文档库 最新最全的文档下载
当前位置:文档库 › 折线逼近法三角波转换成正弦波的原理与设计

折线逼近法三角波转换成正弦波的原理与设计

折线逼近法三角波转换成正弦波的原理与设计
折线逼近法三角波转换成正弦波的原理与设计

折线逼近法三角波转换成正弦波的原理与设计

一、原理分析

折线法是用多段直线逼近正弦波的一种方法。其基本思路是将三角波分成若干段,分别按不同比例衰减,所获得的波形就近似为正弦波。图1画出了波形的1/4周期,用四段折线逼近正弦波的情况。图中UImax 为输入三角波电压幅值。

图1 折线逼近正弦波的原理

根据上述思路,可以采用增益自动调节的运算电路实现。利用二极管开关和电阻构成反馈通路,随着输入电压的数值不同而改变电路的增益。

在ωt=0°~25°段,输出的“正弦波”用此段三角波近似(二者重合),因此,此段放大电路的电压增益为1。由于ωt = 25° 时,标准正弦波的值为sin 25°

≈0.423,这里u O =u I = ax U Im 90

25≈0.278UImax ,所以,在ωt=90°时,输出的“正弦波”的值应为ax ax o U U U Im Im 657.0423

.0278.0≈=。 在ωt=50° 时,输入三角波的值为ax ax I U U U Im Im 556.090

50≈=,要求输出电压u O = 0.657U Ima ×sin50°≈0.503U Imax ,可得在25°~50°段,电路的增益应为809.0278

.0556.0278.0503.0=--=??I o U U 。 在ωt = 70° 时,输入三角波的值为ax ax I U U U Im Im 778.090

70≈=,要求输出电压u O = 0.657U Ima ×sin70°≈0.617U Imax ,可得在50°~70°段,电路的增益应为514.0556

.0778.0503.0617.0=--=??I o U U 。 在ωt = 90°时,输入三角波的值为ax I U U Im =,要求输出电压u O ≈

0.657U Imax ,可得在70°~90°段,电路的增益应为180.0778

.01617.0657.0=--=??I o U U 。 二、仿真电路及其参数选定

图2所示是实现上述思路的反相放大电路。图2中二极管D1~D3及相应的电阻用于调节输出电压 u O >0 时的增益,二极管 D4~D6 及相应的电阻用于调节输出电压u O <0 时的增益。

图2 电路图与仿真

下面以输入电压 u I <0(u O >0)为例来分析电路的工作原理。当输入电压uI< 0.278U Imax 时,增益为1,要求图2中所有二极管均不导通,所以反馈电阻Rf= R 。据此可以选定Rf= R 的阻值均为1k Ω。

当ωt=25°~50°时,电压增益为0.809,要求D1导通,则应满足(R1//Rf )/R = 0.809,即R1//Rf +R=0.809,解出R1=4.236k Ω。

由于在ωt= 25°这一点,D1开始导通,所以,此时二极管D1正极电位应等于二极管的阈值电压V th 。由图2可得

th EE EE o V V R R R V U =++-44

1 式中u O 是ωt = 25°时输出电压的值,即为0.278U Imax 。取U Imax = 10V ,Uth=0.7V ,则有

7.0)12(236.4)12(278.01044

=-++--?R R 解出R4 = 25.86k Ω。

当ωt = 50°~70°时,电压增益为0.514,要求D1、D2导通,则应满足(R2//0.809R )/R = 0.514,解出R2 = 1.410k Ω。

由于在ωt = 50°这一点,D2开始导通,则解出R5 = 4.136k Ω 。

当ωt = 70°~90°时,电压增益为0.180,要求 D1、D2和D3导通,则应满足(R3//0.514R )/R = 0.180,解出R3 = 0.2770k Ω。

由于在ωt = 70°这一点,D3开始导通,则解出R6 = 0.6431k Ω。

三、仿真波形

图3 仿真波形

需要说明,为使各二极管能够工作在开关状态,对输入三角波的幅度有一定的要求,如果输入三角波的幅度过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作。

为了使输出电压波形更接近于正弦波,应当将三角波的四分之一区域分成更多的线段,尤其是在三角波和正弦波差别明显的部分,然后再按正弦波的规律控制比例系数,逐段衰减。

折线逼近法的优点是不受输入电压频率范围的限制,便于集成化,缺点是反馈网络中电阻的匹配比较困难。

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

三角波、方波、正弦波发生电路之令狐文艳创作

波形发生电路 令狐文艳 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。方案二: 1、由滞回比较器和积分器构成方波三角波产生电 路。 2、然后通过低通滤波把三角波转换成正弦波信号。方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定 方案一:

文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大; 即零附近的差别最小,峰值附近差别最大。因此,根 据正弦波与三角波的差别,将三角波分成若干段, 按不同的比例衰减,就可以得到近似与正弦波的折 线化波形。而且折线法不受频率范围的限制。

正弦波-方波-三角波发生电路

一设计实验目的 (1)掌握电子系统的一般设计方法 (2)掌握模拟IC器件的应用 (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计 (4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则 (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决 调试中所发生的问题 (6)学会撰写课程设计报告 (7)培养实事求是,严谨的工作态度和严肃的工作作风 (8)培养综合应用所学知识来指导实践的能力 (9)完成一个实际的电子产品;进一步提高分析问题、解决问题的能力 设计一个正弦波-方波-三角波发生电路 (1)正弦波-方波-三角波的频率在100HZ~20KHZ范围内连续可调; (2)正弦波-方波的输出信号幅值为6V。三角波输出信号幅值为0~2V连续可调 (3)正弦波失真度≦5%。 二实验中的仪器设备 三实验所用电路 调节方波脉冲宽度 调节正弦波失真程度 调节方波电压大小

调节反馈电路的放大倍数 四实验结果 1.正弦波-方波-三角波的频率在~范围内连续可调;对应的时,对应的电容大小为1uf;对应的时,对应的电容大小为 2.方波的输出幅值为6V;正弦波的一级输出幅值为,二级输出幅值为;三角波峰值在0~4V内连续可调 3.正弦波失真度 一讨论 1.实验中发生的问题 (1) 我们由一级电路得到的方波峰峰值达到24V左右,后通过分压电路得到 所需要的方波电压峰值为6V

(2) 正弦波也可以通过负反馈电路适当放大

2.建议或其它 555电路产生方波,通过RC电路得到三角波,也可以通过积分器得到三角波,三角波到正弦波的转化,可以通过RC电路,或者通过低通滤波器,另外频率的调节可以通过可调电容! 器件清单表: 数量 LM358芯片 1 电阻 R8=R9 22kΩ 2 R1 1kΩ 1 R2 62kΩ 1 R3 100Ω 1 R4=R5=R6=10k 3 可调电阻 A 20k 1 R10 100k 1 电容 C3=470nF 1 C4=C5=10nF 2 可调电容 A=B=20nF 2 直流电源 Vcc=6v 1 555电路板 1

正弦波-方波-锯齿波函数转换器

课程设计说明书 课程设计名称:模拟电子技术课程设计 课程设计题目:正弦波-方波-锯齿波函数转换器 学院名称:信息工程学院 专业:通信工程班级:090421 学号:09042134 :尚虎 评分:教师: 20 11 年 3 月16 日

任务书 题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。设计任务和要求 ①输出波形频率围为0.02Hz~20KHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2 V; ④锯齿波峰-峰值为2V,占空比可调;

摘要 本次课程设计的目的是: 应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。 关键字:正弦波、方波、锯齿波

目录 第一章设计目的及任务 1.1 课程设计的目的 (5) 1.2 课程设计的任务与要求 (5) 1.3 课程设计的技术指标 (5) 第二章系统设计方案选择…………………………………………… 2.1 方案提出 (6) 2.2 方案论证和选择 (6) 第三章系统组成及工作原理......................................................3.1 系统组成 (7) 3.2 正弦波发生电路的工作原理 (7) 3.3 正弦波转换方波电路的工作原理 (8) 3.4 方波转换成锯齿波电路的工作原理 (9) 3.5 总电路图 (11) 第四章单元电路设计、参数计算、器件选择........................4.1 正弦波发生电路的设计 (12) 4.2 正弦波转换方波电路的设计 (13) 4.3 方波转换成锯齿波电路的设计 (14) 第五章实验、调试及测试结果与分析.................................5.1电路总体仿真图如下所示 (17) 5.2 调试方法与调试过程 (18) 第六章结论 (21) 参考文献 (23) 附录(元器件清单) (23)

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

正弦波与方波的相互转换

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录 一.设计要求 (3) 二.总体设计 (3) 三.设计方案 (4) ㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡将正弦波转换为方波 (4) ㈢将方波转换为正弦波 (4) ㈣还原波形 (4) 四.设计步骤及参数的确定 (4)

㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡正弦波转换为方波 (5) ㈢方波转换为正弦波 (5) ㈣还原波形 (5) ㈤整体电路原理图 (5) 五.实验仿真结果 (5) ㈠正弦波产生且换为方波再换为正弦波的波形 (5) ㈡用放大器放大振幅还原后的波形 (6) 六.电路板的制作 (6) ㈠画图 (6) ㈡元器件清单 (6) ㈢实物焊接 (7) 七.电路的调试 (7) ㈠电路连接 (7) ㈡波形测量 (8) ㈢数据的记录 (8)

八.总结 (9) ㈠设计过程中遇到的问题 (9) ㈡心得体会 (10) 正弦函数发生器 一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。 四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ 的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。

三角波信号发生电路设计

课程设计报告 课程名称:模拟电子技术基础 设计题目:三角波信号发生电路设计 姓名: 学号: 系别: 专业班级: 开始日期: 完成日期 指导教师: 成绩评定等级(分数)

课程设计任务书 班级:姓名:学号:

目录 一、设计意义 (1) 1.1信号发生器的概述 (1) 1.2预计完成步骤 (1) 1.3制定的措施 (1) 二、设计方案比较 (1) 2.1三角波发生电路设计方案一 (1) 2.2三角波发生电路设计方案二 (3) 三、电路组成框图 (5) 四、电路原理图 (5) 五、组装及仿真指标测试 (7) 六、总结 (8) 七、参考文献 (9)

一、设计意义 1.1信号发生器的概述 信号发生器在电子技术应用领域里的用途非常广泛,在数字系统和自动控制系统也常常需要方波,三角波,的非正弦波信号发生器。目前我们实验室用的较多的波形发生器主要有两种:低频正弦波发生器和通用多波形发生器,前者只能产生正弦波,调节范围不大,但是信号稳定,失真度底,主要用在对波形有很高的要求的实验中;后者能产生正弦波、方波和三角波,也有的能产生三种以上波形。 本次课程设计是做一个能够产生三角波电路的设计。 由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波。 1.2预计完成步骤 任务一 总体设计 任务二 方波-三角波产生电路设计 任务三 方波-三角波产生电路的安装 任务四 方波-三角波产生电路的仿真和调试 1.3制定的措施 使用National Instruments Multisim 编辑电路原理图。并且进行理论仿真。 在几个方案中选择具有可行性以及稳定性强的的电路原理图。 对选定的原理图进行安装调试。 二、设计方案比较 2.1三角波发生电路设计方案一 图1 三角波发生电路(一) 三角波电路波形可以通过积分电路实现,把方波电压作为积分运算电路的输入,在积分运算电路的输出就得到了三角波。 如图1所示电路输入方波电压,可见,输出为三角波。图中滞回比较器的输出电压 Z U U ±=01 ,他的输入电压时积分电路的输出电压0U ,根据叠加原理,集成运放1A 同相输 入端电位

设计制作一个产生正弦波—方波—三角波函数转换器

模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数 转换器 专业班级:电信本 学生姓名: 学号:46 指导教师: 设计时间: 01/05 设计制作一个产生正弦波-方波-锯齿波函数转换器 一、设计任务与要求 1、?输出波形频率范围为~20kHz且连续可调; 2、?正弦波幅值为±2V; 3、?方波幅值为2V; 4、?三角波峰-峰值为2V,占空比可调; 5、?分别用三个发光二极管显示三种波形输出;?? 6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证

设计要求产生三种不同的波形分别为正弦波、方波、三角波。正弦波可以通过RC 桥式正弦波振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。各个芯片的电源可用直流电源提供。 方案一 1、直流电源部分 电路图如图1所示 图1 直流电源 2、波形产生部分 方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选 频网络采用LC 电路。在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其 余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。 方案二 1、 直流电源部分同上 2、电路图如图2所示 正、反积分时间 常数可调的积分 电路 滞回比较器 LC 正弦波振荡 电路

图2 正弦波—方波—三角波函数转换电路 方案论证 LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。因此对于器材的选择及焊接的要求提高了。 相反,RC正弦波振荡电路的振荡频率较低,一般在1MHz以下,它是以RC串并联网络为选频网络和正反馈网络,以电压串联负反馈放大电路为放大环节,具有振荡频率稳定,带负载能力强,输出电压失真小等优点,因此获得相当广泛的应用。另外对于器材的要求也不高,都是写常见的的集成块、电容、电位器等。在布局方面,简单,清晰! 综合对比两种方案,我选择第二种方案。 三、单元电路设计与参数计算 1、直流电源 (1)、整流电路 设变压器副边电压U2=wt U sin 2 2, U 2 为其有效值。 则:输出电压的平均值

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

设计题目:如何实现正弦波、方波与三角波信号之间的变换

内蒙古工业大学信息工程学院 课程学习报告 设计题目:如何实现正弦波、方波与三角波信号之间的变换 课程名称:模拟电子技术 班级:通信10-1 班 姓名: 学号: 成绩: 指导教师:

设计题目:如何实现正弦波、方波与三角波信号之间的变换 一、课题设计任务与要求 1、输出电压:0-1V之间 2、频率范围:20Hz-20kHz之间 3、信号频率:1KHz的正弦波、2KHz的方波和三角波 任务如下: 1KHz的正弦波 2KHz的正弦波 2KHz的方波 2KHz的三角波 二、总体电路设方案 (1)函数信号发生器设计思路 ①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。 ②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。 ③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。 (2)函数信号发生器原理 函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。本实验用来产生正弦波--方波--三角波信号。 正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。

②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。 ③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。 (图一)正弦波发生电路图 (图二)正弦波转换成方波发生电路图

(图三)方波转换成三角波发生电路图错误!未指定书签。 三、电路设计与原理说明 1、正弦波发生电路的工作原理 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路等各部分。 RC文氏电桥的正弦波振荡电路中,RC为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。其余部分是带 有负反馈的同相放大电路,R 1、R 2 、R p 构成负反馈网络,调节R p 课改变负反馈的 反馈系数,从而调节放大电路的电压增益,使其满足振荡的幅值条件。图中二极 管D 1、D 2 的作用是有利于正弦波的起振和稳定输出幅值,改善输出波形。当输出 电压V 0的幅值很小时,D 1 、D 2 开路,等效电阻R f 较大,A vf =V o /V p =(R 1 +R f )/R1较 大,有利于起振;而当输出电压V 0的幅值较大时,二极管D 1 、D 2 导通,R f 减小, A vf 随之下降,v 幅值趋于稳定。 2、正弦波转方波发生电路的工作原理 在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。而滞回比较器具有滞回特性,即具有惯性,

用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计 题目:用集成运放组成的正弦波、方波、三 角波产生电路 专业电子信息工程专业 班级 14级电信1班 学号 1430140227 学生姓名邓清凤 指导教师黄川

完成日期: 2015 年 12 月 目录 1 设计任务与要求 (3) 2 设计方案 (3) 3设计原理分析 (5) 4实验设备与器件 (8) 4.1元器件的引脚及其个数 (8) 4.2其它器件与设备 (8) 5实验内容 (9) 5.1 RC正弦波振荡器 (9) 5.2方波发生器 (11) 5.3三角波发生器 (13) 6 总结思考 (14) 7 参考文献 (15)

用集成运放组成的正弦波、方波、三角波产生电路 姓名:邓清凤 电子信息工程专业 [摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。 [关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器 1 设计任务与要求 (1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。 (2)在面包板上搭建电路,并完成电路的测试。 (3)撰写课程设计报告。 (4)答辩、并提交课程设计报告书 2 设计方案 方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。 缺点:设计、调试难度太大,周期太长,精确度不是太高。

三角波发生电路设计

三角波发生器设计 制作人:朱立超 西安建筑科技大学

一、工作原理: 1. 基本原理图: 2.工作原理: 1)如图1,三角波发生器电路,有两部分组成。其中集成运放A1组成滞回比较器,A2组成积分电路。滞回比较器可以产生稳定的方波信号,再通过积分电路积分产生所需要的三角波。 由积分电路2031(z)dt T U R C --? 可知积分电路输出电压同u o1 反向。 设t=0时积分电路电容上的初始电压为零,而滞回比较器输出端u o1=+Uz 。又有电路图可以看出,两级电路分别都引入了反馈, A 1同相输入端的电压u p1同时与u o1和u o 有关,根据叠加定理 可得 121o1o 1212 u u u p R R R R R R =+++ 由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可 图1 三角波发生电路图

知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。 滞回比较器和积分电路特性: 2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。将条图3 电路的波形图 图2 电压输出特性

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

正弦波与方波的相互转换

正弦波与方波的相互转 换 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录

正弦函数发生器一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦 波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。

四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。 参数选择中最重要的是R6和C2的值选择,因为它们是选频电路。f=1/2ΠRC 。 f=1000HZ,所以可以确定RC的值。 ㈡正弦波转换为方波 用一个运放接成过零比较器如下图,通向端接信号输入,反向端接地。只要输入信号电压大于或小于零,信号就发生跳变,可以把正弦波转换为方波。 ㈢方波转换为正弦波 用电阻和电容接成RC滤波电路。在R2和C3过后的节点处波形是三角波,最后输出是正弦波。 ㈣还原波形 1.在RC滤波电路输出的正弦波,幅度变小了约9倍的样子,用一个同向放大器放大它的幅度。 2.因为同向放大器的放大倍数为:A=1+R12/R11 。所以确定R11=8k欧姆,R12=1k欧姆。

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

相关文档
相关文档 最新文档