文档库 最新最全的文档下载
当前位置:文档库 › 六价铬标准比较

六价铬标准比较

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

土壤六价铬分析的样品前处理消解法

GB 5085.3 200 170 T Solid wastes – Sample Preparation for Analyze of Cr – Alkaline Degestion 1 pH ORP TOC COD BOD Cr(VI) Cr(VI) 2 Na2CO3/NaOH Cr(VI) Cr(III)Mg2+ 3 3.1 HNO3 5.0mol/L20-25 NO3-NO2Cr(VI) 3.2 Na2CO320-25 3.3 NaOH20-25 3.4 MgCl2400mg MgCl2100mg Mg2+20-25 3.5 3.5.1 K2HPO4 3.5.2 KH2PO4 3.5.3 0.5mol/L K2HPO4/0.5mol/L KH2PO4pH=787.09g K2HPO468.04g KH2PO4700ml 1L 3.6 PbCrO410-20mg PbCrO420-25 3.7 20.00.05gNaOH30.00.05gNa2CO31L20-25 pH11.5 3.8 K2Cr2O71000mg/LCr(VI) 2.829g105K2Cr2O7 1L1000mg/L Cr(VI)20-25

6 3.9 100mg/LCr(VI)10ml1000mg/L K2Cr2O7 3.8100ml 3.10 Cr(VI) 4 4.1 250ml 4.2 100ml 4.3 1000ml100ml 4.4 4.5 0.45m 4.6 90-95 4.7 4.8 pH 4.9 4.10 NIST100 5 5.1 4±2 5.2 30168 5.3 C Cr(VI)Cr(III) 6 6.1 50ml250ml 90-95 6.2 2.50.10g250ml 6.3 501ml 400mg MgCl20.5ml 1.0mol/L 171

土壤中铬的测定

实验十一 土壤中铬的测定 一、实验目的 (1)掌握测定铬土壤样品的预处理方法。 (2)掌握二苯碳酰二肼分光光度法测定铬的原理和操作。 (3)掌握过硫酸盐氧化法。 二、实验原理 我国土壤铬含量为1.0—1200mg/Kg 。现在仍采用二苯碳酰二肼分光光度法作为土壤中铬测定的标准分析方法,但已有使用AAS 等仪器分析方法趋向。以二苯碳酰二肼分光光度法测定铬含量,需将低价态铬氧化成高价态铬,目前使用的有高锰酸钾法和过硫酸盐氧化法。本实验采用后一种氧化法,并将氧化过程纳入消化过程。 对测定含铬的土壤样品,常用的消化方法有H 2SO 4—H 3PO 4法、HNO 3—H 2SO 4—H 3PO 4法以及HNO 3—H 2SO 4等湿法消化。本实验,土壤样品经HNO 3—H 2SO 4混合酸消化,然后在Mn (Ⅱ)存在下,以Ag +离子为催化剂,用20%的过硫酸铵氧化低价铬至高价态。再以尿素—亚硝酸钠分解过量的过硫酸铵,反应方程式如下: 2322282274327614S O Cr H O Cr O SO H -+--+++=++ 2228242222S O NO SO NO ---+=+↑ 2222222()23NO CO NH H CO N H O -+++=↑+↑+ 消化、氧化之后,以浓氨水调节酸度,使铁、铝、铜、锌等多种干扰离子生成沉淀,而铬在溶液中与二苯碳酰二肼反应生成红色络合物,反应式如下: 636526565()()()CO NHNHC H Cr NNC H CO NHNHC H Cr +++→+→紫红色络合物 最后在540nm 处测定吸光度。 三、仪器 (1)721型分光光度计。 (2)0—4000r/min 离心机。 (3)25mL 比色管。 (4)高型烧杯、容量瓶等玻璃仪器。 四、试剂 (1)浓硝酸(优级纯)。

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

GBT 15555.4-1995 土壤 六价铬 方法验证

1 方法依据 本方法依据GB/T 15555.4-1995 六价铬的测定 2 仪器和设备 紫外分光光度计:吸光度0.001;电子分析天平:感量 0.0001g ; 3 分析步骤 参考依据GB/T 15555.4-1995 六价铬的测定 4 试验结果报告 4.1 校准曲线及线性范围 按GB/T 15555.4-1995操作,数据见表1。 表1 校准曲线数据 回归方程: y =0.0463x-0.0034 r=0.9998 4.2 方法检出限 在10个空白样品中分别加入5倍检出限浓度的标准物质,进行测定,按HJ 168-2010规定MDL=S t n ?-)99.0,1(进行计算,结果见表2。

表2 方法检出限测定结果(N=10) 由W = V 计算得出方法检出限,为0.004mg/L 。 其中:W — 六价铬含量,mg/L ; C — 校准曲线上查得待测样品溶液中六价铬的含量,单位μg ; V — 试样的体积,50mL ; 4.3 精密度实验 取2个浓度水平的样品,按照步骤3,分别做6次平行实验,计算出六价铬平均值,最大相对偏差,相对标准偏差,结果见表3。 表3 精密度测试数据

4.4准确度(人员比对) 取同一样品3,分别做3次平行实验,计算平均值,相对偏差,检测结果见表4。 表4 人员比对测试数据 5结论 5.1检出限 实验室检出限为0.004mg/L。 5.2精密度 样品1平均值为0.013mg/L,相对标准偏差为7%; 样品2平均值为0.024mg/L,相对标准偏差为7%。 5.3准确度(人员比对) 对同一样品进行人员比对,平均值为0.015mg/L,平均值为0.016mg/L,相对偏差为4%。

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

废水中六价铬的测定

废水中六价铬的测定 摘要:文章提出一种前处理简单、操作方便、灵敏度高的测定高色度含铬废水中六价铬的分析方法。使用聚合氯化铝作为絮凝剂,利用三价铬在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,应用火焰原子吸收法测定溶液中的六价铬。实际样品中六价铬的加标回收率在95.8%~98.12%之间,定量分析下限为0.105 mg/ L。 关键词:六价铬;高色度含铬废水;原子吸收;沉降分离;聚合氯化铝 六价铬是致癌物质,属于第一类环境污染物,其排放受到严格控制。六价铬(铬酸盐、重铬酸盐)主要是通过电镀、表面处理、制革、冶金等工业废水(含铬废水)的排放而进入环境,污染水体和土壤环境,对人类健康和生态环境造成严重威胁。含铬工业废水中六价铬的测定是环境监测中的重要工作。目前测定六价铬的分析方法主要有分光光度法、原子吸收法(AAS)、高效液相色谱法(HPLC)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、流动注射/质谱法(FI-MS)等。其中,分光光度法是水中六价铬的经典分析方法,准确可靠而且灵敏度较高,操作简单,成本低廉,得到广泛应用,但是遇到混浊、色度较高(特别是红色)的样品时,方法受到限制,此时通常使用锌盐沉淀法分离干扰物,若经沉淀分离后仍存在有机物干扰,则需进一步使用高锰酸钾氧化法破坏有机物后再行测定。然而,在实际工作中,常遇到高色度样品不能通过锌盐沉淀/高锰酸钾氧化法有效解决基体干扰问题,如含有高浓度染料的含铬工业废水,分光光度法无法满足六价铬定量分析的需求。原子吸收法测定水中铬基本上不受共存有机物的影响,操作简单,但必须预先将六价铬与三价铬分离后才能测定。本文工作使用聚合氯化铝作为絮凝剂,利用三价铬离子在弱碱性条件下易产生沉淀的特点,实现样品溶液中三价铬与六价铬的定量分离,然后应用火焰原子 吸收法测定溶液中的六价铬。 1实验部分 1.1仪器与试剂 日立Z-5000型原子吸收分光光度计,工作条件:铬空心阴极灯,灯电流6 mA,波长35 913 nm,光谱通带0.4 nm;观测高度7 cm;乙炔2.8 L/min,压缩空气15.0 L/min。Mp220型酸度计(瑞士Mettler公司)。 六价铬标准使用液(100 mg/L):取10.0 mL 1 000 mg/L六价铬标准溶液(国家标准物质中心),以去离子水稀释至100 mL。 三价铬溶液(1 000 mg/L):称取1.0244 g的Cr(Cl)3•6H2O(99.8%,

水中六价铬的测定-二苯碳酰二肼分光光度法

一、实验目的 (1)掌握分光光度法测定六价铬的原理和方法。 (2)熟悉分光光度计的使用。 二、实验原理 在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm波长处进行比色测定。

三、使用仪器规格及实际用量 (1) 分光光度计 (2) 具塞比色管、移液管、容量瓶等。 (1) (1+1)硫酸::将浓硫酸缓慢加入到同体积水中,混匀。 (2) (1+1)磷酸:将浓磷酸缓慢加入到同体积水中,混匀。 (3) 铬标准贮备液(0.100 mg-Cr6+/mL):经120℃烘干2小时的重铬酸钾: 0.2829g溶于水中,定容至1000mL。 (4) 铬标准使用液(1.00 μg-Cr6+/mL):取5 mL铬标准贮备液于500mL容量瓶中,定容。 (5) 二苯碳酰二肼(C13H14N4O)溶液:称取二苯碳酰二肼0.2g溶于50mL丙酮中,加水稀释至100mL. 四、实验步骤 (1) 水样预处理:本试验由于时间限制,将水样作为不含悬浮物、低浊度的清洁地表水,进行直接测定。但在实际环境监测中需要根据不同水样性质进 行预处理。 (2) 标准曲线的绘制:取5支50mL比色管,依次加入0,1,3,5,7 mL铬标准使用液,用水稀释至标线,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静置5-10分钟后,放入比色皿中于 540nm处测吸光度值。以加入0 mL铬标准使用液的溶液作为参比。注意: 为了测量准确,测定时应用同一个比色皿,浓度由低到高测定,且每次测 完都应用蒸馏水清洗,再用待测液润洗2-3次。以吸光度为纵坐标,相应六 价铬含量为横坐标绘制标准曲线。 (3) 水样的测定:各取50mL水样和50mL自来水于比色管中,分别加入(1+1)硫酸0.5 mL和(1+1)磷酸0.5 mL,摇匀。加入2 mL 显色剂溶液摇匀。静 置5-10分钟后,放入比色皿中于540nm处测吸光度值。根据所测吸光度从标 准曲线上查得六价铬含量。 (4) 分光光度计的使用: (a) 打开点源,预热30min,将光镜选择杆调到正确位置; (b) 仪器归零:调整波长选择钮至540nm,灵敏度置于“1”,选择开关置于“T”,开盖调“0%T”显示“00.0”,闭盖(装有参比) 调“100%T”显示“100.0”。 (c) 吸光度测定:按MODE键使功能显示为ABSORBANCE,显示吸光度的值,拉动样品室拉杆,将待测液拉入光路,此时显示值即为待 测液的吸光度。注意:每次测量时都应对仪器进行调零。 五、主要结果计算及分析(可另附纸) Cr6+(mg/L)=m/V 式中 m—从标准去线上查得的Cr6+含量(μg); V—水样的体积(mL)

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

土壤中总铬的测定

环境监测 土壤中总铬的监测

目录 一、背景资料 (2) 1、土壤中铬的来源 (2) 2、土壤中铬的存在形态 (3) 3、铬对人体的作用及危害 (3) 二、土壤中总铬的测定原理 (3) 三、监测方案设计 (3) 1、现场取样方案 (3) 2、实验室测定方案 (4) 四、监测数据分析 (5) 五、参考文献 (5)

一、背景资料 1、土壤中铬的来源 1.1城市郊区的铬主要来源于工业“三废”和城市生活废弃 物的污染 1.1.1随着大气沉降进入土壤 大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气。 运输,特别是汽车运输对大气和土壤造成严重污染。主要以Pb、Zn、Cd、Cr、Cu等的污染为主。它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。 1.1.2随污水灌溉重金属进入农田土壤 利用污水灌溉是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。天津市是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。我市在40多年的污灌历程中,已形成大沽、北塘、北京三条排污河,由此形成的三大污水灌溉区是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。因此,污灌区土壤Cr也会逐年累积。 1.1.3随固体废弃物扩散及污泥使用重金属进入农田土壤 固体废弃物种类繁多,成分复杂,不同种类其危害方式和污染程度不同。其中矿业和工业固体废弃物污染最为严重。这类废弃物在堆放或处理过程中,由于日晒、雨淋、水洗,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。磷石膏属于化肥工业废物,由于其有一定量的正磷酸以及不同形态的含磷化合物,并可以改良酸性土壤,从而被大量施人土壤,造成了土壤中Cr、Pb、Mn、As含量增加。磷钢渣作为磷源施入土壤时,土壤中发现有Cr的累积。 1.2农业投入品的不合理使用造成农田土壤重金属污染 1.2.1化肥的污染 化肥的利用率只有35%左右,其余则被土壤吸收,大部分随雨水、灌溉进入水域,造成环境污染。肥料中Pb、Cr和As的含量都较高,施入土壤后会发生一定程度的累积。 1.2.1农药的污染

六价铬实验报告

用二苯碳酰二肼分光光度法GB7466-87分析考核样 中的六价铬 实验名称:水样中六价铬的测定 实验方法及来源:二苯碳酰二肼分光光度法(A)—GB7466-87 实验目的:上岗考核 实验人员:XX 实验日期:XX年X月X日 一、实验原理: 在酸性溶液中,六价铬与二苯碳酰二肼反应紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4X 104 L ? mol-1? cm-1 二、实验仪器: 1. 30mm比色皿; 2. 分光光度计; 三、实验试剂: 1. 丙酮。 2. (1+1)硫酸:将硫酸(p =1.84g/ml )缓缓加入到同体积水中,混匀。 3. (1+1)磷酸:将磷酸(p =1.69g/ml )与等体积水混合。 4. 0.2%氢氧化钠溶液:称取氢氧化钠1g,溶于500ml新煮沸放冷的水 中。

5. 氢氧化锌共沉淀剂

①硫酸锌溶液:称取硫酸锌8g,溶于水并稀释至100ml。 ②2%氢氧化钠溶液:称取氢氧化钠2.4g溶于新煮沸放冷的水至120ml, 同时将①、②两溶液混合。 6. 4%高锰酸钾溶液:称取高锰酸钾4g,在加热和搅拌下溶于水,稀释至 100ml。 7. 铬标准贮备液:称取于120。C干燥2h的重铬酸钾(K262O7,优级纯) 0.2829g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线。摇匀。每毫 升溶液含0.100mg六价铬。 8. 铬标准溶液(I):吸取5.00ml铬标准贮备液,置于500ml容量瓶 中,用水稀释至标线,摇匀。每毫升溶液含 1.00ug六价铬,使用 时当天配置。 9. 铬标准溶液(H):吸取25.00ml铬标准贮备液,置于500ml容量 瓶中,用水稀释至标线,摇匀。每毫升溶液含 5.00ug六价铬,使 用时当天配置。 10.20%尿素溶液:降尿素((NH2)2CO)20g溶于水并稀释至100ml。 11.2%亚硝酸钠溶液:将亚硝酸钠2g溶于水并稀释至100ml。 12. 显色剂(I):称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50ml 丙酮中,加 水稀释至100ml,摇匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 13. 显色剂(H):称取二苯碳酰二肼1g,溶于50ml丙酮中,加水稀释至100ml,摇 匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 14:六价铬质控样:准确量取10.00ml质控样于250ml容量瓶中,用 水稀释至标线,摇匀。

土壤中六价铬含量的不确定度评定

土壤中六价铬含量的不确定度评定 一、依据: 1、JJF1059-1999《测量不确定度评定与表示》 2、US EPA3060A :1996 & US EPA7196A :1992 二、不确定度评定: 1.实验过程按照US EPA3060A :1996 & US EPA7196A :1992及操作规程进行 1.1 标准曲线绘制 吸取5.00mL100mg/L 的 六价铬标准溶液于100容量瓶中定容,配制成5.00μg /mL 的标准使用溶液。准确移取0.0mL ,2.0mL ,4.0mL ,6.0mL ,8.0mL ,10.0mL 六价铬标准使用溶液于100mL 容量瓶中,加入0.5mL H 2SO 4溶液,0.5mL H 3PO 4溶液,2.0 mL 二苯卡巴肼溶液,并用去离子水定容至100 mL 。得到浓度为0.00 mg/L ,0.10mg/L ,0.20 mg/L ,0.30 mg/L ,0.40 mg/L ,0.50mg/L 的标准系列溶液。显色5-10分钟,选用1cm 吸收池,在540nm 处,用分光光度计测定各管的吸光度A 。以浓度为横坐标,吸光度为纵坐标绘制标准曲线。 1.2样品的测定 称取2.5g 土壤样品于三角瓶中,加入400mg 无水氯化镁,再加入50mL 碱消解溶液和0.5mL 缓冲溶液,加盖。于95℃消解1h ,冷却,转移到100ml 的容量瓶中,定容。过滤,滤液同标线的试验方法。 2 建立数学模型 样品中六价铬含量的计算公式: b a A A C --=0 式中: F -试样中六价铬含量,单位为毫克每千克(mg/kg ); C -测定样品中六价铬的溶液浓度,单位为毫克每升(mg /L ); V -定容体积,单位为毫升(mL ); m -称取质量,单位为克(g ); f -稀释倍数; A- 样品溶液的吸光度; A 0 –试剂空白的吸光度; f m V C F ??=

紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。一般来说,六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。 所用试剂均为分析纯,实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬

土壤六价铬的测定作业指导书

土壤六价铬的测定作业指导书 参考:US EPA 3060A:1996&US EPA 7196A:1992 1适用范围 本指导书适用于土壤中六价铬(Cr6+)的测定。 2 测定原理 利用碱性消解程序从样品中萃取六价铬Cr(Ⅵ)。六价铬Cr(Ⅵ)在酸性条件下与1,5-二苯卡巴肼反应,形成一种红-紫罗兰色的络合物。用紫外-可见分光光度计在540nm处测量其吸光度,从而定量检测样品中的六价铬含量。 3 仪器和设备 3.1 消解容器:250mlL锥形瓶 3.2 100mL量筒或其他量器 3.3 容量瓶 3.4 0.45μm滤膜,最好为纤维质或聚碳酸酯 3.5 紫外-可见分光光度计及1cm比色皿 3.6 经校准的pH计 3.7 经检定的电子分析天平 3.8 恒温水浴振荡器 4试剂与溶液 4.1 1,5-二苯卡巴肼,>98%。 4.2 六价铬标准溶液:100mg/L,为已购买的有证标准物质。 4.3 六价铬标准使用溶液(5mg/L):取10mL六价铬标准溶液(4.2)稀释并定容至100mL 容量瓶中。 4.4 丙酮,分析纯。 4.5 硝酸(HNO3),分析纯。储存在20℃至25℃的阴暗处。如果浓HNO3有淡黄色则不要使用,这显示NO3-无效还原为NO2,对Cr(Ⅵ)是一种还原剂。 4.6 无水碳酸钠(Na2CO3):优级纯,在20—25℃下密封保存。

4.7 氢氧化钠(NaOH):分析纯,在20—25℃下密封保存。 4.8 无水氯化镁(MgCl2):400mg MgCl2约含100mgMg2+,在20—25℃下密封保存。 4.9 磷酸盐缓冲溶液:制备PH值为7的缓冲溶液,将87.09K2HPO4(分析纯)和68.04KH2PO4(分析纯,不含结晶水)溶解于700mL水。移至1L的容量瓶中并稀释至刻度线。制备的溶液含有0.5mol/L K2HPO4和0.5mol/L KH2PO4。 4.10 消解溶液:称取20.0gNaOH和30g Na2CO3用水溶解后转移至1L容量瓶定容,储存在20℃至25℃的密闭聚乙烯瓶中,且每月重新配制。使用前应检查消解溶液的pH值,且pH值必须达到11.5或以上,否则丢弃溶液并重新配制。 4.11 (1+1)硫酸溶液:将50mL硫酸加入到同体积的水中,变加边搅拌,冷却后使用。 4.12 (1+1)磷酸溶液:将磷酸与等体积水混匀。 4.13 二苯卡巴肼溶液:称取500mg 1,5-二苯卡巴肼(4.1)溶于100mL丙酮(4.4)中。储存在棕色瓶中。使用前,检查溶液变色情况。如果溶液开始褪色,丢弃并重新配制。 5实验步骤 5.1 精确称量2.5±0.10g样品,将样品置于干净的消解容器中。用移液管取50mL消解溶液(4.10)于消解器中。然后,加入400mg 无水MgCl2(4.8),0.5mL磷酸盐缓冲溶液(4.9)。盖上盖子,持续搅拌5分钟,使其充分摇匀,然后在95℃下持续搅拌1h。1h后,停止加热,冷却至室温,转移反应液于100mL离心管中,消解容器用去离子水冲洗三次且冲洗的溶液并入离心管中。离心4min,转速6000r/min,将上清液全部转移至于150mL烧杯中,同时做空白。 5.2 向上清液中逐滴加入HNO3(4.5),调节pH至7.5±0.5。 5.3 显色和测量: 将pH在7.5±0.5范围内的试样溶液转移至100mL容量瓶中,定容。用0.45μm滤膜过滤,准确移取10~100ml(视Cr6+含量而定)溶液于干净的100mL比色管中,加入0.5ml (1+1)硫酸(4.11),0.5ml (1+1)磷酸(4.12),摇匀。加入2mL二苯卡巴肼溶液(4.13),定容至100mL,摇匀。静置5-10min以充分显色。在540nm波长下,1cm比色皿,以蒸馏水作参比,测量吸光度。同时测定不加二苯卡巴肼的样品溶液,用来校正样品的浑浊度。通过校准曲线(5.4)来获得六价铬含量。

土壤、淤泥、沉积物和类似废弃物材料中六价铬的检测方法标准操作程序

1 安全提示 六价铬对人体有害,需做好安全防护。硝酸、硫酸具有强腐蚀性、强氧化性,氢氧化钠是一种具有高腐蚀性的强碱,使用过程中需要注意安全。 2 范围 本标准适用于土壤、淤泥、沉积物和类似废弃物材料中六价铬(Cr6+)的测定。 US EPA 3060A:1996&US EPA 7196A:1992 GB 24408-2009附录F外墙涂料中六价铬含量的测定 3 原理 利用碱性消解程序从样品中萃取六价铬Cr(Ⅵ)。六价铬Cr(Ⅵ)在酸性条件下与1,5-二苯卡巴肼反应,形成一种红-紫罗兰色的络合物。用紫外-可见分光光度计在540nm处测量其吸光度,从而定量检测样品中的六价铬含量。 4 仪器和设备 4.1 消解容器:250mlL锥形瓶 4.2 100mL量筒或其他量器 4.3 容量瓶 4.4 0.45μm滤膜,最好为纤维质或聚碳酸酯 4.5 移液管 4.6 经校准的PH计 4.7 经检定的电子分析天平 4.8 恒温水浴振荡器 4.9 紫外—可见分光光度计及1cm比色皿 4.10 5mL一次性注射器(不含针头) 5试剂与溶液 5.1 1,5-二苯卡巴肼,>98%。 5.2 六价铬标准溶液:100mg/L,为已购买的有证标准物质。 5.3 六价铬标准使用溶液(5mg/L):取10mL六价铬标准溶液(5.2)稀释并定容至100mL容量瓶中。 5.4 丙酮,分析纯。 5.5 硝酸(HNO3),分析纯。储存在20℃至25℃的阴暗处。如果浓HNO3有淡黄色则不要使用,这显示NO3-无效还原为NO2,对Cr(Ⅵ)是一种还原剂。

5.6 无水碳酸钠(Na2CO3):优级纯,在20—25℃下密封保存。 5.7 氢氧化钠(NaOH):分析纯,在20—25℃下密封保存。 5.8 无水氯化镁(MgCl2):400mg MgCl2约含100mgMg2+,在20—25℃下密封保存。 5.9 磷酸盐缓冲溶液:制备PH值为7的缓冲溶液,将87.09K2HPO4(分析纯)和68.04KH2PO4(分析纯,不含结晶水)溶解于700mL水。移至1L的容量瓶中并稀释至刻度线。制备的溶液含有0.5mol/L K2HPO4和0.5mol/L KH2PO4。 5.10 消解溶液:称取20.0gNaOH和30g Na2CO3用水溶解后转移至1L容量瓶定容,储存在20℃至25℃的密闭聚乙烯瓶中,且每月重新配制。使用前应检查消解溶液的PH值,且PH值必须达到11.5或以上,否则丢弃溶液并重新配制。 5.11 硫酸溶液,(1+1):将50mL硫酸加入到同体积的水中,变加边搅拌,冷却后使用。 5.12 磷酸溶液,(1+1):将磷酸与等体积水混匀。 5.13 二苯卡巴肼溶液:称取500mg 1,5-二苯卡巴肼(5.1)溶于100mL丙酮(5.4)中。储存在棕色瓶中。使用前,检查溶液变色情况。如果溶液开始褪色,丢弃并重新配制。 6实验步骤 6.1 精确称量2.5±0.10g样品,将样品置于干净的消解容器中。用移液管取50mL消解溶液(5.10)于消解器中。然后,加入400mg 无水MgCl2(5.8),0.5mL磷酸盐缓冲溶液(5.9)。盖上盖子,持续搅拌5分钟,使其充分摇匀,然后在95℃下持续搅拌1h。1h后,停止加热,冷却至室温,转移反应液于100mL离心管中,消解容器用去离子水冲洗三次且冲洗的溶液并入离心管中。离心4min,转速6050r/min,将上清液全部转移至于150mL烧杯中,同时做空白。 6.2 向上清液中逐滴加入HNO3(5.5),调节PH至 7.5±0.5。 6.3 显色和测量: 将PH在7.5±0.5范围内的试样溶液转移至100mL容量瓶中,定容。用0.45μm滤膜过滤,准确移取10~100ml(视Cr6+含量而定)溶液于干净的100mL比色管中,加入0.5ml (1+1)硫酸(5.11),0.5ml (1+1)磷酸(5.12),摇匀。加入2mL二苯卡巴肼溶液(5.13),定容至100mL,摇匀。静置5-10min以充分显色。在540nm波长下,1cm比色皿,以蒸馏水作参比,测量吸光度。同时测定不加二苯卡巴肼的样品溶液,用来校正样品的浑浊度。通过校准曲线(6.4)来获得六价铬含量。 6.4 校准曲线的绘制: 准确移0mL,2mL,4mL,6mL,8mL,10mL 5mg/L六价铬标准溶液(5.3)于100mL比色管中,加入50mL水,加入0.5mL(1+1)硫酸(5.11),0.5mL(1+1)磷酸(5.12),摇匀。加入2mL二苯卡巴肼

GB 7467-1987 水质 六价铬的测定 二苯碳酰二肼分光光度法方法验证报告

水质六价铬的测定 二苯碳酰二肼分光光度法 GB 7467-1987 方法验证报告 编制: 日期: 校核: 日期: 审核: 日期: 广东XX检测技术有限公司

水质六价铬的测定方法验证报告 1 方法依据 依据《水质六价铬的测定玻璃电极法二苯碳酰二肼分光光度法GB 7467-1987》。 2 方法原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂和材料 3.1 水:纯水 3.2 AR级:丙酮、硫酸、磷酸、氢氧化钠、氢氧化锌、高锰酸钾、尿素、亚硝酸钠 3.3显色剂(Ⅰ) 称取二苯碳酰二肼0.2g溶于50ml丙酮中,加水稀释至100ml,摇匀,贮于棕色瓶,置于冰箱中,色变深后,不能使用。 3.4显色剂(Ⅱ) 称取二苯碳酰二肼2g溶于50ml丙酮中,加水稀释至100ml,摇匀,贮于棕色瓶,置于冰箱中,色变深后,不能使用。 3.5 六价格有证标准溶液、六价格有证标准样品 4仪器 4.1 检测实验室常用仪器设备。 4.2 双光束紫外可见分光光度计:UV2800 5 采样和样品保存 5.1 现场测定与采样 用玻璃瓶现场采集样品500ml,加入氢氧化钠,调节样品pH值约为8,样品运回实验室后在24h内测定。 5.2测试步骤 1)样品预处理 不含悬浮物,清洁水样直接测定 混浊、色度较深的样品:取10ml样品于150ml烧杯中,加水到50ml,滴加氢氧化钠溶液,调节pH值为7.5.在不断搅拌下,滴加氢氧化锌共沉淀剂至溶液pH8.5,将此溶液转移至100ml 常量瓶中,用水稀释至标线,用慢速滤纸干过滤,弃去10ml初滤液,取其中50ml滤液供测定。

相关文档
相关文档 最新文档