度==2.36g/cm3。 4、【答案】(1)4(2)金属原子间相接触,即相切 (3)2d3(4) 【解析】利用均摊法解题,8个顶点上每个金原子有属于该晶胞,6个面上每个金原子有属于该晶胞,故每个晶胞中金原子个数=8×+6×=4。假设金原子间相接 触,则有正方形的对角线为2d。正方形边长为d。所以V晶= (d)3=2d3,V m=N A=d3N A,所以ρ==。 5、【答案】(1)YBa2Cu3O7(2)价n(Cu2+)∶n(Cu3+)=2∶1 【解析】(1)由题图所示晶胞可知:一个晶胞中有1个Y3+,2个Ba2+。晶胞最上方、最下方分别有4个Cu x+,它们分别被8个晶胞所共用;晶胞中间立方体的8个顶点各有一个Cu x+,它们分别被4个晶胞共用,因此该晶胞中的Cu x+为n(Cu x+)=(个)。晶胞最上方、最下方平面的棱边上共有4个氧离子,分别被4个晶胞共用;又在晶胞上的立方体的竖直棱边上和晶胞下方的立方体的竖直棱

高三化学基础知识复习 课时 考点二五类常见晶体模型与晶胞计算

考点二五类常见晶体模型与晶胞计算 (考点层次B→共研、理解、整合) 1.典型晶体模型 (1)原子晶体(金刚石和二氧化硅) ①金刚石晶体中,每个C与另外4个C形成共价键,C—C键之间的夹角是109°28′,最小的环是六元环。含有1 mol C的金刚石中,形成的共价键有2 mol。 ②SiO 2 晶体中,每个Si原子与4个O成键,每个O原子与2个硅原子成键,最 小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子,1 mol SiO 2中含有4 mol Si—O键。 (2)分子晶体 ①干冰晶体中,每个CO 2分子周围等距且紧邻的CO 2 分子有12个。 ②冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H 2 O 的冰中,最多可形成2 mol“氢键”。 (3)离子晶体 ①NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。每个晶胞含4个Na+和4个Cl-。 ②CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。 (4)石墨晶体 石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。

(5)常见金属晶体的原子堆积模型 2.晶胞中微粒的计算方法——均摊法 (1)原则:晶胞任意位置上的一个原子如果是被n个晶胞所共有,那么,每个晶 胞对这个原子分得的份额就是1 n (3)图示: 提醒:在使用均摊法计算晶胞中的微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心的微粒依次被6、3、4、2个晶胞所共有。3.几种常见的晶胞结构及晶胞含有的粒子数目 A.NaCl(含4个Na+,4个Cl-) B.干冰(含4个CO 2 )

(完整版)高二化学常见晶胞

晶体与非晶体 【高考热点】 1.晶体的组成、结构以及晶体类型的判断。 2.同种和不同种晶体类型性质的比较。 3.晶体结构分析及晶胞中微粒数目的计算方法。 4.晶体类型与微粒间作用力的关系。 区别晶体与非晶体可用:X -射线衍射 晶胞 (1)概念:描述晶体结构的基本单元。 (2)特征 ①无隙:相邻晶胞之间没有_________。 ②并置:所有晶胞都是________排列的,_________相同。 离子晶体的晶格能 (1)定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:_________。 (2)影响因素 ①离子所带电荷数:离子所带电荷数越多,晶格能越______。 ②离子的半径:离子的半径越______,晶格能越大。 (3)与离子晶体性质的关系 晶格能越大,形成的离子晶体越_____,且熔点越___,硬度越___。 任何间隙 平行 取向 kJ ·mol -1 大 小 稳定 高 大

晶体基本类型和性质的比较 1、晶体类型的方法 ①依据作用力判断 离子键→离子晶体;共价键(原子间)→原子晶体; 分子间作用力→分子晶体;金属键→金属晶体; ②依据物质的组成判断 ③依据晶体的熔点判断。 一般地,熔沸点原子晶体>离子晶体>分子晶体;金属晶体熔沸点有高有低。 常温下呈气态或者液态的,一般为分子晶体。 ④依据导电性判断。 离子晶体水溶液及熔融状态可以导电; 原子晶体一般一般不导电,晶体硅为半导体 石墨能导电; 分子晶体为非导体,有些分子晶体中的电解质溶于水可以导电; 金属晶体是电的良导体。 ⑤依据硬度和机械性能判断。 离子晶体硬度较大或略硬而脆;原子晶体硬度大,分子晶体硬度小且较脆; 2、晶体熔沸点高低的判断 (1)不同晶体类型的物质:原子晶体> 离子晶体> 分子晶体 (2)根据常温下物质的状态来判断:固态>液态>气态 (3)同种晶体类型的物质:晶体内微粒间作用力越大,熔沸点越高 ①离子晶体:组成相似的离子晶体,离子半径越小、离子电荷数越多熔沸点越高。 例如:熔沸点MgCl2 > NaCl > KCl ②原子晶体:原子半径越小→键长越短→键能越大,熔沸点越高 例如:熔沸点金刚石> SiC > 晶体硅 ③分子晶体:一般,组成和结构相似的分子晶体, 相对分子质量越大,熔沸点越高。如:熔沸点CBr4 > CCl4 > CF4 特殊,存在分子间氢键,熔沸点升高; ④金属晶体:金属离子半径越小,离子电荷数越多, 其金属键越强,金属熔、沸点就越高,如熔、沸点: NaNa>K>Rb>Cs。 【经典例题】 1、根据下表给出的几种物质的熔点、沸点数据,判断下列有关说法中错误的是() A.SiCl4是分子晶体 B.单质B可能是原子晶体C.AlCl3加热能升华晶体NaCl KCl AlCl3SiCl4单质B 熔点/ ℃810776190-682300

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

典型晶体晶胞结构

典型晶体晶胞结构 原子晶体分子晶体混合型晶体 离子晶体 金属晶体 1.元素Cu的一种氯化物晶体的晶胞结构如图13所示,该氯化物的化学式 是,它可与浓盐酸发生非氧化还原反应,生成配合物 H n WCl3,反应的化学方程式为。 2.(2011山东高考) CaO与NaCl的晶胞同为面心立方结构,已知CaO晶体密度为 ag·cm-3,A N表示阿伏加德罗常数,则 CaO晶胞体积为cm3。 3.(2011新课标全国)六方氮化硼BN在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚石相当,晶苞边长为361.5pm,立方氮化硼晶胞中含有______各氮原子、________各硼原子,立方氮化硼的密度是_______g·cm-3(只要求列算式,不必计算出数

值,阿伏伽德罗常数为N A )。 描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8个顶点有8个碳原子, 6个面各有6个碳原子,立方体内部还有4个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数=8×1/8+6×1/2+4=8,因此立方氮化硼晶胞中应该含有4个N 和4个B 原子。由于立方氮化硼的一个晶胞中含有4个N 和4个B 原子,其质量是 g 2510 02.6423??是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 g·cm -3。 4.(4)元素金(Au )处于周期表中的第六周期,与Cu 同族,Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心,Au 原子处于顶点位置,则该合金中Cu 原子与Au 原子数量之比为_______;该晶体中,原子之间的作用力是________;(4)Au 电子排布或类比Cu ,只是电子层多两层,由于是面心立方,晶胞内N (Cu )=6×21=3,N (Au )=8×8 1=1; (5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与Au 原子构成的四面体空隙中。若将Cu 原子与Au 原子等同看待,该晶体储氢后的晶胞结构为CaF 2的结构相似,该晶体储氢后的化学式应为_____。H 8AuCu 3 5.(2010山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb 4+处于立方晶胞顶点,Ba 2+ 处于晶胞中心,O 2-处于晶胞棱边中心,该化合物化学式为 ,每个Ba 2+与 个O 2-配位。 6.(4) 2CaC 晶体的晶胞结构与NaCl 晶体的相似(如右图所示),但2CaC 晶体 中含有的中哑铃形22C -的存在,使晶胞沿一个方向拉长。2CaC 晶体中1个2Ca +周围距离最近的22C -数目为 。 7.(09江苏卷21 A )③在1个Cu 2O 晶胞中(结构如图所示),所包 含的Cu 原子数目为 。

晶胞计算习题

1回答下列问题 (1) 金属铜晶胞为面心立方最密堆积,边长为a cm。又知铜的密度为p g ? crh,阿伏加德罗 常数为________ 。 (2)下图是CaF2晶体的晶胞示意图,回答下列问题: ,③CaF?晶体的密度为a g ? cm T3,则晶胞的体积是 2、某些金属晶体(Cu、Ag、Au)的原子按面心立方的形式紧密堆积,即在晶体结构中可以划 出一块正立方体的结构单元,金属原子处于正立方体的八个顶点和六个侧面上, Si 3、单晶硅的晶体结构与金刚石一种晶体结构相似,都属立方晶系晶胞,如图: (1)将键联的原子看成是紧靠着的球体,试计算晶体硅的空间利用率(计算结果保留三位 有效数字,下同)。(2)已知Si—Si键的键长为234 pm,试计算单晶硅的密度是多少g/cm 3。 4、金晶体的最小重复单元(也称晶胞)是面心立方体,如图所示,即在立方体的8个顶点各有一个金原子,各个面的中心有一个金原子,每个金原子被相邻的晶胞所共有。金原子的直径为d,用N A表示阿伏加德罗常数,M表示金的摩尔质量。请回答下列问题: (1) 金属晶体每个晶胞中含有_________ 个金原子。 (2) 欲计算一个晶胞的体积,除假定金原子是刚性小球外,还应假定— ①CsT的配位数是,F —的配位数是。②该晶胞中含有的Ca2+数目是_______ , F (只要求列出算式)。金属晶体中原子的空间利用率。(3) 试计算这类 (2)

(3) 一个晶胞的体积是____________ 。(4)金晶体的密度是 _____________ 5、1986年,在瑞士苏黎世工作的两位科学家发现一种性能良好的金属氧化物超导体,使超导工作取得突破性进展,为此两位科学家获得了1987年的诺贝尔物理学奖,实验测定表明, 其晶胞结构如图所示。 (1)根据所示晶胞结构,推算晶体中Y、Cu、Ba和0的原子个数比,确定其化学式。 (2)根据(1)所推出的化合物的组成,计算其中Cu原子的平均化合价(该化合物中各元 素的化合价为[、二二、一.1和」)。试计算化合物中两种价态的Cu原子个数比。 6、(1)NiO (氧化镍)晶体的结构与NaCI相同,Ni2+与最邻近02-的核间距离为二x 108cm, 计算NiO晶体的密度(已知NiO的摩尔质量为74.7 g ? m)。 (2)天然的和绝大部分人工制备的晶体都存在各种缺陷,例如在某种NiO晶体中就存在如下 图所示的缺陷:一个Ni2+空缺,另有两个Ni2+被两个Ni3+所取代。结果晶体仍呈电中性,但 化合物中Ni和O的比值却发生了变化。某氧化镍样品组成为Ni0.97O,试计算该晶体中Ni3+ 与Ni2+的离子数之比。 7、下图是金属钨晶体中的一个晶胞的结构示意图,它是一种体心立方结构。实验测得金属 钨的密度为19.30 g ? cm 3,钨的相对原子质量是183.9。假设金属钨原子为等径刚性球, 试完成下列问题:

(完整版)常见晶胞

常见晶胞 类 型 实例 结构 要点 原子晶体 金刚石 1、每一个碳原子采用 杂化与其他 个碳原子等距离紧邻,由非极性键结合成的最小环的结构中有 个碳原子。平均每个碳原子被 个六元环共用,每根C-C 键被 个六元环共用。 2、1mol 金刚石中,碳碳键为 mol 。 二氧 化硅 1、每一个硅原子紧邻 个氧原子,每一个氧原子紧邻 个硅原子,形成了由Si-O 键(极性或非极性)键构成的 元环的最小环状结构。一个环上有 个硅原子, 个氧原子。 2、1molSiO 2中,硅氧键为 mol 。 分子晶体 干冰 1、一个二氧化碳晶胞中含有 个二氧化碳分子 2、二氧化碳晶胞中与二氧化碳最近的二氧化碳分子有 个 C 60 1、一个C 60分子中含有____根双键,____根单键。 2、C 60晶胞中与一个C 60最近的C 60分子有___个

冰 1、一个水分子形成 ________ 个氢 键,平均1mol冰中含有mol 氢键。 ZnS 1、每个锌离子紧邻个硫离子,每一个硫离子又紧邻个锌离子,这些锌离子或硫离子构成了体。 2、锌离子的配位数为 离子晶体NaCl 1、每个钠离子紧邻个Cl-,每 个Cl-又紧邻个Na+,这些氯离 子或Na+构成的空间几何构型 是;2、与每一个Na+等距离的 围绕且又最近的Na+为 个;同理Cl-也然。 CsCl 1、每一个Cl-紧邻个Cs+, 每一个Cs+紧邻个Cl-,这 些Cs+或Cl-构成了体。 2、与每一个Cs+(或Cl-)等距离 的围绕且又最近的Cs+(或Cl-) 为个,这些Cs+(或Cl-)构 成的空间构型是体。 CaF2 1、1个晶胞中含有个Ca2+, 个F-,Ca2+的配位数为个, F-配位数为个 2、设CaF2晶胞边长为a pm, 求晶体密度为g/cm3

常见晶胞模型

常见晶胞模型

已知晶体硼的基本结构单元是由B 原子构成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点各有一个B 原子。通过观察图形及推算,可知此结构单元是由__12_个B 原子构成,其中B —B 键间的夹角是__60°__。假设将晶体硼结构单元中每个顶角均削去,余下部分的结构与C 60相同,则C 60由_12_个正五边形和_20个正六边形构成。 分子晶体 1、CO 2晶体 以CO 2为例:如右图为干冰晶体的晶胞,立方体的 面心 和 顶点 各 有一个CO 2分子,因此,每个晶胞中有 4 个CO 2分子。 在干冰晶体中,每个CO 2分子距离最接近且相等的CO 2分子有 12 个。 象这种在分子晶体中作用力只是范德华力,以一个分子为中心,其 周围通常可以有12个紧邻的分子的特征称为 分子密堆积 。(若将CO 2分子换成O 2、I 2或C 60等分子,干冰的晶体结构就变成了O 2、I 2或C 60的晶体结构。) C 60晶胞 I 2单质 2、水分子: 冰中1个水分子与周围4个水 分子形成氢键, 所以1 mol 水拥有的氢键数目为2N A

3、白磷晶体:分子式为P 4, 124g 白磷形成的P---P 键数目是6 N A 金属晶体 混合型晶体 1、石墨晶体 ①石墨晶体是层状结构,层与层之间是以 范德华力 结合,同一层内C 原子与C 原子以 共价键 结合成平面网状,每一层碳原子排列成六边形,则碳原子采用 sp 2 杂化。未成对电子形成 大π 键。 ②石墨晶体中C 原子数与C -C 键数之比是2:3 。其中每个正六边形占有的 C 原子数平均为 2 个。

相关文档
相关文档 最新文档