文档库 最新最全的文档下载
当前位置:文档库 › 励磁涌流闭锁主变差动保护

励磁涌流闭锁主变差动保护

励磁涌流闭锁主变差动保护

550kV电压等级的主变压器保护均为双重化配置。两套保护的励磁涌流识别方式不完全一样。

主变保护A柜中的主变纵差保护采用二次谐波原理闭锁涌流(“励磁涌流识别方式”控制字为0),主变保护B柜中的主变纵差保护采用波形比较原理闭锁涌流(“励磁涌流识别方式”控制字为1)。

另外,当变压器过激磁(就是变压器电压升高,或者频率降低)时(也叫过励磁),励磁电流急剧增加,可能引起差动保护误动作,因此对于500kV 超高压变压器的差动保护,还增加了五次谐波制动判据。(在我厂主变压器保护中,A、B柜都有这五次谐波制动判据)保护利用三相差动电流中的五次谐波分量作为过激磁闭锁判据,动作方程如下:

这里解释一下:

变压器的纵差保护需要躲开流过差动回路中的不平衡电流,换句话就是在这些不可避免的不平衡电流下,纵差保护不应该动作,即使这个不平衡电流已经超过了差动保护的最小动作电流,也不应该动作。

产生不平衡电流的原因大概有5条,其中最重要的一条就是由变压器的励磁涌流所产生的不平衡电流。

变压器的励磁电流仅流经变压器的某一侧,另一侧没有这个电流,所以经过CT变换成二次侧的小电流流进差动保护回路去之后,这个励磁电流对应的那个二次电流就不能被平衡(只有一侧有这个电流,另一侧没有,所以就不能相互抵消),正常运行的时候,这个电流很小,不超过额定电流的2%到10%,在外部故障时,由于电压会降低,励磁电流减小,它的影响就更小了。

但是当变压器空载投入和外部故障切除后电压恢复的过程中,则可能出现数值很大的励磁电流,也称作励磁涌流。经过对励磁涌流实验数据的分析,发现励磁涌流有以下特点:

1、包含有很大成分的非周期分量,往往使涌流偏于时间轴的一侧;

2、包含有大量的高次谐波,其中以二次谐波为主;

3、波形之间出现间断,不连续。(正常的电流波形是连续的正弦波)

根据以上特点,所以在变压器的纵差保护中,常采用的防止励磁涌流影响保护误动的方法就有:(一一对应)

1、采用具有速饱和铁心的差动继电器;(以前继电器时代的保护才这样,现在的微

机保护不用了);

2、利用二次谐波制动;(就是如果检测到差动电流里面有很高的二次谐波,即便是

超过了差动保护的最小动作电流,也闭锁差动保护,不让其动作)

3、鉴别短路电流和励磁涌流二者之间波形的差别。(短路电流的波形是

连续的,而励磁涌流的波形有间断,如果检测到差动回路中出现有间

断的电流波形,也闭锁差动保护,不让其动作)

在我厂许继的WFB-802A型变压器电气量保护中,有两种励磁涌流识别的方式,当“励磁涌流识别方式”控制字整定为 0 时,采用二次谐波原理闭锁(我们的主变保护A柜就是这样),而整定为 1 时,就采用波形比较原理闭锁(我们的主变保护B柜就是这样)。

在我们的变压器新投运时,有一个主变压器冲击合闸试验(即空载投入),冲击试验共进行5次,每次间间隔10min,试验过程中要投入主变及厂高变的所有主、后备保护装置,其目的,一方面是检查主变厂高变耐受电压冲击的能力,用暂态记录测得冲击电流(IT)和电压(UT),计算出冲击时的最大励磁涌流和过电压值,或录制主变冲击时刻的励磁涌流示波图;另一方面,就是要检测在冲击试验过程中,主变差动保护、重瓦斯保护及压力释放器等应可靠不误动。尤其是变压器差动保护,必须要在这么大的励磁涌流作用下可靠不动。

1主变差动保护动作

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1号2号主变并列运行,10kVⅠⅡ段母线分段运行。 现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,10kVⅠ段母线失压及所有运行出线有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,将10kVⅠ段所有运行出线开关由运行转热备用,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,将10kVⅠ段所有运行出线开关由热备用转运行。检查全站设备运行正常。汇报有关领导及金调。

运行方式:焦东1112带110kV乙母经1100母联带110kV甲母,1、2号主变并列运行,10kVⅠⅡ段母线分段运行。100分段备自投投入。现象:警铃、喇叭响、1101、101绿灯闪光,有功、无功、电流指示为零,监控机一次图上1101、101开关为绿色闪光,发出#1主变差动保护动作信号。100分段备自投动作。 处理:将1101、101开关放至对应位置,经检查#1主变保护装置上显示差动保护动作信号,对#1主变差动保护范围内检查发现#1主变高压侧A相套管闪络有放电痕迹。将保护动作情况,开关跳闸时间记录好,恢复装置信号,汇报有关领导及金调。 将101小车开关摇至试验位置,断开1101、101开关储能空开,拉开1101丙刀闸、甲刀闸,断开1101、101控制电源空开,合上1101丙丁1刀闸,通知检修人员对A相套管进行检修,经检修好后恢复#1主变运行。 恢复:#1主变检修转运行,拉开1101丙丁1刀闸,合上1101、101控制电源空开,合上1号主变中丁刀闸,合上1101甲刀闸、丙刀闸,将101小车开关摇至工作位置,合上1101、101开关储能空开,断开100分段开关,检查全站设备运行正常。汇报有关领导及金调。

变压器励磁涌流产生机理及抑制措施探讨论文范本

变压器励磁涌流产生机理及抑制措施探讨论文范本 1、变压器励磁涌流及特点 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变 换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的 指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励 磁涌流。 总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含 有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着 时间推移,某一相二次谐波含量可能超过基波分量的一半以上。第二,励磁涌流幅值与变 压器空载投入的电压初相角直接相关。对于单相变压器来说,当电压过零点投入时,励磁 涌流幅值最大。由于三相变压器各相间有120度相位差,所以涌流也不尽相同。第三,在 最初几个波形中,涌流将出现间断角。第四,涌流衰减的时间常数与变压器阻抗、容量和 铁心材料等都相关。 2、励磁涌流产生机理 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率 很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 下面以单相变压器空载合闸为例分析励磁涌流产生机理。设变压器在时间t=0时合闸,则施加于变压器上的电压为: 1 又,变压器电压与磁通间的关系为: 2 故: 3 式3中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。 计及成本和工艺,现代常用的`电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。因此,变压器稳态正常运行时,磁通不会超过饱和 磁通,铁心也不会饱和。但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行 磁通就有可能大于饱和磁通,从而造成变压器饱和。例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。 3、抑制措施

《电力系统自动装置》复习思考题参考答案(第4—7章)供参习

《电力系统自动装置》复习思考题参考答案(第4—7章) 第四章复习思考题 1.何谓励磁系统? 答:供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。它一般由励磁功率单元和励磁调节器两个主要部分组成。 2.同步发电机自动调节励磁系统的主要任务是什么? 答:(1)系统正常运行条件下,维持发电机端或系统某点电压在给定水平;(2)实现并联运行发电机组无功功率的合理分配;(3)提高同步发电机并联运行的稳定性;(4)改善电力系统的运行条件;(5)对水轮发电机组在必要时强行减磁。 3.对同步发电机的自动调节励磁系统的基本要求是什么? 答:励磁系统应具有足够的调节容量、励磁顶值电压、电压上升速度、强励持续时间、电压调节精度与电压调节范围,应在工作范围内无失灵区,应有快速动作的灭磁性能。 4.何谓励磁电压响应比?何谓强励倍数? 答:通常将励磁电压在最初0.5s内上升的平均速度定义为励磁电压响应比,用以反映励磁机磁场建立速度的快慢。 强励倍数是在强励期间励磁功率单元可能提供的最高输出电压与发电机额定励磁电压之比。 5.同步发电机励磁系统类型有哪些?其励磁方式有哪两种? 答:同步发电机励磁系统类型有:直流励磁机系统、交流励磁机系统和发电机自并励系统。励磁方式分为自励方式和他励方式两种。 6.画出三相全控桥式整流电路,哪些晶闸管为共阳极组,哪些为共阴极组? 答:VTHl、VTH3、VTH5为共阴组,VTH2、VTH4、VTH6为共阳组。 (第6题) 7.三相全控桥式整流电路在什么条件下处于整流工作状态和逆变工作状态?整流和逆变工作状态有何作用?整流和逆变工作状态有何作用? 答:三相全控桥式整流电路的控制角α在0°<α<90°时,三相全控桥工作在整流状态;当90°<α<180°时,三相全控桥工作在逆变状态。 整流状态主要用于对发电机的励磁;逆变状态主要用于对发电机的灭磁。

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

主变投运差动保护动作的原因分析

2013年第03期?总第310期 主变投运差动保护动作的原因分析 (汝南县电业公司,河南…汝南…463300) 王永慧 差动保护做为变压器主保护,其保护范围是变压器各侧电流互感器之间的一次设备,当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流正比于故障点电流,差动继电器动作,其主要反映以下故障:变压器引线及内部线圈的匝间短路,线圈的层间短路,大电流接地系统中线圈及引线的接地故障。它能迅速而有选择地切除保护范围内的故障,但往往却因接线错误而导致差动保护误动。 1 保护动作情况 汝南县35 kV 三桥变电站通过增容改造后进行试送电,两台主变的冲击、核相等工作均顺利正常,在进行三桥#1主变带负荷时,三桥#1主变差动保护动作跳闸,现场调度随即令三桥#1主变停止运行,解除备用,做安全措施,并安排保护人员准备进行检查试验,同时又对三桥#2主变进行了带负荷试验,三桥#2主变差动保护也出现动作跳闸情况。 2 保护动作现场试验分析 针对两台主变均出现相同的保护动作情况,现场运行验收人员认为有以下几种可能:两台变压器的差动保护范围内均存在故障; 电流互感器二次接线极性端有接反现象或接线有不正确情况;保护定值输入出现错误。 现场运行及保护人员立即对两台主变进行了检查试验,经测量两台变压器直流电阻均正常,变压器与电流互感器之间也无任何异物,变压器内部未发现气体产生,冲击试验时变压器声音均正常,可以排除变压器差动保护范围内存在故障而导致动作。 保护人员又将两台主变两侧的电流互感器二次线重新核对了变比、用万用表进行点极性、核对线号,接线变比、极性端、接线均正确。为避免使用万用表点极性过程 出现错误,保护人员将极性反接后,两台主变带负荷时仍然出现差动保护动作跳闸,这也说明不是电流互感器二次线极性端存在问题。行保护人员向验收专家组提出这样一个问题:35 kV 三桥变电站在20世纪90年代建设时期,由于受当时设计技术影响,35 kV 三桥变电站设计为小型化末端变电站,室外布局较为紧凑,35 kV 进线间隔只有一组刀闸,且安装在35 kV 母线门型构架上,三桥351母刀闸与35 kV 母线的A 相跳线,距离35 kV 进线刀闸与母线的跳线较近,缺少安全距离,为了保证安全距离,当时将A 相与C 相的跳线进行了互换,这样三桥351母线A 相跳线在空间上距离缩短,减少了跳线的摆动幅度,保证了与35 kV 母线跳线的安全距离;本次增容改造,由于受资金限制,室外设备构架均未改动,只对一次设备进行了增容和更换,并将常规继电器保护更换为综合自动化保护。主变的一次进线侧A 相与C 相仍按原来的方式进行跳线,是否问题就出在这里。 3.1 主变接线组别的变化 在电力系统中,35 kV 主变压器常采用Yd11接线方式,35 kV 三桥#1、#2主变压器也是Yd11接线方式,当A 相与C 相接反后,实际接线方式已发生了变化,由Yd11变化为Yd1。即低压侧按ax–cz–by–ax 顺序接成三角形,变化为ax–by–cz–ax 顺序接成三角形。变化情况如图1、图2所示。 i A'2 i C'2 i B'2 i B'2 i C'2 i A2 i B2 i C2 i A'2 i C'2 i B'2 i A'2 i B'2 i C'2 i A2i B2 i C2 i B2 i C2 i A2 图1 Yd11接线图 图2 Yd1接线图

(完整版)励磁涌流产生的原因及应对策略

励磁涌流产生的原因及应对策略 随着经济的发展,电业因其无污染等特点被广泛应用到社会的各方面,变压器作为交流电力系统重要的电气设备,其正常运行直接关系着人民生命财产的安全。本文从变压器励磁涌流释义开始、随后就变压器励磁涌流产生原因进行了分析研究,最后就变压器励磁涌流的应对策略提出了很好的意见。 变压器的励磁电流是只流入变压器接通电源一侧绕组的,对纵差保护回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。因此,它必然给纵差保护的正确工作带来影响。下面笔者结合工作实际谈一下励磁涌流产生的原理及应对策略。 变压器励磁涌流释义 1.1励磁涌流的定义 变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。 1.2变压器励磁涌流的特点 1.2.1涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线为尖顶波。 1.2.2励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。

1.2.3一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。 1.2.4励磁涌流的数值很大,最大可达额定电流的8~10倍。当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。 变压器励磁涌流产生原因 变压器励磁涌流是由变压器铁心饱和引起的。在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。 现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的3%~6%或更小,故纵差保护回路中的不平衡电流也很小。外部短路时,由于系统电压下降,励磁电流也将减小,因此,在稳态情况下,励磁电流对纵差保护的影响常常可忽略不计。然而在电压突然增加的特殊情况下,就可能产生很大的励磁电流,其数值可达额定电流的6~8倍。这种励磁电流就有可能大于饱和磁通,从而造成变压器饱和。 变压器励磁涌流的应对策略 目前采用速饱和中间变流器;二次谐波制动的方法;间断角鉴别方法等三种方法来防止励磁涌流引起的纵差保护的误动。 3.1采用差动速断保护 由于差动速断保护有固有动作时间,故动作电流无需避开最大电流,此方案灵敏性低,只适用于小型变压器。差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,这种差动保护的核心部分是带短路线圈的饱和中

10KV线路中励磁涌流问题的探讨

10KV线路中励磁涌流问题的探讨 摘要:电力系统中,有时会碰到10KV线路在检修或者限电后恢复运行时,出现继电保护动作,开关跳闸,而运行人员在巡线后又找不到故障点,这时我们往往会忽略励磁涌流,而这种情况很有可能就是由励磁涌流引起的。 关键词:励磁涌流继电保护误动 在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起,其覆盖的地域极其辽阔,运行环境极其复杂以及各种认为因素的影响,电气故障的发生是不可避免的。但有时会碰到这样的情况:一条10KV线路在检修或者限电后恢复运行时,出现继电保护动作、开关跳闸,而运行人员在巡线后又找不到故障点,这时我们往往会忽略励磁涌流,而这种情况很有可能就是由励磁涌流引起的。 1、励磁涌流的产生及特点: 当变压器空载投入或外部故障切除后电压恢复时,就有可能出现数值很大的励磁电流(又称为励磁涌流)。这时因为变压器空载时其铁心中的磁通不能突变,此时将出现一个非周期分量磁通,使变压器铁芯饱和,励磁电流将急剧增大。变压器励磁涌流最大值可以达到变压器额定电流的6~8倍,其中包含有大量的非周期分量和高次谐波分量,并以一定时间系数衰减。励磁涌流的大小和衰减时间跟变压器的容量大小、变压器安装地点与电源的电器距离、电力系统的容量大小、铁心中剩磁的大小和方向及铁心的性质都有关系。变压器容量大,产生历次涌流倍数小,但励磁涌流时间常数大,存在时间长,有时要经过数秒甚至几分钟后才能会衰减到正常值。 2、 线路中励磁涌流对继电保护装置的影响: 一条10KV线路装有大量的变压器,在线路改运行时,这些变压器都挂在线路上,在合闸瞬间,各变压器所产生的励磁涌流在线路上相互迭加、来回反射,产生了一个复杂的电磁暂态过程,在系统阻抗较小时,会出现较大的励磁涌流,时间常数也较大。一般10KV线路的主保护是采用三段式电流保护,即瞬时电流速断保护、限时电流速断保护和过电流保护。瞬时电流速断保护和过电流保护。瞬时电流速断保护由于要兼顾保护的灵敏度。动作电流值往往取得较小,特别在长线路或系统阻抗大时更明显,励磁涌流值很可能会大于保护装置的整定值,使保护误动。这种情况在线路变压器个数少、容量小以及系统阻抗大时并不突出,因此容易被忽视,但当线路变压器个数及容量增大后,就可能出现。这种10KV线路由于励磁涌流而无法正常投入的问题在我们实际中已发生了多次,值得注意。

主变差动保护

【摘要】本文简单分析了变压器励磁涌流对差动保护的影响,介绍了微机型保护装置中利用二次谐波制动原理的变压器差动保护及其整定值的计算方法。 关键词:微机变压器差动保护 变压器在电力系统中得到极其广泛的应用,占着非常重要的地位。因此,提高变压器运行可靠性,对于保证电力系统的安全具有十分重要的意义。现代生产的变压器,在设计和材料方面都有很大的提高,结构和性能上比较可靠,发生故障的机率较小。但由于电力系统的复杂性,情况千变万化,仍有发生故障和出现异常运行的可能。为了确保安全供电,并在事故时尽量减少停电范围,必需根椐变压器的容量和重要程度,装设性能可靠、动作迅速的继电保护装置。 变压器差动保护可以防御变压器绕组和引出线的相间及对地短路故障,是大型变压器最重要、最有效的保护之一。 一、变压器差动保护的特殊问题—励磁涌流 变压器的差动保护与输电线路的纵联差动保护相比,在原理上是一样的。它们之间的区别是,变压器各侧电流大小、相位都不尽相同,而且各侧是通过电磁联系的,在实现差动保护时将产生较大的不平衡电流,使差动保护处于更不利的工作条件下。其中最为突出的是变压器励磁涌流的影响。 我们知道,在稳态工作情况下,铁芯中的磁通滞后于外加电压90°,如图1(a)所示。当变压器空载合闸时正好在电压瞬时值u=0的瞬间,则

铁芯中的磁通应为-Φm,但由于铁芯中的磁通不能突变,因此将产生一个非周期分量的磁通,其幅值为Φm,这样在经过半个周期以后,铁芯中的总磁通就将达到2Φm,如图1(b)所示。此时变压器的铁芯将高度饱和,励磁电流剧烈增大,如图1(c)所示。该电流就称为变压器的励磁涌流,其数值最大可达到变压器额定电流的6~8倍,同时包含大量的非周期分量和高次谐波分量,如图1(d)所示。经过变换的励磁涌流流入差动继电器,就可能造成保护装置误动作。励磁涌流的起始部分衰减很快,一般经0.5~1秒后,其值不超过额定电流的0.25~0.5倍。变压器励磁涌流的大小和衰减时间与外加电压的相位、铁芯中剩余磁通的大小和方向、电源的大小、回路的阻抗、变压器容量的大小和铁芯材料的性质等有关。例如,当合闸时正好电压瞬时值为最大值,就不会出现励磁涌流。对于三相电力变压器,在任何瞬间合闸,至少有两相中要出现程度不同的励磁涌流。 图1 变压器励磁涌流的变化曲线

主变压器差动保护动作的原因及处理示范文本

主变压器差动保护动作的原因及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

主变压器差动保护动作的原因及处理示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 主变压器差动保护动作跳闸的原因是: (1)主变压器及其套管引出线发生短路故障。 (2)保护二次线发生故障。 (3)电流互感器短路或开路。 (4)主变压器内部故障。 处理的原则是: (1)检查主变压器外部套管及引线有无故障痕迹和异 常现象。 (2)如经过第(1)项检查,未发现异常,但本站 (所)曾有直流不稳定接地隐患或曾带直流接地运行,则 考虑是否有直流两点接地故障。如果有,则应及时消除短

路点,然后对变压器重新送电。 (3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送电。 (4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。 (5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。 (6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

变压器励磁涌流的抑制

变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。 0、引言 变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。励磁涌流不仅峰值大,且含有极多的谐波及直流分量。由此对电网及电器设备造成极为不利的影响。 1、励磁涌流的危害性 1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败;1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电; 1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他

B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电; 1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损; 1.5 诱发操作过电压,损坏电气设备; 1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率; 1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。 1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。 数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。 2、励磁涌流的成因 抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——

不平衡电流产生的原因

不平衡电流产生的原因 1励磁涌流的影响 变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器反映到差动回路中就不能被平衡。在正常情况下,变压器励磁电流不过为变压器额定电流的 2% ~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。在实际整定时可以不必考虑。 但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌流,其数值可达变压器额定电流的6~8倍。励磁涌流中含有大量的非周期分量和高次谐波分量。励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特性有关。若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。但对于三相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形中还会出现间断角。励磁涌流的波形如图2。 2绕组连接方式不同的影响 变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用Y,y,d 接线时,各侧电流相位就不同。这时,即使变压器各侧电流互感器二次电流大小能相互匹配,但不调整,相位差也会在差动回路中产生很大的不平衡电流。 3实际变比与计算变比不同的影响 由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变比相吻合,这样就会在主变差动回路中产生不平衡电流。 4改变调压档位引起的不平衡电流及克服措施 电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。改变调压档位实际上就是改变变压器的变比。而差动保护已按照某一变比调整好,当分接头改换时,就会产生一个新的不平衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数的方法来消除这个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在带电时是不可能进行操作的。因此,对由此产生的不平衡电流,通常是根据具体情况提高保护动作的整定值加以克服。 5型号不同产生的不平衡电流 由于变压器各侧电流互感器的型号不同,它们的饱和特性和励磁电流(归算到同一侧)就不相同,因此,在差动回路中所产生的不平衡电流也就较大。 转子一点接地保护 转子一点接地保护反应发电机转子对大轴绝缘电阻的下降。顾名思义,转子一点接地就是转子上只有一个点与地接触了,发电机转子一点接地后励磁回路对地电压将有所升高。在正常情况下,励磁回路对地电压约为励磁电压的一半。当励磁回路的一端发生金属性接地故障时,另一端对地电压将升高为全部励磁电压值,即比正常电压值高出一倍。在这种情况下运行,当切断励磁回路中的开关或一次回路的主断路器时,将在励磁回路中产生暂态过电压,

励磁涌流的抑制方法

摘要:合空载电力变压器时会产生数值相当大的励磁涌流,易造成变压器差动保护装置的误动作。针对这一问题,介绍了两种削弱励磁涌流的方法:控制三相合闸时间或在变压器低压侧加装电容器。理论分析和实践均证明这两种方法是行之有效的,但利用控制三相合闸时间来削弱励磁涌流在实际应用中更具有潜力。 关键词:励磁涌流;变压器;控制开关;电容 1概述 电力变压器在空载合闸投入电网或外部故障切除后电压恢复时,由于变压器的非线性,会产生数值相当大的励磁涌流,严重情况下其峰值可达额定电流的10到20倍[1],从而导致变压器保护的误动作。为了解决这一问题,目前变压器的差动保护都采用了或门制动方式,即三相电流中有一相制动,则三相全部制动。这样虽解决了涌流时的误动问题,但当变压器有涌流时,如果发生单相或两相内部故障,差动保护因健全相的涌流制动而不动作。大型变压器时间常数都很长,一般涌流过程超过5 s[2],在发生上述故障时,主保护等到振荡消失才能动作,实际就是拒动。理论分析和动模试验都证实了这种现象。为了保证差动保护装置的正确动作,必须要降低励磁涌流的幅值。目前,削弱励磁涌流的方法主要有两种:控制三相开关合闸时间,或在变压器低压侧并联电容器。本文将对这两种方法的原理、效果一一介绍。 2控制三相开关合闸时间以削弱励磁涌流 2.1理论基础 该方法的理论基础是:将变压器看作一个强感性负载,即看作一个非线性电感,当合闸时,变压器上的电压在变压器内部也产生一个磁通,当变压器有剩磁时,合闸后所产生的磁通如果和剩磁极性相同,则变压器内部的总磁通就会随着电压的升高而增加,从而励磁涌流也会随之增加,如果合闸后所产生的磁通和剩磁极性相反,则变压器内部的总磁通就会随着电压的升高而减小,从而削弱了励磁涌流;如果合闸时变压器内无剩磁,则可在合闸角为90°(即电压峰值时)时合闸,这样在变压器内产生的磁通最小,产生的励磁涌流也最小。在单相变压器中,可以很容易地分析出如下结果。假设单相变压器无漏抗,电源为无穷大,如图1所示:

改善电网电压水平的发电机励磁系统调差系数优化策略

DOI :10.7500/AEPS201301231 一改善电网电压水平的发电机励磁系统调差系数优化策略 安一军1,穆一钢1,郑太一2,王明星1,刘柏林1,姜一旭2 (1. 东北电力大学电气工程学院,吉林省吉林市132012;2.国网吉林省电力有限公司,吉林省长春市130021)摘要:充分发挥发电机无功电压调节潜力,改善电网电压质量,是电力系统无功电压控制的重要目 标三从改善电网全运行电压水平角度出发,提出了发电机励磁系统调差系数优化整定策略三分析了发电机励磁系统调差系数对电网电压的影响,给出了发电机励磁系统调差系数分区整定原则,建立了以系统多运行方式下中枢点电压波动指标为最小的目标函数,以电网潮流约束方程和发电机励磁系统调差系数为控制变量的优化模型,采用粒子群优化算法对其模型进行求解三将优化策略应用到吉林省电网发电机励磁系统调差系数整定中,仿真结果与实际应用均表明,提出的优化整定策略对改善电网运行电压质量,提高发电机无功调节潜力具有重要的意义三关键词:无功电压控制;励磁系统;调差系数;控制策略;粒子群优化算法 收稿日期:2013-01-29;修回日期:2013-05-24三 教育部长江学者和创新团队发展计划资助项目(IRT1114) 三0一引言 电压是电能质量的重要指标,维持正常的电压水平是电力系统安全经济运行的重要保障三电网电压水平与无功功率平衡密切相关,当系统中无功电 源与无功负荷平衡关系被打破时,将会引起电压变 化,严重时导致电压越限,影响系统的安全运行[ 1-2] 三合理调控无功电源是保证电压水平的重要措 施三同步发电机作为电力系统中重要的无功电源,具有无功调节范围大二快速自动连续无功调节二无功 调节品质好二无需附加投资等特点,对电网的电压水 平具有重要的影响[ 3] 三励磁系统调差系数是描述同步发电机无功电压 外特性的参数,其值大小不但对发电机电压和无功功率具有重要影响,也间接影响到电网电压水 平[4-6] 三因此,有必要对励磁系统调差系数进行合理 整定三 目前,电力企业管理部门按照发电机励磁系统技术要求的国家标准,对发电机励磁系统调差系数 的整定以保证发电厂内发电机安全运行且并列运行 的发电机间无功功率合理分配为目标[7] ,并未考虑 发电机励磁系统调差系数对电网电压的支撑作用三笔者曾对某省级电力系统中发电机励磁系统调差系数现状进行过深入调研,发现该电力系统中各发电 机间励磁系统调差系数整定值差异较大,并未充分 发挥发电机的无功调节能力[ 8] 三国内外学者对励磁系统调差系数的整定也展开 了深入研究,文献[9-10] 以单机无穷大系统为研究对象,分析了励磁系统调差系数对电力系统功角稳定性的影响;文献[11-13]研究了励磁系统调差系数对电力系统电压稳定性的影响,并给出了提高电力系统电压稳定性的励磁系统调差系数控制措施;文献[14]提出基于全网网损最小为目标,典型运行方式下部分发电机励磁系统调差系数的优化配置方案,但是并未考虑励磁系统调差系数的整定对电网电压水平的改变程度三 本文从改善电网全运行电压水平的角度出发,在基于电网分区结果的基础上,提出发电机励磁系统调差系数优化整定策略三通过建立吉林省电网发电机励磁系统调差系数的优化模型,采用改进的粒子群优化方法给出了发电机励磁系统调差系数优化整定方案三仿真分析和实际运行效果证明了本文所提策略的有效性三 1一励磁系统调差系数基本概念 同步发电机励磁系统调差系数决定了发电机无功电压调节特性三发电机的励磁系统调差系数是指发电机端电压U G 随发电机无功功率Q G 变化而变 化的直线斜率,其表达式为:β=-ΔU G ΔQ G (1)按照调差系数的定义可以分为正调差二负调差和零调差,如图1所示三 79 第37卷一第23期2013年12月10 日Vol.37一No.23Dec.10,2013

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

主变差动保护动作的事故分析(原稿)

二期1#主变差动保护动作的事故分析 王俊强 (中海化学电仪部,海南东方 572600) 提要:外部电网的波动,引起二期1#主变的差动保护动作,导致了二期装置的跳车,本文对该事故的分析处理过程进行介绍,并对该事 故进行总结分析,也对差动保护综合保护继电器SPAD346C进行了 简要的分析。 关键字:变压器、差动保护动作、差动保护综合保护继电器、SPAD346C 一、事故简介 06年10月18日16时鹅毛岭至罗带110KV线路A相接地跳,重合闸成功,引起电网波动。二期1#主变差动保护继电器SPAD346C发出“1 d”跳闸信号,差动保护动作,110KV1#进线断路器及6KV进线断路器跳开,引起二期装置跳车。 二、事故确认 1.时间 一期故障录波时间是15:58:34,一期故障录波仪系统时间比标准时间慢3分21秒,所以事故时间应为16:01:55。 二期从ESD2000告警窗可以看到最早的欠压信号为直流屏输入欠压信号,时间16:01:55,110KV1#进线断路器1Q0跳闸时间为 16:01:58,从ESD2000巡检式实时告警的原理知应以最早的报警 时间为准,所以事故时间应为16:01:55。

2.ESD2000告警 如图: 图1 3.故障录波 如图: 图2

4.事故初步确认 电网的波动,引起差动保护继电器SPAD346C的动作,从而跳开1#110KV进线断路器及6KV断路器。 三、分析过程 1.有几个疑问 a)二期1#,2#进线的故障录波,还有一期的故障录波都完全相同, 为什么二期1#差动动作了,别的没问题? b)此前曾有过综合保护继电器内部故障损坏情况,有无可能是这 个差动保护继电器SPAD346C有问题?但是在今年3月份大修刚 做过差动保护继电器SPAD346C的校验,没有问题。 c)由差动保护的原理知,其保护的是变压器内部故障,当外部故 障时,它不应动作,差动保护继电器SPAD346C是靠变压器高低 压侧电流来判断内部故障还是外部故障,如果无其他原因,外 部故障引起变压器误跳,那么说明SPAD346C设定可能有问题, 需调整。 2.对SPAD346C记录的跳闸时刻数据进行分析 SPAD346C记录的1#主变跳闸时刻数据:

南瑞主变差动保护调试篇

经验总结-主变差动保护部分 一、从工程角度出发所理解的主变差动保护 关于接线组别和变比的归算思路 1、影响主变差动保护的几个因素 差动保护因为其具有的选择性好、灵敏度高等一系列优点成为变压器、电动机、母线及短线路等元件的主保护。这几种差动保护原理是基本相同的,但主变差动保护还要考虑到变压器接线组别、各侧电压等级、CT变比等因素的影响。所以同其它差动保护相比,主变差动保护实现起来要更复杂一些。 变压器变比的影响:因为变压器变比不同,造成正常情况下,主变高低压侧一次电流不相同。比如:假设变压器变比为110KV/10KV,不考虑变压器本身励磁损耗的理想情况下,流进高压侧电流为1A,则流出低压侧为11A。这很好理解,三相视在功率S= √3UI。不考虑损耗,高低压侧流过功率不变,各侧电压不同,自然一次电流也不同。 CT变比的影响:还是用上面的举例,如果变压器低压侧保护CT的变比是高压侧CT 变比的11倍,就可以恰好抵消变压器变比的影响,从而做到正常情况下,流入保护装置(CT二次侧)的电流大小相同。但现实情况是,CT变比是根据变压器容量来选择,况且CT变比都是标准的,同样变压器变比也是标准化的,这三者的关系根本无法保证上述的理想比例。假设变压器容量为20MKVA,110KV侧CT变比为200/5,低压侧CT变比如果为2200/5即可保证一致。但实际上低压侧CT变比只能选2000/5或2500/5,这自然造成了主变高低压侧CT二次电流不同。 变压器接线组别的影响:变压器不同的接线组别,除Y/Y或△/△外,都会导致变压器高低压侧电流相位不同。以工程中常见的Y/△-11而言,低压侧电流将超前高压侧电流30度。另外如果Y侧为中性点接地运行方式,当高压侧线路发生单相接地故障时,主变Y 侧绕组将流过零序故障电流,该电流将流过主变高压侧CT,相应地会传变到CT二次,而主变△侧绕组中感应出的零序电流仅能在其绕组内部流过,而无法流经低压侧开关CT。 2、为消除上述因素的影响而采取的基本方法 主变差动保护要考虑的一个基本原则是要保证正常情况和区外故障时,用以比较的主变高低压侧电流幅值是相等,相位相反或相同(由差流计算采取的是矢量加和矢量减决定,不过一般是让其相位相反),从而在理论上保证差流为0。不管是电磁式或集成电路及现在的微机保护,都要考虑上述三个因素的影响。(以下的讨论,都以工程中最常见的Y/△-11而言) 电磁式保护(比如工程中常见的LCD-4差动继电器),对于接线组别带来的影响(即相位误差)通过外部CT接线方式来解决。主变为Y/△接线,高压侧CT二次采用△接

相关文档
相关文档 最新文档