文档库 最新最全的文档下载
当前位置:文档库 › 热传导方程抛物型偏微分方程和基本知识

热传导方程抛物型偏微分方程和基本知识

热传导方程抛物型偏微分方程和基本知识
热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念

1.1温度场

一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导,

即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。

温度场:在任一瞬间,物体或系统内各点的温度分布总和。

因此,温度场内任一点的温度为该点位置和时间的函数。

〖说明〗

若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳

态的导热状态。

若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态

的导热状态。

若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为

一维稳态温度场。

1.2 等温面

在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。

1.3 温度梯度

从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交

的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。

温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。

〖说明〗

温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。

稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律

物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和

温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。

傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。

定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比:

q = dQ/ds = -λ·dT/dX

式中:q 是热通量(热流密度),W/m2

dQ是导热速率,W

dS是等温表面的面积,m2

λ是比例系数,称为导热系数,W/m·℃

dT / dX 为垂直与等温面方向的温度梯度

“-”表示热流方向与温度梯度方向相反

3. 导热系数

将傅立叶定律整理,得导热系数定义式:

λ= q/(dT/dX)

物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系

数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。

导热系数大小由实验测定,其数值随状态变化很大。

3.1 固体的导热系数

金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃)

〖说明〗

固体中,金属是最好的导热体。纯金属:t↗,λ↘;金属:纯度↗,λ↗非金属:ρ,t↗,λ↗。对大多数固体,λ值与温度大致成线性关系:

λ=λ0(1+βt)

式中:λ是固体在温度为 t℃时的导热系数,W/(m·℃)

λ0是固体在温度为0℃时的导热系数,W/(m·℃)

β是温度系数,大多数金属:β<0,大多数非金属:β>0

3.2 液体的导热系数

液体导热系数:0.07~0.7W/(m·℃)

t↗,λ↘(水、甘油除外)

★金属液体:其λ比一般液体高,其中纯Na最高

★非金属液体:纯液体的λ比其溶液的大

3.3 气体的导热系数

气体的导热系数:0.006~0.67W/(m·℃)

温度的影响:t↗,λ↗

P的影响:

★一般压强范围内,λ随压强变化很小,可忽略

★过高(>2×105kPa)、过低(<3kPa)时,P↗,λ↗

气体的导热系数小,对导热不利,但有利于保温、绝热

3.4 影响导热系数的因素

不同的物体有不同的λ,λ金属> λ固> λ液> λ气(与分子距离有关);

同种物体的化学组成愈纯、λ越大;如纯铜λ=330[千卡/米·时·℃],

如纯铜中含有微量的砷时λ=122[千卡/米·时·℃];

内部结构愈紧密、λ值愈大;如聚异氰酸酯塑料λ=0.18[千卡/米·时·℃],而聚异氰酸酯泡沫塑料(低温保冷材料)的λ=0.015~0.023[千卡/米·时·℃];

物理状态:λ冰=1.93[千卡/米·时·℃],λ水=0.49[千卡/米·时·℃],λ水蒸气=0.0139[千卡/米·时·℃];

湿度:湿材料的导热系数比同样组成的材料要高。因为湿材料含水多,而干材料有空气。(λ水>λ气);

温度:气体,蒸汽,建筑材料和绝热材料的λ值,随温度升高而增大。大部分液体(水与甘油除外)和大部分金属的λ值随温度升高而降低;

压强:因为液体可视为不可以压缩,因此压强影响可以忽略。压强对气体的影响(高于2×105[kPa]或低于3[Kpa])下,才考虑压强的影响,此时导热系数随压强增高而变大。

导热本质是分子振动传热,它取决于物质(分子排列)的疏松程度和温度(分子振动的速度)。矛盾的主要方面决定事物的性质,所以气体,蒸汽,建筑材料和绝热材料的λ值,随温度升高而增大;大部分液体(水与甘油除外)和大部分金属的λ值随温度升高而降低。

在工程计算时,温度的变化在不大的范围内,对大部分材料来说,可以认为

导热系数随温度是线性关系的,即:

λ = λo(1+b t )

式中:t 为温度

λo为温度为0℃时的导热系数

b是由实验测定的常数。在实际计算时,一般可以取其平均温度时的导热系

数的数值,在计算中作为常数处理。

按照国家标准(GB4272-92)的规定,凡平均温度不高于350℃,导热系数的数值不大于0.12W/M·K材料称为绝热保温材料(隔热材料或热绝缘材料)。

特点:是内部有很多细小的空隙,其中充满气体,因而并非为密实固体。但

由于其空隙细小,气体在其内部可视为静止的,主要以导热的方式传热,高温时还伴有辐射方式。气体导热系数小,最终使得整个隔热材料的导热系数(也称表观导热系数)的数值非常小,达到隔热保温的作用。

影响因素:对绝热保温材料,除了要考虑温度的影响以外,还必须注意到湿度的影响。在使用这类绝热保温材料的场合,必须要注意防潮。

热传导方程--抛物型偏微分方程

简称抛物型方程,一类重要的偏微分方程。热传导方程是最简单的一种抛物型方程。

热传导方程 研究热传导过程的一个简单数学模型。根据热量守恒定律和傅里叶热传导实验定律导致热传导方程

[507-01](1)式中是温度;

[kg2]是拉普拉斯算符;是导温系数;[507-00];[kg2]是热传导系数;

[kg2]分别是比热和密度;[507-03];是外加热源密度自然界还有很多现象同样可以用方程(1)来描述,例如分子在介质中的扩散过程等,因此方程(1)通常亦称为扩散方程。

定解问题 为了确定一个具体的热传导过程,除了列出方程(1)以外,还必须知道物体

的初始温度(初始条件)和在它的边界上所受到的外界的影响(边界条件)。

初始条件:

[507-04] (2) 边界条件,最通常的形式有三类。

第一边界条件(或称狄利克雷条件):

[507-05] (3)即表面温度为已知函数。

第二边界条件(或称诺伊曼条件):

[507-06] (4)式中是的外法向,

即通过表面的热量已知。

第三边界条件(或称罗宾条件):

[508-01](5)式中≥0;即物体表面给定热交换条件。

除了以上三类边界条件外还可以在边界[kg1]上给定其他形式的边界条件,如斜微商

条件、混合边界条件等。

方程(1)连同初始条件(2)以及边界条件(3)、(4)、(5)中的任意一个一起构成了一个定解问题,根据边界条件的不同形式,分别称为第一、二、三边值问题,统称为热传导方程的

初边值问题或混合问题。若≡,[kg2]则由方程(1)和初始条件(2)构成的定解问题称

为热传导方程的初值问题或柯西问题。

基本解与格林函数 基本解是点热源的影响函数。如果在=0时刻在(,,)处给定单

位点热源,即(,,,0)=(,,)(是狄克函数),则当>0时由它引起的在全空

间的温度分布(即热传导方程(1)的解)称为热传导方程的基本解。通过傅里叶变换可以得到它的表达式。当>0时

[508-02]

[508-03]

热传导方程初值问题(1)、(2)的解可通过叠加的步骤由基本解生成

[508-04]

[508-05]

[508-06]

对于一个有界区域,若边界温度为零,在初始时刻在(,,)处给定一个单位点热源

(,,,0)=(,,),当>0时由它引起在内的温度分布(即热传导方程的解)称

为热传导方程第一边值问题的格林函数,记作(-,-,-,)。根据格林公式

[508-07]

[508-08],式中是的共轭算子,

[508-09]任意第一边值问题(1)(2)、(3)的解都可通过格林函数表为

[508-10]

[508-11]

[508-12];格林函数可以通过基本解来表示:

[508-13]

[508-14]这里

[508-15]时是一个定义在×[0,∞)上的充分光

滑函数。对于一维问题或为立方体等特殊区域,格林函数可以通过分离变量法或镜像法去求得。

极值原理 一个内部有热源的热传导过程(即在方程(1)中≥0),它的最低温度一定在边界上或初始时刻达到,这就是所谓的极值原理。事实上,还可以有更强的结论:①如果在

=[kg1][kg1]时在内部某一点达到了最低温度,那么在这个时刻以前(即<时)整

个物体的温度等于常数,这就是所谓的强极值原理;②如果这个最低温度只在[kg1]

=[kg1][kg1]时刻的某一边界点[kg1][kg1]达到,那么在这一点上

[508-16](是的外法向),此即所谓的边界点引理。

极值原理与边界点引理在热传导方程的研究中有很多应用,它的一个最直接的推论就是导出了热传导方程初边值问题解的惟一性和稳定性。

至于初值问题(1)(2)的解的惟一性,它与解在无穷远点的性态有关。如果对于初值问题

(1)(2),附加上无穷远点增长阶的限制[508-17],这里,是任意给定正常数,那么由极值原理可以证明初值问题(1)、(2)的解必惟一。

解的正则性(光滑性) 若≡0,则由初值问题解的表达式可看出,若(,,)有界连

续,则初值问题(1)、(2)的解(,,,)当>0时都是无穷次连续可微的,而且关于空间

变量,,是解析的,关于时间变量属于谢弗莱二类函数,即在||<内满足

[508-18]当0时,热传导方程解的可微性质与

[kg1]的性质有关,例如为了得到热传导方程的古典解,除了需要假定(,,,)连续以

外,还要求对,,或对是赫尔德连续的。

解的渐近性如果边界上的温度以及热源密度与时间无关(即

[508-19]),则热传导过程将趋于稳定状态,也就

是当→∞时,不管什么初始条件,物体内部温度总趋于同一个极限(稳定态的温度分布

(,,)),它是椭圆边值问题:[508-23]

[508-24]的解。

解的半群性质 热传导是一个单向的不可逆过程,热总是由高温流向低温。如果边界温度

为零,()表示由初始时刻的温度场映到时刻的温度场的线性解算子,即

[508-25],由于热传导的不可逆性质,因此算子族

[508-21]具有半群性质:①(0)=(为恒同算子);②(+)=()

(),≥0;③[508-22]。由泛函分析中的希尔-吉田定理,存在一个相

应的无穷小生成子,()=e,使得具有齐次边条件的第一边值问题(1)、(2)、(3)的解具有明显的表达式

[509-01],式中

[509-02]。

线性和拟线性抛物型方程 设[509-03]。二阶线性偏微分方程

[509-04] (6)在区域内称为是抛

物型的,如果存在常数 >0,使得对于任意[kg1][kg1],(,,…,,)[kg1]

[kg1]有

[509-05]。如果连续可微,那么(6)可改写

[509-06] (7)的形式。(7)称为具

有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。当[509-07]

时,[kg1](6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于,,则(6)和(7)称为拟线性抛物型方程。

抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。

拟线性蜕化抛物型方程 考虑在绝热过程中气体通过多孔介质的流动,这个过程可由下述方程来刻画:

[509-08],式中>1,是气体密度,通常研究它的非

负解。由于当[kg1]=[kg1]0时方程蜕化,因此它是一个拟线性蜕化抛物型方程。对于

这个问题的系统理论研究是从 1957年开始的。解的支集的边界是一条自由边界,通过自

由边界[509-111]一般不连续,因此这个方程一般只存在在索伯列夫意义下的广义解,而且由于当=0时方程蜕化为一阶方程,因此与热传导方程不同,扰动的传播速度是有限的。

反应扩散方程(组) 形如

[509-09]的半线性抛物型方

程组叫做反应扩散方程组。除了研究各种定解问题外,由于(8)的解常具有行波解(-

)以及当→∞时(,)趋于椭圆型方程组相应的边值问题的解(称为平衡解)这样的性质,因此以研究平衡解的稳定性为核心的各种问题就构成了半线性抛物型方程(组)的定性理论(或叫几何理论)。

一维热传导方程的差分格式

《微分方程数值解》 课程论文 学生姓名1:许慧卿学号:20144329 学生姓名2:向裕学号:20144327学生姓名3:邱文林学号:20144349学生姓名4:高俊学号:20144305学生姓名5:赵禹恒学号:20144359学生姓名6:刘志刚学号: 20144346 学院:理学院 专业:14级信息与计算科学 指导教师:陈红斌 2017年6 月25日

《偏微分方程数值解》课程论文 《一维热传导方程的差分格式》论文 一、《微分方程数值解》课程论文的格式 1)引言:介绍研究问题的意义和现状 2)格式:给出数值格式 3)截断误差:给出数值格式的截断误差 4)数值例子:按所给数值格式给出数值例子 5)参考文献:论文所涉及的文献和教材 二、《微分方程数值解》课程论文的评分标准 1)文献综述:10分; 2)课题研究方案可行性:10分; 3)数值格式:20分; 4)数值格式的算法、流程图:10分; 5)数值格式的程序:10分; 6)论文撰写的条理性和完整性:10分; 7)论文工作量的大小及课题的难度:10分; 8)课程设计态度:10分; 9)独立性和创新性:10分。 评阅人: - 2 -

一维热传导方程的差分格式 1 引言 考虑如下一维非齐次热传导方程Dirichlet 初边值问题 22(,),u u a f x t t x ??=+?? ,c x d << 0,t T <≤ (1.1) (,0)(),u x x ?= ,c x d ≤≤ (1.2) (,)(),u c t t α= (,)(),u d t t β= 0t T <≤ (1.3) 的有限差分方法, 其中a 为正常数,(,),(),(), ()f x t x t t ?αβ为已知常数, ()(0),c ?α= ()(0).d ?β= 称(1.2)为初值条件, (1.3)为边值条件. 本文将给出(1.1) (1.3)的向前Euler 格式, 向后Euler 格式和Crank Nicolson -格式, 并给出其截断误差和数值例子. 经对比发现, Crank Nicolson -格式误差最小, 向前 Euler 格式次之, 向后Euler 格式误差最大. 2 差分格式的建立 2.1 向前Euler 格式 将区间[,]c d 作M 等分, 将[]0,T 作N 等分, 并记 ()/h d c M =-, /T N τ=, j x c jh =+,0j M ≤≤, k t k τ=,0k N ≤≤. 分别称h 和τ为空间步长和时间步长.用 两组平行直线 j x x =, 0j M ≤≤, k t t =, 0k N ≤≤ 将Ω分割成矩形网格.记{} |0h j x j M Ω=≤≤, {}|0k t k N τΩ=≤≤, h h ττΩ=Ω?Ω. 称() ,j k x t 为结点[1] . 定义h τΩ上的网格函数 {}|0,0k j U j M k N Ω=≤≤≤≤, 其中() ,k j j k U u x t =. 在结点() ,j k x t 处考虑方程(1.1),有

一维抛物线偏微分方程数值解法(附图及matlab程序)

一维抛物线偏微分方程数值解法(4) 上一篇参看一维抛物线偏微分方程数值解法(3)(附图及matlab程序) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

维抛物线偏微分方程数值解法

一维抛物线偏微分方程数值解法(2) 上一篇文章请参看一维抛物线偏微分方程数值解法(1) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为

偏微分一维热传导问题

偏微分大作业 一维热传导方程问题——运用隐式格式求解数值解

目录 问题描述 (3) 1 解析解——分离变量法 (3) 2 数值解——隐式格式 (5) 3 证明隐式格式的相容性与稳定性 (5) 4 数值解——分析与Matlab实现 (6) 5 数值解与解析解的比较 (9) 6 随时间变化的细杆上的温度分布情况 (11) 7稳定后细杆上的温度分布情况 (12) 参考文献 (13) 附录 (14)

有限长杆的一维热传导问题 问题描述 一根单位长度的细杆放入100℃的沸水中,当细杆的温度达到100℃时取出。假设细杆四周绝热;在时间t=0时,细杆两端浸入0℃的冰水中。一维热传导方 程:20t xx u a u -=,现在令21a =,从而可知本题:0t xx u u -=。现在要求细杆温度分布:(,)u x t 。 1 解析解——分离变量法 热传导偏微分方程: 0t x x u u -= (1) (0,t )(1,t )u u == (0)()u x x ?=, 其中, 001 x x ==,或 ()x ?= 100(0,1) x ∈ , 首先令: (,)()()u x t X x T t = (2) 将(2)式带入(1)式得: ()T()()()0X x t T t X x -= 于是可得: T()()()() t X x T t X x λ==- 可以得到两个微分方程: T()()0t T t λ+= ()()0X x X x λ+= 先求解空间项: 当0λ <时, ()x x X x Ae Be λλ- --=+ 由于(0,t)(1,t)0,.u u t ==?

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。 在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单 位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系:

圆柱坐标系:球坐标系:

其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维) 2物理条件:说明导热系统的物理特性(有无内热源) 3初始条件:给出时温度场内各点温度。 数学表达式为 4边界条件:表示导热系统在边界的特征 第一类边界条件(狄利克雷边界条件):说明物体边界的温度分布: 第二类边界条件(纽曼边界条件):说明物体边界的热流量: 绝热边界条件 第三类边界条件(纽曼边界条件):说明物体边界到热量与对流换热的能量平衡关系: 其中为边界处的温度,为边界的热流量,为环境温度。 五、解题步骤: 1根据具体实际问题列出导热微分方程式 2确定初始条件以及边界条件。每一维导热至少有两个边界条件,从而得到导热现象的完整数学描述。 3分析求解,得出导热物体的温度场

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

用显式格式求解二维抛物型偏微分方程

用显式格式求解二维抛物型偏微分方程 2010-05-14 10:41 function varargout=liu(varargin) T=1;a=1;h=1/32;dt=1/200; [X,T,Z]=chfenmethed(h,dt,a,T); mesh(X,T,Z(:,:,3)); shading flat; % xlabel('X','FontSize',14); % ylabel('t','FontSize',14); % zlabel('error','FontSize',14); % title('误差图'); function [X,Y,Z]=chfenmethed(h,dt,a,T); %求解下问题 %u_t-a*(u_xx+u_yy)=f(x,y,t) 0

r=a*dt/h^2; [X,Y]=meshgrid(x,y); Z=zeros(m,m,n); U=zeros(m,m,n); for i=1:m for j=1:m U(i,j,1)=d(x(i),y(j)); end end for j=2:n for k=1:m U(1,k,j)=g0(y(k),t(j)); U(m,k,j)=g1(y(k),t(j)); U(k,1,j)=h0(x(k),t(j)); U(k,m,j)=h1(x(k),t(j)); end end for k=2:n for i=2:m-1 for j=2:m-1 U(i,j,k)=U(i,j,k-1)+r*a*(U(i+1,j,k-1)+U(i-1,j,k-1)+U(i,j+1,k-1)... +U(i,j-1,k-1)-4*U(i,j,k-1))+f(x(i),y(j),t(k-1));

一维非稳态导热问题的数值解

计算传热学程序报告 题目:一维非稳态导热问题的数值解 : 学号: 学院:能源与动力工程学院 专业:工程热物理 日期:2014年5月25日

一维非稳态导热问题数值解 求解下列热传导问题: ? ?? ????=====≤≤=??- ??1,10),(,1),0(0)0,()0(01T 22ααL t L T t T x T L x t T x 1.方程离散化 对方程进行控制体积分得到: dxdt t T dxdt x T t t t e w t t t e w ? ?? ??+?+??=??α 1 2 2 ? ? -=??-???+?+e w t t t w e t t t dx T T dt x T x T )(1])()( [α 非稳态项:选取T 随x 阶梯式变化,有 x T T dx T T t p t t p e w t t t ?-=-?+?+? )()( 扩散项:选取一阶导数随时间做显示变化,有 t x T x T dt x T x T t w t e w e t t t ???-??=??-??? ?+])()[(])()[( 进一步取T 随x 呈分段线性变化,有 e P E e x T T x T )()( δ-=?? , w W P w x T T x T )()(δ-=?? 整理可以得到总的离散方程为: 2 21x T T T t T T t W t P t E t P t t E ?+-=?-?+α 2.计算空间和时间步长 取空间步长为: h=L/N 网格Fourier 数为: 2 2 0x t x t F ??= ??= α(小于0.5时稳定)

一类二维抛物型方程的ADI格式

一类二维抛物型方程的ADI格式 【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的ADI格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;ADI格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]: 其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即ADI格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数L和N,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(Ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(Ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 下面采用von Newmann方法[3]对上述D格式进行稳定性分析. 一般地,低阶项不影响差分格式的稳定性,所以不妨略去项,并对(3)、(5)式消去中间变量得: 利用Taylor展开式求误差,可知此处建立的D格式的截断误差阶为. 参考文献:

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

第四章导热问题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

一维热传导方程(Richardson格式)

中南林业科技大学 偏微分方程数值解法学生姓名:周晓虹 学号:20083710 学院:理学院 专业年级:08信计1班 设计题目:一维热传导方程的Richardson格式 2011年06月

一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。

MATLAB编辑一维热传导方程的模拟程序

求解下列热传导问题: ()()()()?????????====-=≤≤=??-??1, 10,,1,010,001222ααL t L T t T z z T L z t T z T 程序: function heat_conduction() %一维齐次热传导方程 options={'空间杆长L','空间点数N' ,'时间点数M','扩散系数alfa','稳定条件的值lambda(取值必须小于0.5)',}; topic='seting'; lines=1; def={'1','100','1000','1','0.5'}; h=inputdlg(options,topic,lines,def); L=eval(h{1}); N=eval(h{2}); M=eval(h{3}); alfa=eval(h{4}); lambda=eval(h{5});%lambda 的值必须小于0.5 %*************************************************** h=L/N;%空间步长 z=0:h:L; z=z'; tao=lambda*h^2/alfa;%时间步长 tm=M*tao;%热传导的总时间tm t=0:tao:tm; t=t'; %计算初值和边值 T=zeros(N+1,M+1); Ti=init_fun(z); To=border_funo(t); Te=border_fune(t); T(:,1)=Ti; T(1,:)=To; T(N+1,:)=Te; %用差分法求出温度T 与杆长L 、时间t 的关系 for k=1:M m=2; while m<=N T(m,k+1)=lambda*(T(m+1,k)+T(m-1,k))+(-2*lambda+1)*T(m,k); m=m+1; end;

一维热传导方程

精心整理 一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1),0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题 1)(<∞-(2) 1)(x <0(3) (4) 二. N,M 都 三. 第 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==,00==k N k u u ,

其中j=1,2,…,N-1,k=1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0j j j x u ??==,00==k N k u u , 其中j=1,2,…,N-1,k=1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7 利用 (8或 (9用到四.通过误差估计方程 (1)可知对任意的r ,Richardson 格式都不稳定,所以Richardson 格式绝对不稳定。 (2)当210≤r 时,向前差分格式的误差无限增长。因此向前差分格式是条件稳定。 (3)向后差分格式和六点对称格式都绝对稳定,且各自的截断误差阶分别为)(2h O +τ和)(22h O +τ。 五. 数值例子 例1令f(x)=0和a=1,可求得u (x,t )一个解析解为u(x,t)=exp(x+t)。 1. 用向前差分格式验证得数值结果如下:

一类二维抛物型方程的ADI格式

【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的adi格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;adi格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]:其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即adi格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数l和n,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 利用taylor展开式求误差,可知此处建立的d格式的截断误差阶为. 参考文献: [1]管秋琴.一类二维抛物型方程的有限差分格式[j]. 赤峰学院学报(自然科学版). 2010,26(1):7. [3]戴嘉尊,邱建贤. 微分方程数值解法[m]. 南京:东南大学出版社 .2002. 作者简介: 舒阿秀(1977―),女,安徽旌德人,硕士,安庆师范学院数学与计算科学学院副教授,主要从事偏微分方程数值解的研究。

相关文档
相关文档 最新文档