文档库 最新最全的文档下载
当前位置:文档库 › 有限元分析保险杠1

有限元分析保险杠1

有限元分析保险杠1
有限元分析保险杠1

汽车防撞梁的受力及优化分析

班级:

学号:

姓名:

一.前言

汽车前后端所装有的保险梁,其重要之处在于可以在冲撞时吸收能量并保护车身和车内成员安全。早先汽车的防撞钢梁以金属材料为主,用厚度为3毫米以上的钢板冲压成U形槽钢,表面处理镀铬,与车架纵梁铆接或焊接在一起,看上去十分不美观。近年来家用车的保险杠主要由加强壳体,吸能材料和加强横梁组成。

fig. 1 保险杠结构 fig. 2 实物图解

由上图可见,在发生高速碰撞时,能起到最大保护作用的是最后一层的防撞钢梁,防撞钢梁大多数由轻质铝合金或钢材制成。目前防撞钢梁的结构有如下横截面。

fig. 3 大多数防撞梁所采取的结构 fig. 4分析中所采取的结构

一.建立模型并求解

1.先按照图4的横截面绘制防撞梁的三维模型。

fig. 5 防撞梁三维模型

2.用import命令将其导入到workbench中,选择材料并设置材料属性,本次分析中采用铝合金。弹性模量E=71Gpa,泊松比为0.3

3.

fig. 6 材料属性

3.划分网格,由于三维模型尺寸与实际尺寸相符,为保证求解速度,故网格

单元大小设为5mm,结果如图7所示。

fig. 7 网格划分

4.设置边界条件,如图8所示,在保险梁和车身骨架连接处设置fixed

support ,并在正面设置50吨的力,保持和实际撞击情况相符。

fig. 8 边界条件设置

5.求解结果。

从图9和图10可以看出,铝合金梁是可以承受的住50吨的冲击力,梁的变形量最大有19.857mm ,最大应力4751.8Mpa ,还不至发生破坏。 二. 结构优化

fig. 9变形云图 fig. 10 应力云图

优化分析使用Workbench中自带的shape optimization优化功能,其还处于实验阶段,功能并不完善,但是可以进行简单的结构优化处理。先进行网格划分,单位为

5mm。然后设置边界条件,同受力分析一致,这里不在赘述。优化时要设置重力方向。

fig. 11 重力方向设置

设置同样的加载条件后进行求解,结果如下所示,橘红色的部分为可去除部分,意

为在去除那么多材料后防撞梁还能够承受同样大小的力,并保持变形量一定。Workbench优化功能默认的材料去除量为20%。

fig. 12 连接处可去除量 fig. 13 梁体可去除量

三.结构改良

汽车保险梁的梁体部分若想不更换材料而承受更大的冲击力,就必须要加强

x方向的约束,这可以最大限度发挥外拱形梁的承力优势。

从优化结果可以看出,汽车防撞梁的关键除了材料以外,还包括连接部位。现在高档车的防撞梁连接部位均会采用吸能盒来吸收冲击能量。保险梁之所以能保护乘客因为它不仅耐撞,而且受撞击之后变形能够吸收大部分冲击的能量。

fig. 14变截面吸能盒 fig. 15 修改后的三维模型

由此可见,防撞梁的设计过程应着重考虑到变形量大的部位,有限元分析时可细化局部网格,变形小的地方可以疏化网格,可以大幅度提高效率。如图16所示的改进吸能盒的受力分析可见保险梁变形加大,其所吸收的能量更多。

有限元优化汽车保险杠

fig. 16 修改吸能盒后的保险梁位移

四.结论

汽车的保险梁的抗撞击能力取决于材料,结构等因素,本次分析主要针对结构。通过分析可以看出,相同的梁可以在去除20%的材料后仍能承受相同的载荷并且保证应变和应力的数据均相同。

另一方面,汽车保险梁通过变形的方式吸收能量以此保护车内成员的安全,分析中体现了吸能盒结构的不同可以改变保险梁所吸收的能量。本分析中的吸能盒是一种变截面吸能盒。受相同的载荷后所吸收的能量是之前对比组的两倍多。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

基于ansys的连杆机构的有限元分析

目录 摘要 ............................................................................................ 错误!未定义书签。Abstract (2) 第一章分析方法和研究对象 ........................................... 错误!未定义书签。 1.1 有限单元法的概述....................................................... 错误!未定义书签。 1.1.1 有限单元法的历史 (4) 1.1.2 有限单元法的基本概念 (4) 1.2 ANSYS软件简介 (4) 1.2.1 ANSYS主要应用领域 (4) 1.2.2 ANSYS操作界面 (5) 1.2.3 ANSYS的主要功能 (6) 1.2.4 ANSYS主要特点 (7) 1.3 曲柄滑块机构简介 (7) 1.3.1 曲柄滑块定义 (8) 1.3.2 曲柄滑块机构特性应用以及分类 (8) 第二章曲柄滑块机构的求解 (10) 2.1 曲柄滑块机构的问题描述 (10) 2.2 曲柄滑块机构问题的图解法 (10) 2.2.1 图解法准备工作 (11) 2.2.2 图解法操作步骤 (11) 第三章有限元瞬态动力学概述 (14) 3.1 有限元瞬态动力学定义 (14) 3.2 瞬态动力学问题求解方法........................................... 错误!未定义书签。 3.2.1 完全法 (14) 3.2.2 模态分析法 (14) 3.2.2 缩减法 (15) 3.1 有限元结构静力学分析基本概念 (15) 3.1 有限元结构静力学分析步骤 (16) 第四章曲柄滑块的有限元瞬态动力学分析 (17) 4.1 曲柄滑块机构瞬态简要概述 (17) 4.2曲柄滑块有限元瞬态动力学分析步骤 (18)

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

有限元概述

有限元 百科名片 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后 再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 目录 简介 1)物体离散化 2)单元特性分析 3)单元组集 4)求解未知节点位移 5)有限元的未来是多物理场耦合 编辑本段简介 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 编辑本段1)物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 编辑本段2)单元特性分析 A、选择位移模式

用ANSYS进行四连杆机构的有限元分析

用ANSYS进行四连杆机构的有限元分析 作者:谭辉 日期:08年3月6日 分析目的 1、利用ANSYS对典型的四连杆机构进行分析,主要包含各点的轨迹分 析,例如X和Y方向的位移等。 2、为五连杆和六连杆机构的分析提供可行的分析方法以及原型代码。 问题简述 分析主动杆1绕节点1旋转一周时节点4的运动轨迹,杆2和杆3为从动杆,具体问题见下图:

分析思路 1、根据分析目的,在ANSYS选用link1单元进行单元建模,主要考虑 是link1单元具有X和Y方向的自由度,可以获得各个节点的位移轨迹。 之后可以用梁单元等实现更高级的分析目的,例如获得杆上的力,位移, 加速度等相关信息。 2、该模型结构简单,可以利用直接建模方法进行有限元系统建模,主 要命令:N,E。 3、利用自由度耦合对重合节点进行建模,例如节点2和节点3、节点4 和节点5进行建模,主要命令:cpintf,利用该命令可以一次性将重合节 点生成自由度耦合。 4、利用表数组对于杆1(主动杆)的节点2进行瞬态边界条件的载荷施 加,分析类型为瞬态分析,主要命令:*dim,d等。 5、生成节点位移的对应变量,从而获得节点4的随时间的位移曲线, 主要命令:nsol,plvar等。 命令流如下 行号命令符号注释 结束上一次的分析 1finish ! 清除数据库,并读取启动配置文件2/clear,start ! 3 ! 设置图形显示的背景颜色 4/color,pbak,on,1,5 ! 5 !

6/units,si ! 设置单位制:国际单位制 7*afun,deg ! 设置三角函数运算采用度为单位 8 ! 9/prep7 ! 进入前处理模块 10et,1,link1 ! 设置单元类型:link1 11mp,ex,1,2.07e11 ! 设置材料的弹性模量 12r,1,1 ! 设置单元的实常数,面积为1 13n,1,0,0,0 ! 在(0,0,0)处建立节点1 14n,2,3,0,0 ! 在(3,0,0)处建立节点2 15n,3,3,0,0 !在(3,0,0)处建立节点3,和节点2重合 16n,4,8,7,0 ! 在(8,7,0)处建立节点4 17n,5,8,7,0 !在(8,7,0)处建立节点4,和节点4重合 18n,6,10,0,0 ! 在(10,0,0)处建立节点6 19e,1,2 ! 建立单元1(连接节点1和2) 20e,3,4 ! 建立单元2(连接节点3和4) 21e,5,6 ! 建立单元3(连接节点5和6) 22 ! 23cpintf,all,1e-3 !对于重合节点一次性的建立耦合自由度,容差1e-3 24 ! 25/pnum,node,1 ! 显示节点编号 26/pnum,elem,1 ! 显示单元编号 27eplot ! 显示单元

基于ANSYS Workbench的定位卡锁机构有限元分析

基于ANSYS Workbench的定位卡锁机构有限元分析 摘要本文首先在Pro/E中建立了定位卡锁机构受最大外力时的简化模型,然后将该模型导入到ANSYS Workbench 13平台中进行了有限元模型的分析求解,最后结合求解结果用第四强度理论对定位卡锁机构各零件进行了强度校核,同时对该定位卡锁机构的改进提出了建议。 关键词定位卡锁机构;有限元分析 在某工程项目中应用的定位卡锁机构承担着为某输送设备准确定位的作用。由于该输送设备运行一个周期位就要启停一次,启停工作由定位卡锁机构配合实现。定位卡锁机构收回,输送设备开始运转,一个周期位后电机停转,定位卡锁机构伸出,进入与之配合的凹槽使输送设备完全停位。因此,定位卡锁机构成为该输送设备的关键部件,是保证输送设备正常工作的必备条件。所以,对定位卡锁机构的研究与分析有着重要的意义。 定位卡锁机构在伸出状态受最大外力时,其所受最大应力不应超过材料的许用应力是保证定位卡锁机构实现其功能的充分条件。为了保证定位卡锁机构的工作可靠性,本文利用ANSYS Workbench对该机构进行有限元分析,研究在定位卡锁机构受最大外力时的受力及变形情况,并依据理论知识对其强度进行校核。 1 定位卡锁机构模型的建立与导入 在对定位卡锁机构进行有限元分析之前,首先应建好定位卡锁机构的三维模型。一般在整个有限元分析的过程中,几何建模的工作量占据了非常多的时间,同时也是非常重要的过程[2]。ANSYS Workbench 13中,建模工作主要由ANSYS Workbench 自带的几何建模工具Design Modeler模块完成。对于小型或简单模型的建立可以直接在Design Modeler模块中建模,这样避免了从CAD系统中导入ANSYS的模型可能不能直接进行网格划分,需进行大量修补完善工作的麻烦。对于零部件较多的装配体的建模,通常先利用专业的三维建模软件完成模型的建立,然后再把它导入到ANSYS中进行分析。这样,工程技术人员就可以使用自己擅长的CAD软件建好模型,从而避免了重复现有CAD模型的劳动。 本文采用PTC公司的Pro/Engineer对定位卡锁机构进行三维建模。定位卡锁机构简化模型由液压缸、卡锁活塞杆、端盖、螺塞、螺钉组成,建好的三维模型如图1所示。建好后的三维模型可以在Pro/E中直接导入到ANSYS Workbench 13 中进行有限元分析。 图1 定位卡锁机构的三维模型 2 定位卡锁机构的有限元分析 2.1 定义模型材料属性

有限元法发展综述

有限元法发展综述 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。 有限元法是一种高效能、常用的计算方法.有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系. 一、有限元法的孕育过程及诞生和发展 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

有限元分析有压管道知识讲解

有限元分析有压管道

水电站建筑物 结构分析与优化设计 ——有压管道计算分析报告 专业:xxxxx 姓名:xxxxx 学号:xxxxx

1.概况 1.1工程概况 该工程总装机容量 2.5kw,尾水用于农田灌溉。电站由引水渠道、压力前池、压力管道、厂房和升压站组成。电站引水系统采用明管,管道沿山脊蜿蜒而下,全长2670m,具有多个空间和平面转换,共设27个镇墩。 1.2计算内容 本报告只针对尾部总长285m的管段,采用钢板作为内衬的钢筋混凝土管道方案,断面如下图所示。分析其压力管道内部完全冲水时的温度分布、应力与变形。内部水压5MPa,水温15°C,外界温度35°C。 本报告计算时考虑到压力管道轴向长度与管道截面尺寸相差两个数量级,建模时轴向尺寸太大而影响到截面计算的准确性,且同时此问题为平面应变问题,故而本报告截取沿垂直于水流方向轴向长度为5m的有压管道来进行模拟。 模拟时管道两端约束其轴向方向的位移,忽略基岩的形变,在管道与基岩相连接处采用全约束的方式来模拟基岩对管道的影响。鉴于要求考虑的是管道充水时的温度分布、变形和应力,故而本报

告只考虑了管道内部工作压力为5MPa时管道的变形、应力,没有考虑水所受重力与混凝土所受重力对管道充水时的影响。 2.基本资料 2.1几何参数

钢板内衬直径1000mm,钢板厚26mm,外包混凝土厚400mm。 2.2材料参数 混凝土参数: 弹性模量:E = 25.5Gpa 密度:ρ = 2400 kg / m^3 泊松比:? = 0.167 温度线膨胀系数1.0*10 ^ -5 /°C 导热系数:1.28 W / ( m.K ) 抗拉强度: 抗压强度: 钢板参数: 弹性模量:E = 210 Gpa 密度:ρ = 7850kg / m ^ 3 泊松比:? = 0.3 温度线膨胀系数1.2*10 ^ -5 导热系数:14.7W/ ( m.K )

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

有限元分析报告大作业

基于ANSYS软件的有限元分析报告 机制1205班杜星宇U201210671 一、概述 本次大作业主要利用ANSYS软件对桌子的应力和应变进行分析,计算出桌子的最大应力和应变。然后与实际情况进行比较,证明分析的正确性,从而为桌子的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。 二、问题分析 已知:桌子几何尺寸如图所示,单位为mm。假设桌子的四只脚同地面完全固定,桌子上存放物品,物品产生的均匀分布压力作用在桌面,压力大小等于300Pa,其中弹性模量E=9.3GPa,泊松比μ=0.35,密度ρ=560kg/m3,分析桌子的变形和应力。

将桌脚固定在地面,然后在桌面施加均匀分布的压力,可以看作对进行平面应力分析,桌脚类似于梁单元。由于所分析的结构比较规整且为实体,所以可以将单元类型设为八节点六面体单元。 操作步骤如下: 1、定义工作文件名和工作标题 (1)定义工作文件名:执行Utility Menu/ File/Change Jobname,在弹出Change Jobname 对话框修改文件名为Table。选择New log and error files复选框。 (2)定义工作标题:Utility Menu/File/ Change Title,将弹出Change Title对话框修改工作标题名为The analysis of table。 (3)点击:Plot/Replot。 2、设置计算类型 (1)点击:Main Menu/Preferences,选择Structural,点击OK。

有限元资料讲解

有限元分析 计算机辅助工程(CAE)作为一门新兴的学科已经逐渐的走下神坛,成为了各大企业中设计新产品过程中不可缺少的一环。传统的CAE技术是指工程设计中的分析计算与分析仿真,具体包括工程数值分析、结构与过程优化设计、强度与寿命评估、运动/动力学仿真,验证未来工程/产品的可用性与可靠性。 如今,随着企业信息化技术的不断发展,CAE软件与 CAD/CAM/CAPP/PDM/ERP一起,已经成为支持工程行业和制造企业信息化的主导技术,在提高工程/产品的设计质量,降低研究开发成本,缩短开发周期方面都发挥了重要作用。 而CAE技术出现则是要归功于有限元分析的诞生,在有限元法诞生的早期,几乎所有的CAE软件都是使用有限元法来进行计算求解。因此,可以说有限元法的发展也间接反映了CAE软件在这半个世纪的发展历史。 1 有限元法的诞生 每一项新技术的推出都是由于时代的迫切需要,而新技术的出现后也需要经历历史的重重考验。在上个世纪40年代,由于航空事业的快速发展,对飞机内部结构设计提出了越来越高的要求,即重量轻、强度高、刚度好,人们不得不进行精确的设计和计算。正是在这一背景下,有限元分析的方法逐渐的发展起来。 早期的一些成功的实验求解方法与专题论文,完全或部分的内容对有限元技术的产生做出的贡献,首先在应用数学界第一篇有限元论文是1943年Courant R发表的《Variational methods for the solution of problems of equilibrium and vibration》一文,文中描述了他使用三角形区域的多项式函数来求解扭转问题的近似解,由于当时计算机尚未出现,这篇论文并没有引起应有的注意。 1956年,M.J.Turner (波音公司工程师),R.W.Clough (土木工程教授), H.C.Martin (航空工程教授)及L.J.Topp (波音公司工程师) 等四位共同在航空科技期刊上发表一篇采用有限元技术计算飞机机翼的强?的论文,名为《Stiffness and Deflection Analysis of Complex Structures》,文中把这种解法称为刚性法(Stiffness),一般认为这是工程学界上有限元法的开端。 1960年,Ray W. Clough教授在美国土木工程学会(ASCE)之计算机会议上,发表另一篇名为《The Finite Element in Plane Stress Analysis》的论文,将应用范围扩展到飞机以外之土木工程上,同时有限元法(Finite Element Method)的名称也第一次被正式提出。 由此之后,有限元法的理论迅速地发展起来,并广泛地应用于各种力学问题和非线性问题,成为分析大型、复杂工程结构的强有力手段。并且随着计算机的迅速

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限元分析的一般过程

一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。 但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。 2、位移插值函数的收敛性(完备性)要求: 1)位移插值函数必须包含常应变状态。 2)位移插值函数必须包含刚体位移。 3、复杂单元形函数的构造 对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。因此在实际应用中更多的情况下是利用形函数的性质来构造形函数。 形函数的性质: 1)相关节点处的值为 1,不相关节点处的值为 0。 2)形函数之和恒等于 1。 1、建立数学模型(特征消隐,理想化,清除)((即从CAD 几何体→FEA 几何体),共 有下列三法:▲ 特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲ 理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理▲ 清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。) 2、建立有限元模型:(选择网格种类及定义分析类型;添加材料属性;施加约束;定义载 荷;网格划分) 3、求解有限元模型:再在此基础上计算应变和应力等其它物理量;在热分析中,FEA 首先 计算的是网格中每个节点的温度(标量),再在此基础上计算温度梯度和热流等其它物理量. 一般如果模型可划分网格,那么它就可以求解,但如果没有定义材料或载荷,则求解会终止。 4、结果分析:材料线性假设、小变形假设、静态载荷假设等等。

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

相关文档
相关文档 最新文档