文档库 最新最全的文档下载
当前位置:文档库 › 函数正交和相关性概念

函数正交和相关性概念

函数正交和相关性概念
函数正交和相关性概念

各种正交概念

(2009-10-21 21:12:22)

转载

标签:

杂谈

函数的正交是向量正交的推广,函数可看成无穷维向量,在n维空间中两向量正交是借助内积来定义的,设X=(x1,x2,...,xn),Y=(y1,y2,...,yn),则X与Y正交定义为其内积X*Y=x1*y1+x2*y2+...+xn*yn=0,

设f(x),g(x)是定义在[a,b]区间的可积函数,f(x),g(x)中的自变元类似于(有限维)向量下标,向量X中分量的下标取1,2,..,n这些离散值,而f(x)中的x可连续取[a,b]中所有的值,因此f(x)是无穷维向量,两向量内积是对应分量之积的有限和,推广到函数空间,两函数内积是对应分量(函数值)之积的无限和,积分是有限和的极限,因此积分表示一个无限和,为了看清这一推广,将向量内积表示为

X*Y=x1*y1*1+x2*y2*1+...+xn*yn*1,这个和式中每一项是由X的分量,Y的分量和1相乘之积(1看成下标取1个单位),对应于向量内积的写法,函数内积应写为f(x)g(x)△x,它对应了[a,b]区间某子区间的值,该子区间长为△x,它类似于下标,将所有这些值加起来,当最大子区间长为趋于零,有限和变为无限和,其值恰为f(x)g(x)在[a,b]的积分.

三角函数族的正交性

所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧氏空间中,互相垂直的向量之间是正交的。事实上,正交是垂直在数学上的的一种抽象化和一般化。一组n个互相正交的向量必然是线性无关的,所以必然可以张成一个n维空间,也就是说,空间中的任何一个向量可以用它们来线性表出。三角函数族的正交性用公式表示出来就是:

正交函数集

对于两个函数f和g,可以定义如下的内积:

这里引进一个非负的权函数w(x)。这个内积叫做带权w(x)的内积。两个函数带权w(x)正交,是指它们带权w(x)的内积为零。

由此可以类似定义带权w(x)的模型。

一个函数列{ f i : i = 1, 2, 3, ... }如果满足:

就称为带权w(x)的正交函数族。

如果满足:

其中

为克罗内克函数。

就称为带权w(x)的标准正交函数族

正交子空间

若内积空间中两向量的内积为0,则它们正交。类似地,若内积空间中的向量v与子空间A中的每个向量都正交,那么这个向量和子空间A正交。若内积空间的子空间A和B满足一者中的每个向量都与另一者正交,那么它们互为正交子空间。

正交变换

正交变换是保持内积的线性变换。即是说,对两个向量,它们的内积等于它们在函数T下的内积:

这也就是说,正交变换保持向量的长度不变,也保持两个向量之间的角度不变。

欧几里得空间的例子

在二维或三维的欧几里得空间中,两个向量正交当且仅当他们的点积为零,即它们成90°角。可以看出正交的概念正是在此基础上推广而来的。三维空间中,一条直线的正交子空间是一个平面,反之亦然。四维空间中,一条直线的正交子空间则是一个超平面。

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 梁市西城区教育研修学院 函数是中学数学中的重点容,它是描述变量之间依赖关系的重要数学模型. 本专题容由四部分构成:关于函数容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析. 研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等. 一、关于函数容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859提出是与之间的一种对应的观点[对应关系角度];Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]. Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义). Veblen,1880-1960用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象. (二)初高中函数概念的区别与联系 1.初中函数概念:

复合函数含义

复合函数含义: 函数y=log 2x 是对数函数,那么函数y=log 2(2x-1)是什么函数呢?我们可以这样理解:设y=log 2u ,u=2x-1,因此函数y=log 2(2x-1)是由对数函数y=log 2u 和一次函数u=2x-1经过复合而成的。一般地: 若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。 简言之:复合函数就是: 把一个函数中的自变量替换成另一个函数所得的新函数. 例如: f(x) = 3x+5, g(x) = x 2+1; 复合函数f(g(x))即把f(x)里面的x 换成g(x), f(g(x)) = 3g(x)+5 = 3(x 2+1)+5 = 3x 2+8. 对于有关复合函数定义域问题我们可以分成以下几种常见题型: (一)求复合函数表达式; (二)求复合函数相关定义域; (三)复合函数的单调性; (四)函数性质等与复合函数结合。 新课程中复合函数相关题: 7,如果t t t g t t t f -= += 1)(,1)(,证明:)(2)()(2 t g t g t f -=-。 8、已知函数)(x f 与)(x g 分别由下表给出,那么 _____________________))1((=f f _____________________))2((=g f _____________________))3((=f g _____________________))4((=g g 9、设函数32)(+=x x f ,函数53)(-=x x g ,求))(()),((x f g x g f 。 7、已知)(x f 是一个定义在R 上的函数,求证:(1))()()(x f x f x g -+=是偶函数;(2) )()()(x f x f x h --=是奇函数。 20、求满足下列条件的函数)(x f 的解析式: (1)23)1(+=+x x f ;(2)13)2(2 +=x x f 。

一次函数的概念和性质

课题一次函数的概念及其性质 一、本次课授课目的及考点分析:授课目的: 1、掌握一次函数的定义、图象和主要性质; 2、了解一次函数与正比例函数的关系; 3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思维和渗透数形结合思想. 教学重点: 会根据已知条件求出一次函数的解析式; 教学难点: 在y=kx+b中,k和b的数与形的联系; 二、本次课的内容:一次函数的概念、一次函数的图像、一次函数的性质 教学过程 一、错题回顾: 二、教授新课: (一)复习 1.写出正比例函数的解析式. 2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样? (二)新课 这些函数的共同的特点都是含自变量的一次式. (1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数. (2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况. (3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出两

个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件. 例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是[ ]. (A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6) 这六个式子是 (1)y=3x+5;(2)3x+5;(3)y=3x2+5; 分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D). 例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______. 解:设此一次函数式为y=kx+b.由已知,可列出方程组 所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10. (4)一次函数图象与正比例函数的图象的关系. 我们从下面的列表,观察、归纳.

新教材:《函数的概念与性质》能力提高卷

新教材:《函数的概念与性质》能力提高卷 一.选择题(共8小题) 1.已知函数f(x)的定义域为(0,+∞),且,则f(x)=()A.B. C.D. 1.B【解析】由,①以替换x,得,②把②代入①,可得 ,即.∴f(x)(x>0).故选:B. 2.已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8] C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4] 2.A【解析】函数f(x)=4x2+kx﹣1的对称轴为x, 若f(x)在区间[1,2]上是单调增函数,可得1,解得k≥﹣8; 若f(x)在区间[1,2]上是单调减函数,可得2,解得k≤﹣16. 综上可得k的范围是[﹣8,+∞)∪(﹣∞,﹣16].故选:A. 3.已知函数f(x)=log2x+1的定义域为[1,2],g(x)=f2(x)+f(x2)+m,若存在实数a,b,c∈{y|y =g(x)},使得a+b<c,则实数m的取值范围是() A.m B.m<2 C.m<3 D.m 3.【解析】f(x)的定义域为[1,2],由,解得1≤x;∴g(x)=f2(x)+f(x2)+m的定义域为[1,].g(x)=f2(x)+f(x2)+m1+log2x2+m4log2x+2+m.令log2x=t,∵x∈[1,],∴t∈[0,],则h(t)=t2+4t+2+m=(t+2)2+m﹣2,当t∈[0,]时为增函数,∴h(t)min=h(0)=2+m,h(t)max=h()m.∵存在实数a,b,c∈{y|y=g(x)},使得a+b<c,∴2h(t)min<h(t)max,即4+2m m.解得:m.故选:D. 4.设函数,则使得f(2x)+f(4x﹣3)>0成立的x的取值范围是()A.(﹣1,1)B.C.D.

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B.y=f (x )图像与直线x=a 没有交点 C.y=f (x )图像与直线x=a 最少有一个交点 D.y=f (x )图像与直线x=a 最多有一个交点 变式4.对于函数y =f(x),以下说法正确的有…( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f(a)表示当x =a 时函数f(x)的值,是一个常量 ④f(x)一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 变式5.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( ) A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) ①. y=x ②.y = ③. 2 y = ④.y=t ⑤.3 3x y = ;⑥.2x y =

复合函数的概念和性质

复合函数的概念和性质 一、知识点内容和要求: 理解复合函数的概念,会求复合函数的单调区间 二、教学过程设计 (一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何? (二)新课 1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)] 叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。 2、复合函数单调性 由引例:对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地, 定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 解:① 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域 练习:求下列函数的单调区间。 1、(1)减区间,增区间; (2)增区间(-∞,-3),减区间(1,+∞); (3)减区间,增区间;

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

函数的定义及表示方法

函数的定义及表示方法 1若函数()f x 满足(21)1f x x -=+,则(1)f = . 2函数()f x 对于任意实数x 满足条件1(2)() f x f x += ,若(1)5f =-,则((5))f f = . 3若函数2(21)2f x x x +=-,则(3)f = . 4已知函数2 2 (),1x f x x R x =∈+. (1)求1()()f x f x +的值; (2)计算:111 (1)(2)(3)(4)()()()234 f f f f f f f ++++++. 5已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值 6设函数3 (100)(),(89).[(5)](100)x x f x f f f x x -≥?=? +

(人教版)北京市必修第一册第三单元《函数概念与性质》测试题(答案解析)

一、选择题 1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2 C .0 D .1 2.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 3.已知0.3 1()2 a =, 12 log 0.3b =, 0.30.3c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D . 5.奇函数()f x 在(0)+∞, 内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .() ()(),21,02,-∞--+∞ B .() ()2,12,--+∞ C .()(),22,-∞-+∞ D .()()(),21,00,2-∞-- 6.已知函数()() 22 6 5m m m f x x -=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠, 满足 ()()1212 0f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断 7.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式 (21)(3)f x f x ->的x 的解集是( )

函数的概念及表示方法

函数的概念及表示方法 一、选择题(每小题5分,共60分) 1、 数)(x y ?=的图象与直线a x =的交点个数为( ) A 、必有1个 B 、1个或2个 C 、至多1个 D 、可能2个以上 2、 下列四组中的函数 )(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f C 、 x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( ) (1)x x y -+-= 12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数 A 、 (2)(4) B 、(1)(3) C 、(1)(2) D 、(3)(4) 4、下列关于分段函数的叙述正确的是( ) (1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集 (2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数 (3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I A 、 (1) B 、(2)、(3) C 、(1)、(2) D 、(1)、(3) 5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B ,那么B A I =( ) A 、 Φ B 、 {}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立 的是( ) A 、0)0(=f B 、)1(3)3(f f = C 、)1(2 1)21(f f = D 、0)()(<-x f x f 7、将x y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( ) A 、左,2,上,1 B 、左,2,下,1 C 、右,2,上,1 D 、右,2,上,1 8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

理科数学2010-2019高考真题分类训练函数的概念和性质

专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 . 2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在 ()0,+∞单调递减,则 A .f (log 314 )>f ( 3 2 2 - )>f ( 23 2- ) B .f (log 314 )>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314 ) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________. 5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 6.(2019全国Ⅰ理5)函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D .

7.(2019全国Ⅲ理7)函数 3 2 22 x x x y - = + 在[] 6,6 -的图像大致为 A.B.C.D. 8.(2019浙江6)在同一直角坐标系中,函数y=1 x a ,y=log a(x+1 2 ),(a>0且a≠1)的图像可 能是 A. B. C. D. 2010-2018年一、选择题

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A、B是非空的数集,如果按照某种确定的关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数。 例1. 下列从集合A到集合B的对应关系中,能确定y是x的函数的是( ) ①{x x∈Z},{y y∈Z},对应法则f:x→ 3 x; ②{xx>0∈R}, {y y∈R},对应法则f:x→2y=3x; ③, 对应法则f:x→2x; 变式1. 下列图像中,是函数图像的是( ) ①②③④ 变式2. 下列式子能确定y是x的函数的有() ①22 x y+=2 1= A、0个B、1个 C、2个 D、3个变式3.已知函数(x),则对于直线(a为常数),以下说法正确的是() A.(x)图像与直线必有一个交点(x)图像与直线没有交点 (x)图像与直线最少有一个交点(x)图像与直线最多有一个交点 变式4.对于函数y=f(x),以下说法正确的有…( ) ①y是x的函数 ②对于不同的x,y的值也不同

A .1个 B .2个 C.3个 D.4个 变式5.设集合M ={0≤x≤2},N ={0≤y≤2},那么下面的4个图形中,能表示集合M到集合N 的函数关系的有( ) A.①②③④ B .①②③ C.②③ D.② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与相同( ) ①. x ②.y = ③. 2 y = ④ ⑤.33x y =;⑥.2x y = 变式1.下列函数中哪个与函数y ) A . y = B . y =-y =- D . y x = 变式2. 下列各组函数表示相等函数的是( ) A. 29 3 x y x -=- 与 3y x =+ B. 1y = 与 1y x =- C. 0y x =(x ≠0) 与 1y =(x≠0) D. 21y x =+,x ∈Z 与21y x =-,x ∈Z 变式3. 下列各组中的两个函数是否为相同的函数?

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

相关文档
相关文档 最新文档