文档库 最新最全的文档下载
当前位置:文档库 › 精馏塔底温度影响因素及控制方法总结解读

精馏塔底温度影响因素及控制方法总结解读

精馏塔底温度影响因素及控制方法总结解读

精馏塔底温度影响因素及控制方法总结

1、影响因素:

1.1 进料及组分变化,如进料减少,重组分杂质增大,则塔底温度升高;

1.2 回流量级回流温度的的变化,如回流量增大,回流温度降低,则塔底温度降低;

1.3 塔液面过高或满,塔底温度提不起来;

1.4 塔底液面过低,引起温度不稳定或者升高;

1.5 塔压的波动,引起温度的变化,当塔压突然升高时,底温会随之升高又复而下降;

1.6 蒸汽压力的变化,蒸汽压力降低,塔底温度下降;

1.7 进换热器温度低,塔底温度下降;

1.8 再沸器管程堵或漏,塔底温度提不起来;

1.9 塔底温度控制失灵,引起塔底温度不稳。

2、调节方法:

2.1 稳定进料,减少原料中重组分杂质的组分,或调整前塔的操作,减少下塔进料中重组分杂质的组分;

2.2 降低回流量,提高回流温度,稳定回流比;

2.3 增大塔底踩出,或减少进料量和回流量;

2.4 减少塔底采出,使塔底采出液面控制在工艺指标范围内;

2.5 稳定塔底压力;

2.6 联系调度提高蒸汽压力;

2.7 提高预热器进气温度,使之平稳;

2.8 待停工处理再沸器;

2.9 塔底温度改为手动控制,或用副线或现场指示控制,并联系仪表处理。

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

过程控制作业答案

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 23232 3123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

小型温度控制系统

电子工程设计报告 题目:温度测量系统/闭环温度控制系统设计 专业:电子科学与技术 小组:第8小组 姓名学号:王丹阳11023224 覃业泰 11023226 李赉龙 11023228 指导教师:高新 完成日期:2013.12.15

中文摘要 本电子工程设计的任务是完成一套小型的温度测量与控制系统。这个系统需要完成非电量到电量信号转换、信号处理、数据采集、数据处理、人机交互、数据通信、控制等设计工作,几乎覆盖一般电子系统的所有设计环节。其中包含有三个阶段。本报告为第二阶段内容,在第一阶段电源模块、变送器模块,驱动器模块的基础上,又包含: 单片机模块的设计与实现; 数模转换模块的设计与实现; 模数转换模块的设计与实现; 键盘显示模块的设计与实现。 在上述七个模块的基础上,通过软件设计完成环境温度的显示与闭环温度控制两大功能。并通过键盘很方便的进行两大功能的自由切换和目标控制温度的设定。 本报告针对以上模块分别详细给出了设计要求、方案设计、电路设计、原理分析、电路调试、电路故障等方面的内容,以完整反映实验过程。 【关键词】单片机;温度;闭环控制

目录 中文摘要 (1) 1 课题背景 (4) 1.1 课题背景 (4) 1.2 设计概述 (4) 2 简单电路的模块化设计与实现 (5) 2.1 单片机应用电路设计与实现 (5) 2.1.1基本要求 (5) 2.1.2设计方案 (6) 2.1.3单片机系统的调试 (8) 2.1.4调试中遇到的问题 (9) 2.2模/数转换电路设计与实现 (9) 2.2.1实验要求 (9) 2.2.2设计方案 (10) 2.2.3电路主要参数计算 (11) 2.2.4 模数转换电路模块的调试 (12) 2.3显示与键盘控制电路设计与实现 (13) 2.3.1基本要求 (14) 2.3.2设计方案 (14) 2.3.3显示模块模块的调试 (15) 2.3.4键盘模块的调试 (17) 2.4数/模(D/A)转换电路设计与实现 (18) 2.4.1基本要求 (18)

控制设计总结(最终版).

第一部分 PI 控制原理及参数求解 1.风力发电机组运行区间分类 A B C D 1S 2 S 发电机转速发电机扭矩 1 Q 2 Q 0 在发电机转速小于S1之前,此时发电机无功率输出,当风速大于切入风速时发电机并网,AB 段为恒转速阶段,随着风速增大,发电机转矩增大。BC 段为最优控制阶段,此时发电机转速随着风速变化保持最佳叶尖速比,追踪最大功率点。CD 段为转速恒定区,在这个区域内,不再进行最大风能追踪,而是将机组转速限定在最大允许转速。在D 点时,机组已经达到额定转矩,之后,随着 风速的继续增大,机组恒转矩运行,为了保护机组不受损坏,调整桨距角限制功率。 2.传统PI 变桨距控制 外部控制器框图 上图描述变桨控制和转矩控制的切换条件、对应输出的计算值。下面将给出

在各种情况下的控制细节图。 ◆在额定风速以下的控制 风速在额定风速以下时,通过控制发电机的转矩使风力发电机尽量获取多的能量,控制细节图如下。 1)能量转换系统 2) 转矩控制方式 通常变速变桨风力发电机组均按是按照二次曲线图进行转矩给定。

在区域2中,电机转矩2 ()g opt g T K W opt ,其中opt K 最优模态增益, g T 为发电机转矩,g W opt ()发电机最优转速。 3) 启动和过渡区控制框图 此处PI 控制器的输入为电机转速偏差,输出为电机转矩。 ◆ 在额定风速以上的控制 风速在额定风速以上时,通过变桨使发电机输出的功率维持在额定功率附近。 桨距控制

此处PI控制器的输出为电机转速偏差,输出为叶片桨距角。 ◆使用C++、Fortran或matlab/simulink语言编写的控制器1)使用fortran语言编写的代码 2)使用c++语言编写的代码

精馏塔提留段温度单回路控制

精馏原理以及工业流程 精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。连续精馏的流程装置如下图所示,其操作过程是:原料液经预热加热到一定温度后,进入精馏塔中的进料板,料液在进料板上与自塔上部下降的回流液体汇合后,在逐板下流,最后流入塔底再沸器中,液体在逐板下降的同时,它与上升的蒸汽在每层塔板上相互接触,同时进行部分汽化和部分冷凝的质量和能量的传递过程。操作时,连续从再沸器中取出的部分液体作为塔底产品,部分液体汽化产生上升蒸汽,从塔底回流入塔内出塔顶蒸汽进入冷凝器中被冷凝成液体,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品。 图连续精馏装置工艺流程图 精馏塔的特性 精馏塔的特性分为静态特性和动态特性,以二元简单精馏过程为例,说明精馏塔的基本关系。 1.2.1精馏塔的静态特性 一个精馏塔,进料与出料应保持物料平衡,即总物料量以及任一组分都符合物料平衡关系。图所示的精馏过程,其物料平衡关系为: 总物料平衡 B D F += () 轻组分平衡 B D f x B x D z F ?+?=? ()

由式()和()联立可得: B B f D x x z D F x +-= )( B D f D x x z x F D --= () 式中 F 、D 、B ——分别为进料、顶馏出液和底馏出液流量; f z 、D x 、B x ——分别为进料、顶馏出液和底馏出液中轻组分含量。 从上述关系可看出:当F D 增加时将引起顶、底馏出液中轻组分含量减少,即D x 、B x 下降。而当F B 增加时将引起顶、底馏出液中轻组分含量增加。即D x 、B x 上升。 然而,在F D (或F B )一定,且f z 一定的条件下并不能完全确定D x 、B x 的数值,只能确定D x 与B x 之间的比例关系,也就是一个方程只能确定一个未知数。要确定D x 与B x 两个因数,必须建立另一个关系式:能量平衡关系。 在建立能量平衡关系时,首先要了解一个分离度的概念。所谓分离度s 可用下式表示: ) 1()1(D B B D x x x x s --= () 从上 式可见:随着分离度s 的增大,而B x 减小,说明塔系统的分离效果增大。影响分离度s 的因素很多,诸如平均挥发度、理论塔板数、塔板效率、进料组分、进料板位置以及塔内上升蒸汽量V 和进料量F 的比值等。对于一个既定的塔来说: ) (F V f s ≈ () 式()的函数关系也可用一近似式表示: β =F V In )1()1(D B B D x x x x -- () 式中β为塔的特性因子。 由式()、()可以看出,随着F V 增加,s 值提高。也就是D x 增加,B x 下降,分离效果提高了。由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。而且由上述分析可见:F V 的增大,塔的分离效果提高,能耗也将增加。

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

《区间信号自动控制》课程教学大纲

《区间信号自动控制》课程教学大纲 Automatic Control of Block Signal 课程负责人:执笔人: 编写日期: 一、课程基本信息 1.课程编号:L08133 2.学分:3学分 3.学时:48(理论48) 4.适用专业:自动化 二、课程教学目标及学生应达到的能力 本课程是为铁道信号专业开设的核心专业课之一。本课程以闭塞为基础,主要内容有单线继电半自动闭塞、64D型继电半自动闭塞、几种移频自动闭塞、机车信号、站内电码化和自动停车装置等。本课程内容是日后从事交通运输工作的基础。 本课程的教学任务是通过学习使学生掌握区间信号自动控制的基本概念和技术基础。在理解单线继电半自动闭塞的基础上,掌握64D型继电半自动闭塞的原理以及继电半自动闭塞的办理方法,熟悉新一代的区间信号自动控制方法,如移频自动闭塞,了解机车信号以及站内电码化。 本课程的教学目标是在运用以问题为导向的研究性教学方法的基础上,通过课堂教学、参观模拟、上机实验等多种形式的训练过程,使学生不仅掌握区间信号自动控制的原理和方法,也使学生的逻辑思维能力、自主学习能力及未来从事相关工作的专业素养得以提高。 三、课程教学内容与基本要求 (一)课程简介(1课时) 主要内容:本课程的性质、任务与教学目标;本课程的教学内容;本课程的教学方法;本课程的教学进程;本课程的考核形式与基本要求;本课程使用的教材、参考书与其他相关课程资源。 1. 基本要求 (1)理解本课程的教学主线,理解区间信号自动控制是通过闭塞来实现的,了解不同的闭塞手段。 (2)了解本课程重点介绍的闭塞方式与其他方式的异同点。 2.教学方法 讲授与讨论 (二)区间闭塞基础(2课时) 主要内容:区间闭塞的基本概念和分类,区间闭塞的发展历史、现状及发展趋势。 1. 基本要求 (1)重点掌握闭塞的概念。 (2)掌握闭塞的分类。 (3)了解区间闭塞的历史、现状及发展。

炼油厂常压塔温度控制系统的设计 过程控制系统与装置 课程设计(论文)

过程控制系统与装置课程设计(论文)题目:炼油厂常压塔温度控制系统的设计

课程设计(论文)任务及评语 院(系):电气工程学院教研室:测控技术与仪器

目录 第1章炼油厂常压塔温度控制系统设计的方案 (1) 1.1 概述 (1) 1.2过程控制系统方案设计的基本要求 (1) 1.3常压塔温度控制系统的总体设计 (2) 第2章炼油厂常压塔温度控制系统设计内容 (3) 2.1精馏塔控制系统的组成与结构 (3) 2.2主要内容与设计步骤 (5) 2.2.1 被控参数的选择 (5) 2.2.2温度变送器的选择 (6) 2.2.3温度调节器的选择 (6) 2.2.4执行器的选择 (7) 2.3一线温度控制系统设计 (7) 2.3.1一线温度控制的主要内容与仪器选择 (9) 第3章课程设计总结 (11) 参考文献 (12)

第1章炼油厂常压塔温度控制系统设计的方案 1.1 概述 过程控制的对象复杂多样,控制方案和系统结构种类较多。除了简单控制系统以外,还有复杂的控制系统,即串级控制系统、前馈控制系统、大滞后过程控制系统、比值控制系统、均匀控制系统、分程控制系统、阀位控制系统、选择性控制系统、接耦控制系统,还有计算机控制系统。 1.2过程控制系统方案设计的基本要求 1.技术要求: 测量范围:0-100℃ 常压塔控制温度:70±0.5℃,最大偏差:1℃ 一线控制温度:60±0.5℃,最大偏差:1.3℃ 2.说明书要求: 确定控制方案并绘制原理结构图、方框图; 选择传感器、变送器、控制器、执行器,给出具体型号; 确定控制器的控制规律以及控制器正反作用方式; 生产过程对过程控制系统的要求是多种多样的,可简要归纳为安全性、稳定性和经济性三个方面。 安全性是指在整个生产过程中,过程控制系统能够确保人员与设备的安全(并兼顾环境卫生、生态平衡等社会安全性要求),是对过程控制系统最重要、最基本的要求。通常采用参数越限报警、事故报警、联锁保护等措施加以保证。 稳定性是过程控制系统保证生产过程正常工作的必要条件。稳定性是指在存在一定扰动的情况下,过程控制系统将工艺参数控制在规定的范围内,维持设备和系统长期稳定运行,使生产过程平稳、持续地进行,同时要求系统具有良好的动态响应特性。 经济性是指过程控制系统在提高产品质量、产量的同时,节省原材料,降低能源消耗,提高经济效益与社会效益。采用有效的控制手段对生产过程进行优化控制是满足工

区间控制方法总结

区间控制方法集总 一:设定区间的控制策略(期望是设定值) 设定区间控制策略 浙江大学 杜树新 2003年 自动化仪表 工业废水PH 值的智能区间控制 浙江大学 杜树新 2004年 仪器仪表学报 将设定区间的上限、下限作为控制设定值, 采用常规控制方法( 如线性控制方法、非线性控制方法、PID)构成2个设定值控制器, 并根据系统输出采用就近原则动态调度该2个设定值控制器, 以确保系统输出在设定区间之内, 达到控制要求。设定值的切换方式是离谁近就切换到谁。 1)基本思想:考虑单输入单输出系统,存在反馈误差和干扰等,系统的输入为u ,输出为y ,期望的输出区间为[a,b],目的是设计控制算法u= h(y, t),采用如下控制策略: 为每个设定值控制器的反馈误差;并且每个控 制作用h 都采用PID 控制形式: h (e 1,t )=kp 1e 1+ki 1∫e 1dt +kd 1t 0 de 1dt h(e 2,t)=kp 2e 2,+ki 2∫e 2,t 0 dt +kd 2de 2,dt 2)应用例子:浙江横店污水处理厂自动控制系统,PH 的设定区间为 [6,8],控制量u>0表示加碱,u<0表示加酸,u=0什么也不加。现构造两个设定值控制器: 设定值为6的控制器: e 1=6? y

h (e 1,t )=kp 1e 1+ki 1∫e 1 dt +kd 1t 0de 1dt 设定值为8的控制器:e 2=8?y h(e 2,t)=kp 2e 2,+ki 2∫e 2,t 0 dt +kd 2de 2,dt 所以区间控制策略为:控制器采取就近原则 这样就构造出了四个PH 时限酸限开阀、酸限关阀、碱限开阀、碱限关阀。 通过设定值控制和设定区间控制的对比我们发现污水区间控制方法在耗药方面要明显优越于常规控制方法且控制精度满足要求 二、区间预测控制 1、状态反馈区间预测控制算法(期望是设定值)。 区域预测控制及其在联合站油水分离中的应用 大庆石油学院 孙玉华 邓凡良 1998年 乙烯精馏塔软仪表与先进控制工程实践 罗雄麟 左信 陈常恒 2002年 化工自动化及仪表 约束控制偏差处理及其在精馏塔预测控制中的应用 中石油大学 罗雄麟 左信 陈常恒等 2002年 化工自动化与仪表 该算法的前提是系统模型用状态空间模型表示,表示如下 X =AX +BU +FV Y =CX 状态反馈的最优控制作用为: ?U (k )=S ?1[Y S (k )?Y (k )?KX (k )+Y ?(k )

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

精馏塔精馏段温度比值控制方案设计

目录 1. 精馏塔控制系统介绍 (1) 1.1精馏塔原理 (1) 2. 精馏塔精馏段控制分析 (2) 2.1精馏塔精馏段的控制要求 (2) 2.2精馏塔精馏段的扰动分析 (3) 2.3精馏塔被控变量的选择 (6) 3. 比值控制系统 (7) 3.1 比值控制系统简介 (7) 3.2 比值控制系统的设计 (7) 4. 精馏塔精馏段温度比值控制系统设计 (9) 4.1精馏塔精馏段比值控制系统参数的选择 (9) 4.2控制参数的确定 (9) 4.3现场仪表选型,编制有关仪表信息的设计文件 (9) 4.4系统方块图 (10) 5. 分析被控对象特性,选择控制算法(调节器控制规律的确定) (11) 5.1比值系数的确定 (11) 6. 精馏塔精馏段温度控制分析 (12) 7. 系统仿真与参数整定 (14) 7.1 控制系统的Simulink仿真框图 (14) 7.2 PID参数整定 (14) 8. 课程设计总结 (18) 9. 参考文献 (19)

1.精馏塔控制系统介绍 1.1精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔和填料塔两种主要类型。根据操作方式又可分为连续精馏塔和间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。蒸馏按照其操作方式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。 1.2精馏装置的作用 (1)精馏段的作用 加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。 (2)提馏段的作用 包括加料版在内的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。 (3)塔板的作用 塔板是供气液两相进行传质和传热的场所。每一块塔板上气液两相进行双向传质,只要有足够的塔板数,就可以将混合液分离成两个较纯净的组分。 (4)再沸器的作用 其作用是提供一定流量的上升蒸气流。 (5)冷凝器的作用 其作用是提供塔顶液相产品并保证有适当的液相回流。回流主要补充塔板上易挥发组分的浓度,是精馏连续定态进行的必要条件。精馏是一种利用回流使混合液得到高纯度分离的蒸馏方法。

自动控制原理第三章复习总结(第二版).

第三章 过程检测技术 目的:为了实现对生产过程的自动控制,首先必须对生产过程的各参数进行可靠地测量。 要点:学习和掌握过程测试及应用;正确地选择测试原理和方法;组成合适的测试系统。 第一节 测量与误差基本知识 测量基本知识 一.测量的概念 1.概念 测量是人类对自然界的客观事物取得数量概念的一种认识过程。或者说 测量就是为取得任一未知参数而做的全部工作。 4.测量的基本方程式 u X x /00 5.测量过程三要素 (1) 测量单位; (2) 测量方法; (3) 测量仪器与设备。 二.测量单位 1.概念 数值为1的某量,称为该量的测量单位或计量单位。 三.测量方法 (一)测量方法的分类 1.直接测量与间接测量 2.等精度测量和不等精度测量

3.接触测量与非接触测量 4.静态测量与动态测量 (二)直接测量法有以下几种常用方法: 1.直接比较测量法 2.微差测量法 3.零位测量法(又称补偿测量法或平衡测量法) (三)间接测量法 1.定义通过对与被测量有函数关系的其它量进行测量,才能得到被测量值的测量方法。 4.组合测量法 四.测量仪器与设备 (一)感受件(传感器) (二)中间件(变送器或变换器) (三)显示件(显示器) 误差基本知识 一.误差基础 (一)测量误差及分类 1.系统误差 2.随机误差(又称偶然误差) 3.粗大误差 (二)测量的精密度、准确度和精确度 1.精密度

2.准确度 3.精确度 (三)不确定度 概念用测量值代表被测量真值的不肯定程度。是测量精确度的定量表示。(四)仪表的基本误差限 1.绝对误差 2.相对误差 3.引用误差 二.误差分析与处理 (一)随机误差的分析与处理 1.统计特性(随机过程) 2.算术平均值原理 (1)真值的最佳估计值(最佳信赖值)。 (2)剩余误差 3.随机误差的标准误差估计(贝塞尔公式) 4.置信概率与置信区间 (二)系统误差的分析与处理 1.系统误差的估计 (1)恒定系统误差指误差大小和符号在测量过程中不变的误差。 (2)变值系统误差它是一种按照一定规律变化的系统误差。可分为 a.累积性系统误差随着时间的增长,误差逐渐增大或减少的系统误差。 b.周期性系统误差误差大小和符号均按一定周期变化的系统误差。 2.系统误差的消除 校准法、零示法、替代法、交换法、还有对称法、微差法、比较法等。

精馏塔PID控制系统简介

精馏塔PID控制系统简介 一、PID控制系统 单回路控制系统通常是指由一个检测元件及一个变送器、一个控制器、一个执行器、一个被控对象所组成的一个闭合回路的控制系统,又称简单控制系统或单参数控制系统。单回路控制系统是所有过程控制系统中最简单、最基本、应用最广泛和最成熟的一种,约占控制回路的80%以上,适用于被控对象滞后时间较小、负荷和干扰变化不大、控制质量要求不很高的场合。控制器在冶金、石油、化工、电力等各种工业生产中应用极为广泛。要实现生产过程自动控制,无论是简单的控制系统,还是复杂的控制系统,控制器都是必不可少的。控制器是工业生产过程自动控制系统中的一个重要组成部分。它把来自检测仪表的信号进行综合,按照预定的规律去控制执行器的动作,使生产过程中的各种被控参数,如温度、压力、流量、液位、成分等符合生产工艺要求。主要介绍在工业控制中有一定影响力的DDZ-Ⅲ型控制器的控制规律、构成原理和使用方法。 二、控制器的控制规律: 在自动控制系统中,由于扰动作用的结果使被控参数偏离给定值,从而产生偏差,控制器将偏差信号按一定的数学关系,转换为控制作用,将输出作用于被控过程,以校正扰动作用所造成的影响。被控参数能否回到给定值上,以怎样的途径、经过多长时间回到给定值上来,即控制过程的品质如何,不仅与被控过程的特性有关,而且也与控制器的特性,即控制器的规律有关。 所谓控制器的控制规律,就是指控制器的输出信号与输入信号之间随时间变化的规律。这种规律反映了控制器本身的特性。 控制器的基本控制规律由比例(P)、积分(I)、微分(D)三种。这三种控制规律各有其特点。 三、精馏塔主要测量控制点的测控方法、装置和设备的报警连锁简介 1、塔釜上升蒸汽量的控制: 塔釜上升蒸汽量是由塔釜加热电压来决定的,控制塔釜加热电压即可控制塔釜上升蒸汽量

精馏塔提馏段的温度控制系统

过程控制仪表课程设计 题目:精馏塔提馏段的温度控制系统 学生姓名: 班级:自动化班 学号:2008 指导老师:高飞燕,唐耀庚 2011年12月22日

目录 1.系统设计 (3) 1.1设计的目的与要求 (3) 1.1.1设计的目的 (3) 1.1.1设计的要求 (3) 2.控制系统的简单介绍以及工艺流程分析 (3) 2.1控制系统的简单介绍 (3) 3.绘制工艺流程原理框图 (4) 4. 各个环节仪表的选型,仪表的工作原理以及性能指标 (6) 4.1检测元件 (6) 4.2变送器 (6) 4.3调节器 (7) 4.4执行器 (7) 5.绘制仪表盘电气接线图,端子接线图 (8) 6.给出仪表型号清单 (9) 7.参考文献 (9)

一.系统设计 1.1设计的目的与要求 1.1.1设计的目的 精馏操作,选择的好与坏,能够很好的使回收率最高,能耗最小,得总效益最好。在控制过程中,主要是温度的控制,温度对产品质量的影响很大,因而温度控制和检测是十分必要的。这就需要对加热介质的温度进行连续的测量和控制。这样才能对产品的质量有很好的保证,同时可以确保公司的经济效益。 此次课程设计,主要是使我们更好的了解过程控制与仪表设计的要求,过程,必须完成的内容以及相应的设计方法。同时也使我们了解所学的理论知识,在设计的过程中,很好的运用理论知识并根据实际的情况掌握好理论知识。 1.1.2设计的要求 a.控制系统的简单介绍,工艺流程分析; b.各环节仪表的选型、仪表的工作原理及性能指标; c.仪表间的配接说明。 d.绘制工艺流程原理框图 e.给出仪表型号清单 f.绘制仪表盘电气接线图,端子接线图 二. 控制系统的简单介绍以及工艺流程分析 2.1控制系统的简单介绍 精馏操作是炼油,化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品质量,产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。这些都给自动控制带来了一些苦难。同时各塔工艺结构特点千差万别,这需要深入分析特性,结合具体塔的特点,进行自动方案设计和研究。精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。 在这个情况下为了更好地实现精馏塔的目标就有了提溜段温度控制系统的产

精馏塔提馏段的温度控制系统知识分享

精馏塔提馏段的温度 控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统 学生姓名 XXX 专业班级自动化X X X 学号 XXXXXXXXXX 指导老师 XXX 2012年6月25日

目录 1. 系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10) 6.仪表型号清单 (11) 7. 设计总结 (12) 参考文献 (13)

1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,内在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的 困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。 按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高

基于单片机对精馏塔的温度控制系统设计

课程设计说明书 题目:基于单片机对精馏塔温度的控制系统设计 学院:贵州大学明德学院 专业:机械设计与制造 班级:机电091 学号: 092003111048 学生姓名:杨政坤 指导教师:王许 2012年7月5日

贵州大学明德学院本科课程设计 诚信责任书 本人郑重声明:本人所呈交的课程设计,是在导师的指导下独立进行研究所完成。设计中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 论文(设计)作者签名:杨政坤日期: 2012.07.05 课程设计任务书

2012年7月 5 日 第47题 基于单片机对精馏塔的温度控制系统设计 摘要 精馏法是把混合物中各成分分离出来,并分别达到规定纯度的方法;精馏法是石油,化工等生产过程中最常用的方法。精馏需要在精馏反应塔中进行,反应塔中必然会产生温度,而且温度很高。温度是工业生产中常见的工艺参数之一,我们需要对塔中温度进行严格的监测和控制。 由于温度很高,为了安全起见,我们需要采用单片机对他们进行远距离控

制,单片机控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 本设计采用无ROM的8031作为主控制芯片。8031的接口电路有8155、2764。8155用于键盘/LED显示器接口,2764可作为8031的外部ROM存储器。其中温度控制电路是通过可控硅调功器实现的。双向可控硅管和加热丝串联接在交流220V,50HZ交流试点回路,在给定周期内,8031只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。 使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。本系统所使用的单片机8031有128K 的RAM,使温度控制大为简便。 关键字:温度控制;接口电路;MCS-51单片机8031。

过程控制课程设计-精馏塔温度控制系统

、 过程控制系统与仪表课程设计 目录 : 一、研究对象.............................................. 错误!未定义书签。 二、研究任务.............................................. 错误!未定义书签。 三、仿真研究要求............................................................................. . (4) 四、传递函数计算............................................................................. . (5) 五、控制方案.............................................. 错误!未定义书签。 1. 单回路反馈控制系统 (6) $ 1) 控制方案的系统框图和工艺控制流程图................ 错误!未定义书签。 2) PID参数整定 (7) 3) 系统仿真.......................................... 错误!未定义书签。 4) 对象特性变化后仿真 (12) 2. Smith预估补偿控制系统................................. 错误!未定义书签。 1) 控制方案的系统框图和工艺控制流程图................ 错误!未定义书签。 2) 控制系统方框图.................................... 错误!未定义书签。 3) 系统仿真 (21) · 3. 前馈-反馈控制系统 1) 控制方案的系统框图和工艺控制流程图 (25) 2) 系统仿真 (27) 3) 对象特性变化后仿真............................................................................. . (30)

过控课设精馏塔温度控制系统设计与仿真

自动化工程与科学学院 过程控制系统与仪表课程设计 ——精馏塔温度控制系统设计与仿真 班级:11级自动化2班 姓名: 董文杰 学号:0309 指导老师: 哀薇 日期: 过程控制系统课程设计 ——精馏塔温度控制系统设计与仿真 一、 研究对象 图1 精馏塔温度控制问题 某精馏塔的工艺流程如图1所示,现要求对精馏段温度T R 和提馏段温度T S 都进行有效的控制,以确保塔顶和塔底产品的质量。图1中,F 为进料量,它受上游流程控制,为精馏塔温度的主要干扰之一,其它干扰包括进料组成与温度变化、塔底蒸汽量变化、塔顶回流冷凝后温度变化等;L 为塔顶冷回流量,拟作为精馏段温度T R 的控制手段;塔底蒸汽量Q H 拟作为提馏段温度T S 的控制手段。u 1为调节阀V L 的相对输入信号,u 2为调节阀V Q 的相对输入信号(以DDZ III 型为例,当输入电流为4 mA 时,对应相对输入信号为0 %;当输入电流为20 mA 时,对应相对输入信号为100 %),P 为精馏塔顶压力,其变化可基本忽略,P p 为泵出口压力,P p 受塔顶产品调节阀V D 开度的影响,变化范围较大。图1中L m 、V m 、F m 分别为L 、V 、F 的测量值。 为便于控制方案研究,假设如下: (1) 该精馏塔的静态工作点为 T 0 = 140 ℃,F 0 = 60 T/hr (吨/小时),L 0 = 20 T/hr , V 0 = 15 T/hr ,u 10 = 25 %,f L0 = 75 %, u 20 =25 %,f Q0 = 25 %,P p 0 = 0.9 MPa , P t 0 = 0.86MPa 。这里,f Q 为调节阀V Q 相对流通面积,f L 为调节阀L 相对流通面 积。 (2) 精馏段和提馏段温度的测量范围都为0 ~ 200 ℃,进料量F 的测量范围为0 ~ 100 T/hr ,塔顶冷回流量L 的测量范围为0 ~ 50 T/hr ,塔底回流量V 的测量范围为0 ~ 25 T/hr 。L 、V 、F 的测量值:L m 、V m 、F m 均用%来表示,即L m 、V m 、F m 的最 小值为0,最大值为100。 (3) 流量测量仪表的动态滞后忽略不计;而温度测量环节可用带纯滞后的一阶环节 来近似,温度测量环节的一阶时间常数7.0=R T ,6.0=s T ,纯滞后时间3.0=R τ, 4.0=s τ,单位为分。 (4) 考虑到精馏塔操作的安全性,控制阀V L 选用气关阀,控制阀V Q 选用气开阀,假 设控制阀都为线性阀,其动态滞后忽略不计,动态特性可表示为

相关文档
相关文档 最新文档