文档库 最新最全的文档下载
当前位置:文档库 › 数据结构家谱管理系统二叉链表

数据结构家谱管理系统二叉链表

数据结构家谱管理系统二叉链表
数据结构家谱管理系统二叉链表

数据结构家谱管理系统二叉链表

《项目实训二》

项目名称 __ 家谱管理系统__

姓名__ ___________班级 __ _______________

学号__ ________________

指导教师 __ __________ __

.1

模块划分:

1、统计模块

(1)统计家族总人数、健在人数、几代人

(2)主要函数:

int Generation(Node *root); //这个家族共有几代人

int NumberOfPeople( ); //家族的总人数

int LifeNum( ); //健在人数

(3)实现方法:静态成员变量

(4)实现结果:

2、更新模块

(1)创立家谱、增加成员、删除成员、成员改名

(2)主要函数:

Node* Creat( ); //构造函数调用

void AddNewPeople(Node *root,string FatherName,string NAme); //

增加新的家族成员

int DeletePeople(Node *root,string FatherName,string Deletepeople);

//删除家族成员

int SetNewName(Node *root,string NAme,string NewName); //更改

姓名

(3)实现方法:创立家谱和成员改名主要经过递归调用;增加成员和删除成员主要经过栈的非递归调用。

(4)实现结果:

3、查询模块

(1)查询成员详细信息、查询成员的孩子以及孩子的详细信息

(2)主要函数:

int Message(Node *root,string Name); //显示该成员的基本信息

int FindChild(Node *root,string NAme); //显示孩子信息(3)实现方法:经过递归调用,找到成员,输出相应的信息

(4)实现结果:

4、显示模块

(1)前序、中序、后序遍历家谱

(2)主要函数:

void PreOrder(Node *root); //前序递归遍历输出家谱

void InOrder(Node *root); //中序递归遍历输出家谱

void PostOrder(Node *root); //后序递归遍历输出家谱(3)实现方法:递归遍历

(4)实现结果:

5、文件模块

(1)保存到文件、从文件读取

(2)主要函数:

void SaveToFile(Node *root); //保存到文件

void FileToFamilyTree( Node *root) ; //从文件中读取(3)实现方法:文件流

(4)实现结果:

实验结果及分析1、创立家谱

2、保存到文件

3、读取文件

4、增加成员

5、基本信息

6、查询成员信息

7、成员改名

8、遍历家谱

9、查询孩子信息

10、删除成员

数据结构家谱管理系统范本

数据结构家谱管理 系统

宁波大红鹰学院 信息工程学院 课 程 设 计 报 告 项目名 家谱查询系统 称: 白钰琦 项目组 长: 徐程凯、徐海域、项鸿伟 项目成 员: 10计科1班 班级名 称: 计算机科学与技术 专业名 称: 完成时间: 12月1日 信息工程学院制 目录 一、案例描述 ............................................................ 错误!未定义书签。 1、总体描述 ....................................................... 错误!未定义书签。 2、模块描述 ....................................................... 错误!未定义书签。

二、设计思路 ............................................................ 错误!未定义书签。 三、程序设计 ............................................................ 错误!未定义书签。 1、数据结构描述................................................ 错误!未定义书签。 2、主函数及其流程图........................................ 错误!未定义书签。 3、源程序 ........................................................... 错误!未定义书签。 四、调试与分析 ........................................................ 错误!未定义书签。 1、主菜单 ........................................................... 错误!未定义书签。 2、显示家谱信息................................................ 错误!未定义书签。 3、显示家谱中第n代人所有信息 .................... 错误!未定义书签。 4、按姓名查找某人并相应输出 ........................ 错误!未定义书签。 5、按出生日期查找家谱成员信息 .................... 错误!未定义书签。 6、为家谱中成员添加孩子信息 ........................ 错误!未定义书签。 7、为家谱中成员添加妻子信息 ........................ 错误!未定义书签。 8、删除家谱中成员及其后代信息 .................... 错误!未定义书签。 9、修改家谱中成员信息.................................... 错误!未定义书签。 10、确定家谱中两个成员关系 .......................... 错误!未定义书签。 11、按出生年月排序家谱 .................................. 错误!未定义书签。 五、设计总结 ............................................................ 错误!未定义书签。 1、完成情况 ....................................................... 错误!未定义书签。 2、心得体会 ....................................................... 错误!未定义书签。

数据结构—链表应用能力测评

任务: 编写一个能向表尾插入结点,并输出链表中所有数据元素的小程序

#ifndef _LINKLIST #define _LINKLIST #include using namespace std ; struct node { int data ; struct node *next ; }; typedef struct node *PLIST; typedef struct node NODE; /*创建链表,并初始化链表元素*/ PLIST createList_link() { PLIST head ,tail ,temp; int elem = -1; head = new NODE; //初始化头结点 if( head == NULL) { cout<<"分配空间失败,链表创建失败"<next = NULL; tail = head ; while(1) { cin >> elem ; if(elem == 0 ) break ; temp = new NODE ; if(temp == NULL) { cout<<"分配空间失败,链表创建失败"<data = elem ; temp->next = NULL ; tail->next = temp ; tail = temp; } return head ;

} void printList_link(PLIST head ) { /*在此处完成任务,输出head为表头的单链表数据元素*/ //begin PLIST p =new NODE; p=head->next; while(p){ printf("%d ",p->data); p=p->next; } //end } void insertDataTail(PLIST head , int insData ) { /*在此处完成任务,在head为表头的单链表表尾插入数据元素insData*/ //begin PLIST p; p=head->next; while(p->next!=NULL){ p=p->next; } PLIST q = new NODE; //初始化结点 p->next=q; q->data=insData; q->next=NULL; //end } #endif

数据结构 单链表详解

数据结构的概念: 数据的逻辑结构+ 数据的存储结构+ 数据的操作; 数据的数值:=====》数据===》数值型数据整形浮点数ASCII 非数值型数据图片声音视频字符 =====》数据元素=====》基本项组成(字段,域,属性)的记录。 数据的结构: 逻辑结构 ----》线性结构(线性表,栈,队列) ----》顺序结构 ----》链式结构 ----》非线性结构(树,二叉树,图) ----》顺序结构 ----》链式结构 存储结构 -----》顺序存储 -----》链式存储 -----》索引存储 -----》哈希存储==散列存储 数据的操作: 增 删 改 查 DS ====》数据结构===》DS = (D,R); 数据结构中算法: 1、定义:有穷规则的有序集合。 2、特性: 有穷性 确定性

输入 输出 3、算法效率的衡量 时间复杂度计算===》算法中可执行依据的频度之和,记为:T(n)。 是时间的一种估计值不是准确值。 计算结果的分析:1 将最终结果的多项式中常数项去掉 2 只保留所有多项式中最高阶的项 3 最后的最高阶项要去掉其常数项 时间复杂度的量级关系: 常量阶====》对数阶===》线性阶===》线性对数阶====》平方阶===》立方阶===》指数阶 以上关系可以根据曲线图来判断算法对时间复杂度的要求 空间复杂度计算====》算法执行过程中所占用的存储空间的量级,记为:D(n)。 计算方法是在运行过程中申请的动态内存的量级计算。 ///////////////////////////////////////////////////////////////////////////////////////////////// 线性表 顺序存储====》顺序表(数组) 链式存储====》单链表 特征:对于非空表,a0是表头没有前驱。 an-1 是表尾没有后继 ai的每个元素都有一个直接前驱和直接后继 基本操作:创建表=====》增加元素====》删除元素====》改变元素值====》查询元素 1、顺序表的操作 1.1 创建顺序表=====》定义个指定类型的数组====》int a[100] ={0};

数据结构家谱课程设计报告

家谱管理系统 姓名:田鑫磊 学号:1514020421 (1)功能部分: 本程序共实现了6个功能分别为: 1.读出家谱并显示 2.确定指定成员在家族中的辈份 3.输出指定辈的所有成员 4.在家谱中添加新成员,并追加到文件中 5.输出指定家庭的所有成员 6. 退出本系统 (2)各功能的算法思想: 1.读出家谱并显示 存储结构用栈,按照先显示双亲,然后显示其所有孩子的顺序显示所有的家庭成员。 2.确定指定成员在家族中的辈份 用求成员所在的二叉树中的层数(按层遍历二叉树)来确定,这里采用的是递归算法3.输出指定辈的所有成员 此处定义了一个新的结构体类型(增加存储节点所在的层数),定义如下: struct { BTNode *q; int loc; //存结点所在的层数 }qu[10]; 并用一个队列来比较显示同辈分的所有成员。 4.在家谱中添加新成员,并追加到文件中 首先,输入一个新成员的名字; 然后,输入其双亲; 之后,再添加到整个存储二叉链表中。 然后,再将新的存储结构写回到文件中。 二叉链表的结点类型为:typedef struct node { ElemType data[10]; //存放成员的名字 struct node *child; //其孩子指针 struct node *brother; //其兄弟指针 }BTNode; 5.输出指定家庭的所有成员 首先,设一个栈,并设一个标记位,先置1; 然后,找到输入的要待显示的成员,将标记位置0; 再次,显示其孩子和兄弟,依次下去直到显示完其所有的亲戚。 6.退出本系统 通过一个输入字符q来控制,每完成一个功能,系统提示是否要继续操作:

数据结构课程设计单链表

目录 1 选题背景 (2) 2 方案与论证 (3) 2.1 链表的概念和作用 (3) 2.3 算法的设计思想 (4) 2.4 相关图例 (5) 2.4.1 单链表的结点结构 (5) 2.4.2 算法流程图 (5) 3 实验结果 (6) 3.1 链表的建立 (6) 3.2 单链表的插入 (6) 3.3 单链表的输出 (7) 3.4 查找元素 (7) 3.5 单链表的删除 (8) 3.6 显示链表中的元素个数(计数) (9) 4 结果分析 (10) 4.1 单链表的结构 (10) 4.2 单链表的操作特点 (10) 4.2.1 顺链操作技术 (10) 4.2.2 指针保留技术 (10) 4.3 链表处理中的相关技术 (10) 5 设计体会及今后的改进意见 (11) 参考文献 (12) 附录代码: (13)

1 选题背景 陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代----信息时代,形成一个新产业----信息产业,产生一个新科学----计算机科学与技术,开创一种新的科研方法----计算方法,开辟一种新文化----计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。 数据结构和算法是计算机求解问题过程的两大基石。著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”。计算机科学就是“一种关于信息结构转换的科学”。信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证 2.1 链表的概念和作用 链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。 以“结点的序列”表示线性表称作线性链表(单链表) 单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。 因此,查找第 i 个数据元素的基本操作为:移动指针,比较 j 和 i 单链表 1、链接存储方法 链接方式存储的线性表简称为链表(Linked List)。 链表的具体存储表示为: ① 用一组任意的存储单元来存放线性表的结点(这组存储单元既可以是连续的,也可以是不连续的) ② 链表中结点的逻辑次序和物理次序不一定相同。为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还必须存储指示其后继结点的地址(或位置)信息(称为指针(pointer)或链(link)) 注意: 链式存储是最常用的存储方式之一,它不仅可用来表示线性表,而且可用来表示各种非线性的数据结构。 2、链表的结点结构 ┌───┬───┐ │data │next │ └───┴───┘ data域--存放结点值的数据域 next域--存放结点的直接后继的地址(位置)的指针域(链域) 注意: ①链表通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的。 ②每个结点只有一个链域的链表称为单链表(Single Linked List)。

数据结构(二叉树)家谱管理系统

数学与计算机学院 课程设计说明书 课程名称: 数据结构与算法课程设计 课程代码: 题目: 二叉树生成家谱 年级/专业/班: 学生姓名: 学号: 开始时间: 2015 年 12 月 09 日 完成时间: 2015 年 12 月 29 日 课程设计成绩: 指导教师签名:年月日目录(小三黑体,居中)

1 需求分析 (6) 1.1任务与分析 (6) 1.2测试数据 (6) 2 概要设计 (7) 2.1 ADT描述 (7) 2.2程序模块结构 (8) 2.3各功能模块 (9) 3 详细设计 (10) 3.1结构体定义 (10) 3.2 初始化 (11) 3.3 插入操作 (13) 3.4 查询操作 (15) 4 调试分析 (18) 5 用户使用说明 (18) 6 测试结果 (18) 结论 (23) 附录 (24) 参考文献 (25)

随着计算机科学技术、计算机产业的迅速发展,计算机的应用普及也在以惊人的速度发展,计算机应用已经深入到人类社会的各个领域。 计算机的应用早已不限于科学计算,而更多地应用在信息处理方面。 计算机可以存储的数据对象不再是纯粹的数值,而扩展到了字符、声 音、图像、表格等各种各样的信息。对于信息的处理也不再是单纯的 计算,而是一些如信息存储、信息检索等非数值的计算。那么,现实 世界的各种数据信息怎样才能够存储到计算机的内存之中,对存入计 算机的数据信息怎样进行科学处理,这涉及计算机科学的信息表示和 算法设计问题。为解决现实世界中某个复杂问题,总是希望设计一个 高效适用的程序。这就需要解决怎样合理地组织数据、建立合适的数 据结构,怎样设计适用的算法,以提高程序执行的时间效率和空间效 率。“数据结构”就是在此背景下逐步形成、发展起来的。 在各种高级语言程序设计的基本训练中,解决某一实际问题的步骤一般是:分析实际问题;确定数学模型;编写程序;反复调试程序直 至得到正确结果。所谓数学模型一般指具体的数学公式、方程式等,如牛顿迭代法解方程,各种级数的计算等。这属于数值计算的一类问 题。而现实生活中,更多的是非数值计算问题,如手机中的通讯录,人们对它的操作主要是查找、增加、删除或者修改电话记录。再如,人们经常在互联网上查阅各种新闻,或查阅电子地图,人们可以在某 城区地图上查找自己所需的街道或店铺,其操作主要是搜索和查询。 下面再来分析几个典型实例,它们的主要特点是:不同实例的数据元 素之间存在不同的关系;对数据信息的处理主要有插入、删除、排序、 检索等。 关键词:网络化;计算机;对策;二叉树

数据结构(C语言)单链表的基本操作

实验名称:实验一单链表的基本操作 实验目的 熟练掌握线性表两类存储结构的描述方法。 实验内容 从键盘读入若干个整数,建一个整数单链表,并完成下列操作: (1)打印该链表; (2)在链表中插入一个结点,结点的数据域从键盘读入,打印该链表; (3)在链表中删除一个结点,被删结点的位置从键盘读入,打印该链表; (4)在链表中做查找:从键盘读入要查找的整数,将该整数在链表中的位置打印出来,若要查找的整数不在链表中,返回一个信息。 算法设计分析 (一)数据结构的定义 单链表存储结构定义为: struct Node; typedef struct Node * pnode; struct Node { int info; pnode link; }; typedef struct Node * LinkList; (二)总体设计 程序由主函数、创建单链表函数、链表长度函数、链表打印函数、插入正整数函数、删除函数、查询函数组成。其功能描述如下: (1)主函数:调用各个函数以实现相应功能 int main(void) //主函数 { printf("单链表的基本操作实验:\n"); struct list *pnode; pnode = creat(); //创建 print(pnode); //输出 insert(pnode); //插入 print(pnode); //输出 _delete(pnode); //删除 print(pnode); //输出 _located(pnode); //查找 print(pnode); //输出 return 0 ; } (三)各函数的详细设计: Function1: struct list *creat()//创建链表;

数据结构家谱管理系统

//////////////////////////////////////////////////////////// /////////////////// //题目:家谱资料管理 //要求:家谱用于记录某家族历代家族成员的情况与关系。现编制一个家谱资料管理软件, //实现对一个家族所有的资料进行收集整理。支持对家谱的增加,删除,更新,统计等。 //////////////////////////////////////////////////////////// /////////////////// #include #include #include int MATEFLAG=0; typedef struct TreeNode

int Num; //记录这个人拥有几个儿女 char Name[20]; //记录这个人的姓名 char Kind; //标示节点的种类有女G男B struct TreeNode * NextNode[20]; //记录这个人的儿女struct TreeNode * Parent; //记录这个节点的父节点 }TreeNode; void CreatTree(TreeNode *Tree); void OutPutAll(TreeNode *Tree); TreeNode * SearchTree(TreeNode *Tree,char name[],int length); void MainMenue(TreeNode *Tree); void SubMenue1(TreeNode * Tree); void SubMenue2(TreeNode *Tree); void Change(TreeNode * Tree); void AddNew(TreeNode * Tree);

家谱管理系统(含源代码)

家谱管理系统——C语言(数据结构) 目的和要求:树形结构是一种非常重要的非线性结构,它用于描述数据元素之间的层次关系,人类家谱是树形结构的典型体现,通过此项训练让学生掌握树形结构的知识;使学生重点掌握树与二叉树的转换,二叉树的存储和遍历,和二叉树相关的一些运算;要求完成家谱信息的录入和保存,任意成员的查找及某一成员祖先、子孙、兄弟、堂兄弟的查找。 排答疑和辅导。 完整代码: #include #include #include int MATEFLAG=0; //是否入赘或嫁入这家的,1表示为是,0表示否 typedef struct TreeNode//树节点定义 { int Num; //保存此人儿女个数 char Name[20]; //保存此人姓名 char Kind; //保存此人性别,男M,女F struct TreeNode * NextNode[20]; //保存此人的儿女,NextNode[0]里存放配偶的地址struct TreeNode * Parent; //保存此节点的父节点 }TreeNode; void CreatTree(TreeNode *Tree);//创建树 void OutPutAll(TreeNode *Tree);//输出树 TreeNode * SearchTree(TreeNode *Tree,char name[],int length); void MainMenu(TreeNode *Tree); void SubMenue1(TreeNode * Tree); void SubMenue2(TreeNode *Tree); void Change(TreeNode * Tree); void AddNew(TreeNode * Tree); void OutPutMessage(TreeNode * Tree,char name[],int length); //主函数 void main() { TreeNode *Tree;//产生根节点 Tree=(TreeNode *)malloc(sizeof(TreeNode)); Tree->Parent =NULL; strcpy(Tree->Name,"0"); MainMenu(Tree);//显示主菜单 } //添加新的成员 void AddNew(TreeNode * Tree) { SubMenue2(Tree);//添加新成员界面 } //显示添加家庭信息的界面

数据结构与算法问题分析与源代码之单链表

单链表 1 题目编写一个程序,实现链表的各种基本运算,包括:链表操作:初始化链表、输出链表、输出链表长度和释放链表链表元素操作:插入元素、删除元素、输出元素(注意元素的位置) 2 目标熟悉单链表的定义及其基本操作的实现 3 设计思想 链表由多个结点通过next 指针连接成一个完整的数据结构,每个几点包括一个数据域和一个指向下一个结点的next 指针。通过对指针的改写与结点的增减,我们可以实现单链表的插入、删除、输入、输出、求长等操作。 4 算法描述 (1 )初始化链表:输入元素个数n ,分配n 个结点空间,输入元素值,按元素顺序初始化next 指针,使之连接成串,尾指针赋值NULL 。 (2 )输出链表:从表头开始沿next 指针遍历各结点,每次访问结点输出结点数据值,直至next 为空。 (3 )输出链表长度:从表头开始沿next 指针遍历各结点,每次访问结点计数器加一,直至next 为空,返回计数器值。 (4 )释放链表:沿next 指针从前向后依次释放结点,直至next 指空。 (5 )插入元素:指针沿next 指向移动指定位,新分配一个空间并存入数据,其next 赋值为当前指针指向结点的next ,修改当前指针指向结点的next 指向新加结点。 (6 )删除元素:指针沿next 指向移动指定位,修改待删结点的前一结点的next 指针指向待删结点的下一结点,保存数值,释放删除结点。 (7 )输出元素:指针沿next 指向移动指定位,指针指向结点数据区,读出数值返回。 5 程序结构图 6源程序 #i nclude

#i nclude typedef struct LNode { int data; struct LNode *n ext; }LNode,*Li nkList; Lin kList Ini tList_Li nk(L in kList L) { L=(L in kList)malloc(sizeof(LNode)); L->data = 0; L->next = NULL; return L; } void Createlist(L in kList L) { int n; int i; int temp; LinkList T; printf(" 输入链表元素个数:"); scanf("%d",&n); L->data=n; printf(" 输入元素值:\n"); T=L; for (i=n;i>0;i--) { LinkList p=(LinkList)malloc(sizeof(LNode)); scanf("%d",&temp); p->next=T->next; p->data = temp; T->next=p; T=p; L->data++; } printf(" 成功建立链表"); } void DestroyList_Link(LinkList L) { LinkList p = L,q = L; while(p) { p = p->next; free(q);

数据结构双向链表实战应用(c语言源程序)

#include #include typedef struct nodes { char data; struct nodes *front; struct nodes *next; }*LinkList; int main(void) { int i=0; LinkList head_1=0,head_2=0; LinkList InitList(void);//创建不带头接点的双链表 void OutPutList(LinkList head); LinkList ChangeList(LinkList head,int m);//假如head指向abcde,如输入2,cdeab,如输入-2,则为deabc void FreeList(LinkList head); head_1=InitList(); OutPutList(head_1); printf("请输入想要移动的位数i\n"); scanf("%d",&i); head_2=ChangeList(head_1,i); OutPutList(head_2); FreeList(head_1); return 0;

} LinkList InitList(void) { int i=1; char ch;//判断是否还输入 LinkList head=0,r,t;//r指向新创建的结点,t指向r的前一个结点 head=(struct nodes *)malloc(sizeof(struct nodes)); if(!head) { printf("存储空间分配失败\n"); return 0; } head->front=head; head->next=head; head->data='a'; t=r=head; while(1) { r=(struct nodes *)malloc(sizeof(struct nodes)); if(!r) { printf("存储空间分配失败\n"); return 0; }

家谱管理系统 -数据结构大作业

/* 家谱管理系统 任务:实现具有下列功能的家谱管理系统 功能要求: 1). 输入文件以存放最初家谱中各成员的信息,成员的信息中均应包含以下内容: 姓名、出生日期、婚否、地址、健在否、死亡日期(若其已死亡),也可附加其它信息、但不是必需的。 2). 实现数据的存盘和读盘。 3). 以图形方式显示家谱。 4). 显示第n 代所有人的信息。 5). 按照姓名查询,输出成员信息(包括其本人、父亲、孩子的信息)。 6). 按照出生日期查询成员名单。 7). 输入两人姓名,确定其关系。 8). 某成员添加孩子。 9). 删除某成员(若其还有后代,则一并删除)。 10).修改某成员信息。 11).按出生日期对家谱中所有人排序。 12).打开一家谱时,提示当天生日的健在成员。 要求:建立至少30个成员的数据,以较为直观的方式显示结果,并提供文稿形式以便检查。界面要求:有合理的提示,每个功能可以设立菜单,根据提示,可以完成相关的功能要求。存储结构:学生自己根据系统功能要求自己设计,但是要求相关数据要存储在数据文件中。测试数据:要求使用1、全部合法数据;2、局部非法数据。进行程序测试,以保证程序的稳定。 测试数据及测试结果请在上交的资料中写明; */ #include #include #include #include #include"map.h" #define MAXN 100 #define MAXMEM 100 #define Elemtype char ============================== //树 typedef struct BiTNode { int mark;//标记 int level; char name[50];//姓名 char birthday[50];//生日 char address[MAXN];//住址

数据结构C语言版 循环链表表示和实现

数据结构C语言版循环链表表示和实现.txt37真诚是美酒,年份越久越醇香浓烈;真诚是焰火,在高处绽放才愈显美丽;真诚是鲜花,送之于人,手有余香。/* 数据结构C语言版循环链表表示和实现 P35 编译环境:Dev-C++ 4.9.9.2 日期:2011年2月10日 */ #include #include #include typedef int ElemType; // 线性表的单链表存储结构 typedef struct LNode { ElemType data; struct LNode *next; }LNode, *LinkList; // 要好好区分什么是头结点((*L)->next),尾结点(*L),以及第一个结 // 点(*L)->next->next,设立尾指针的单循环链表(头尾相接,即头结点 // 与尾结点是一样的,它们都没数据域. // 构造一个空的循环链表L int InitList_CL(LinkList *L) { // 产生头结点,并使L指向此头结点 *L = (LinkList)malloc(sizeof(struct LNode)); if(!*L) exit(0); // 指针域指向头结点,这样就构成了一个循环,空表循环,*L为表尾 (*L)->next = *L; return 1; } // 销毁循环链表L int DestroyList_CL(LinkList *L) { LinkList q, p = (*L)->next; // p指向头结点 while(p != *L) // 没到表尾,*L为表尾 { q = p->next; free(p);

数据结构家谱管理系统报告书

数据结构大作业说明文档 一、题目的选择 这次数据结构的大作业,我的选题是家谱管理系统的设计与实现。由于平时疏于编程——针对我得个人实际——我把主要的目标定位在完成家谱管理系统得基本要求。(基本要求大纲中有,就不浪费版面了) 二、设计的思路 接到这个题目,我的总体设计思路是先为程序搭建好一个结构框架,再跟据时间的宽裕程度和其它的要求逐步增强程序的性能。 关于IO的设计: 考虑到题目要求家谱信息以树形的形式一次读入内存,而个人的各种资料现在虽然条目不多,但随着程序的升级,以后可能变得越来越大。我把树形结构和个人信息记录的文档分为两个文件保存在外存中,一个文件串行化地记录家谱树的结构信息,保存少量个人信息作为识别标志;另一个文件保存完整的个人信息,所有的个人信息以线性记录的方式记录在其中。当程序运行要读入家谱结构时,只读入保存少量记录的文件并建立起树形结构。索引时,以树形中的少量信息为依据在另一个文件中找到全部的各人信息资料。 这样的好处主要有两点: 1. 由于树形结构是串行化记录于外存,一个节点记录多次,信息大量冗余,如果树形节点中保留全部信息,必将造成大量的空间浪费;只保存作为索引的少量信息在树形结构中,节约了空间。 2. 由于结构的精简,在家谱初始化时读入内存需要的时间相应减少,节约了装载时间。 这样做存在的问题: 每次执行修改,添加,删除,查询时都要直接访问外存来取得或写入数据。内外存访问上的巨大时间差的存在,使得进行这些操作相对来说并不显得很高效。 关于树形的结构: 在树形结构的选择上,根据实际中多子女的现象选择一般树,考虑到家谱中成员可能存在的不定成员数问题,抛弃了以数组为基础的一般树方案,决定用链表来实现。 树形结构的外存保存。为了提高效率,树形结构在程序初始化时由外存文件一次读入内存,此后不管插入还是修改,删除都不再对外存的树结构保存文件进行操作,只在内存中处理,程序退出时对外存树结构文件进行一次更新。也就是说,不管在程序运行中中对家谱结构进行多少种,多少次的操作,外存的树结构文件始终只会被程序访问两次。

C语言二叉树家谱管理系统

摘要 本文设计了一个对数据输入,输出,储存,查找的多功能软件,本文需要保存家族的基本信息,包括姓名及它们的关系,但是由于家族信息很巨大而且关系很复杂所以采用二叉树来表示它们的关系。并且具有保存文件的功能,以便下次直接使用先前存入的信息。家谱的功能是查询家族每个人的信息,并且输出它们的信息,还要具有查询输出功能。 本文采用二叉树来存取家族的基本信息,头结点作为父亲节点,他的左孩子为他的妻子,妻子结点的右孩子为他的孩子,依次存储每个家庭的信息。可以查找每个父亲的孩子和每个人的所有祖先。 关键词:二叉树家谱结点

目录 1 系统功能概述 (1) 1.1 系统功能 (1) 图2 成员二叉树功能模块图 (4) 1.2 总体功能模块 (4) 2 系统各功能模块的详细设计 (4) 2.1功能选择 (4) 2.2信息输入 (6) 2.3信息输出 (7) 2.4信息存盘 (7) 2.5信息清盘 (8) 2.6信息查询 (8) 2.7源程序 (10) 3设计结果与分析 (16) 3.1菜单函数功能测试 (16) 4.2输入功能函数测试 (16) 3.3输出功能函数测试 (17) 3.4清盘功能函数测试 (17) 3.5存盘功能函数测试 (17) 3.6查询功能函数测试 (18) 总结 (19) 参考文献 (20)

1 系统功能概述 1.1 系统功能 实现的方法是先定义一个二叉树,该二叉树上的每个结点由三个元素组成:姓名、指向它左孩子的指针、以及指向它右孩子的指针构成。该家谱管理系统将信息用文件的方法进行存储管理,再从文件中将成员信息以递归的方法创建二叉树。该输入成员信息的方法是将父亲结点存上父亲的信息,然后父亲结点的左孩子存上母亲的信息,母亲结点的右孩子存上孩子的信息。 (1)定义结构体 结构体为表示一个对象的不同属性提供了连贯一致的方法,结构体类型的说明从关键词struct开始,成员可以由各种数据类型混合构成,成员甚至还可以是数组或者其他类型的结构,但是,结构体中不能包含自身定义类型的成员。本文定义了两个结构体,分别是家族成员和二叉树结点的结构体。代码如下:typedef struct fnode { char father[NAMEWIDTH]; char wife[NAMEWIDTH]; char son[NAMEWIDTH]; }FamType; typedef struct tnode { char name[NAMEWIDTH]; struct tnode *lchild,*rchild; }BTree; (2) 二叉树的建立 二叉树的结点有三个域,数据域和两个指针域,数据域用来存放数据,两个指针域分别存放指向该结点左右孩子的指针。并且还有个root结点,称二叉树的根节点。代码如下: BTree *CreatBTree(char *root,FamType fam[],int n)

数据结构课程设计单链表

目录 1 选题背景 (1) 2 方案与论证 (2) 2.1 链表的概念和作用 (2) 2.3 算法的设计思想 (3) 2.4 相关图例 (4) 2.4.1 单链表的结点结构 (4) 2.4.2 算法流程图 (4) 3 实验结果 (5) 3.1 链表的建立 (5) 3.2 单链表的插入 (5) 3.3 单链表的输出 (6) 3.4 查找元素 (6) 3.5 单链表的删除 (7) 3.6 显示链表中的元素个数(计数) (8) 4 结果分析 (9) 4.1 单链表的结构 (9) 4.2 单链表的操作特点 (9) 4.2.1 顺链操作技术 (9) 4.2.2 指针保留技术 (9) 4.3 链表处理中的相关技术 (9) 5 设计体会及今后的改进意见 (10) 参考文献 (11) 附录代码: (12)

1 选题背景 陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代----信息时代,形成一个新产业----信息产业,产生一个新科学----计算机科学与技术,开创一种新的科研方法----计算方法,开辟一种新文化----计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。 数据结构和算法是计算机求解问题过程的两大基石。著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”。计算机科学就是“一种关于信息结构转换的科学”。信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证 2.1 链表的概念和作用 链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。 以“结点的序列”表示线性表称作线性链表(单链表) 单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。 因此,查找第 i 个数据元素的基本操作为:移动指针,比较 j 和 i 单链表 1、链接存储方法 链接方式存储的线性表简称为链表(Linked List)。 链表的具体存储表示为: ① 用一组任意的存储单元来存放线性表的结点(这组存储单元既可以是连续的,也可以是不连续的) ② 链表中结点的逻辑次序和物理次序不一定相同。为了能正确表示结点间的逻辑关系,在存储每个结点值的同时,还必须存储指示其后继结点的地址(或位置)信息(称为指针(pointer)或链(link)) 注意: 链式存储是最常用的存储方式之一,它不仅可用来表示线性表,而且可用来表示各种非线性的数据结构。 2、链表的结点结构 ┌───┬───┐ │data │next │ └───┴───┘ data域--存放结点值的数据域 next域--存放结点的直接后继的地址(位置)的指针域(链域) 注意: ①链表通过每个结点的链域将线性表的n个结点按其逻辑顺序链接在一起的。 ②每个结点只有一个链域的链表称为单链表(Single Linked List)。

家谱管理系统数据结构大作业

家谱管理系统 任务:实现具有下列功能的家谱管理系统功能要求: 1). 输入文件以存放最初家谱中各成员的信息,成员的信息中均应包含以下内容:姓名、出生日期、婚否、地址、健在否、死亡日期(若其已死亡),也可附加其它信息、但不是必需的2). 实现数据的存盘和读盘。 3). 以图形方式显示家谱。 4). 显示第n 代所有人的信息。 5). 按照姓名查询,输出成员信息(包括其本人、父亲、孩子的信息)。 6). 按照出生日期查询成员名单。 7). 输入两人姓名,确定其关系。 8). 某成员添加孩子。 9). 删除某成员(若其还有后代,则一并删除)。 10).修改某成员信息。 11).按出生日期对家谱中所有人排序。 12).打开一家谱时,提示当天生日的健在成员。要求:建立至少30 个成员的数据,以较为直观的方式显示结果,并提供文稿形式以便检查。界面要求:有合理的提示,每个功能可以设立菜单,根据提示,可以完成相关的功能要求。存储结构:学生自己根据系统功能要求自己设计,但是要求相关数据要存储在数据文件中。测试数据:要求使用1、全部合法数据; 2、局部非法数据。进行程序测试,以保证程序的稳定。测试数据及测试结果请在上交的资料中写明; */ #include #include #include #include #include"map.h" #define MAXN 100 #define MAXMEM 100 #define Elemtype char // 树 typedef struct BiTNode { int mark;// 标记 int level; char name[50];// 姓名 char birthday[50];// 生日 char address[MAXN];// 住址 bool marriage;// 婚否(true 表示结婚,false 表示没结婚) bool live;// 建在(true 表示活着,false 表示过世) bool sex;// 性别(true 表示男,false 表示女) char livemassage[50];// 死亡日期(如果其已经死亡) Elemtype data;// struct BiTNode *lc,*rc; }BiTNode,*BiTree; // 树的相关操作 char nametemp[50];// 姓名 char birthdaytemp[50];// 生日

linux内核数据结构之链表

linux内核数据结构之链表 1、前言 最近写代码需用到链表结构,正好公共库有关于链表的。第一眼看时,觉得有点新鲜,和我之前见到的链表结构不一样,只有前驱和后继指针,而没有数据域。后来看代码注释发现该代码来自linux内核,在linux 源代码下include/Lish.h下。这个链表具备通用性,使用非常方便。只需要在结构定义一个链表结构就可以使用。 2、链表介绍 链表是非常基本的数据结构,根据链个数分为单链表、双链表,根据是否循环分为单向链表和循环链表。通常定义定义链表结构如下: typedef struct node { ElemType data; //数据域 struct node *next; //指针域 }node, *list; 链表中包含数据域和指针域。链表通常包含一个头结点,不存放数据,方便链表操作。单向循环链表结构如下图所示: 双向循环链表结构如下图所示: 这样带数据域的链表降低了链表的通用性,不容易扩展。linux内核定义的链表结构不带数据域,只需要两个指针完成链表的操作。将链表节点加入数据结构,具备非常高的扩展性,通用性。链表结构定义如下所示: struct list_head { struct list_head *next, *prev; }; 链表结构如下所示: 需要用链表结构时,只需要在结构体中定义一个链表类型的数据即可。例如定义一个app_info链表, 1 typedef struct application_info

3uint32_t app_id; 4uint32_t up_flow; 5uint32_t down_flow; 6struct list_head app_info_head; //链表节点 7 }app_info; 定义一个app_info链表,app_info app_info_list;通过app_info_head进行链表操作。根据C语言指针操作,通过container_of和offsetof,可以根据app_info_head的地址找出app_info的起始地址,即一个完整ap_info结构的起始地址。可以参考:https://www.wendangku.net/doc/70447694.html,/Anker/p/3472271.html。 3、linux内核链表实现 内核实现的是双向循环链表,提供了链表操作的基本功能。 (1)初始化链表头结点 #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) static inline void INIT_LIST_HEAD(struct list_head *list) { list->next = list; list->prev = list; } LIST_HEAD宏创建一个链表头结点,并用LIST_HEAD_INIT宏对头结点进行赋值,使得头结点的前驱和后继指向自己。 INIT_LIST_HEAD函数对链表进行初始化,使得前驱和后继指针指针指向头结点。 (2)插入节点 1static inline void __list_add(struct list_head *new, 2struct list_head *prev, 3struct list_head *next) 4 { 5next->prev = new; 6new->next = next; 7new->prev = prev; 8prev->next = new; 9 } 10 11static inline void list_add(struct list_head *new, struct list_head *head) 12 { 13__list_add(new, head, head->next); 14 } 15 16static inline void list_add_tail(struct list_head *new, struct list_head *head) 17 { 18__list_add(new, head->prev, head);

相关文档
相关文档 最新文档