文档库 最新最全的文档下载
当前位置:文档库 › 雷诺实验实验报告

雷诺实验实验报告

雷诺实验实验报告
雷诺实验实验报告

大学教学实验报告水利水电学院水利类专业2011年5月 5 日

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对 流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这一现象说明了什 么?这一高度的物理意义是什么? 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观 察其的液位高度H / 并回答以下问题: (1) 各H / 值的物理意义是什么? 答:当测压管小孔转到正对流向时H / 值指该测压点的冲压头H / 冲;当测压管小孔转到垂直流向时H / 值指该测压点的静压头H / 静;两者之间的差值为动压头H / 动=H / 冲-H / 静。 (2) 对同一测压点比较H 与H / 各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H / 值均大于下游相邻测压点H / 值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H / 差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可 以看出2 2 u d l H f ? ?=λ与管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u = 22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和 全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145 .036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145.036004 16.0360042 2=???=???= ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???=ππd Vs u c 半 (m/s ) C 点全开时的流速: 393.0012.036004 16.0360042 2=???=???= ππd Vs u c 全 (m/s ) 实验二:雷诺实验 1. 根据雷诺实验测定的读数和观察流态现象,列举层流和湍流临界雷诺准数的计算过程,并提供数据完整的原始数据表。 答:根据观察流态,层流临界状态时流量为90( l/h )

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

雷诺实验(参考内容)

雷诺实验实验报告姓名:史亮 班级:9131011403 学号:913101140327

第4章 雷诺实验 4.1 实验目的 1) 观察层流、紊流的流态及流体由层流变紊流、紊流变层流时的水利特征。 2) 测定临界雷诺数,掌握园管流态判别准则。 3) 学习应用量纲分析法进行实验研究的方法,了解其实用意义。 4.2 实验装置 雷诺实验装置见图4.1。 图4.1 雷诺实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道、有色水及水管、实验台、流量调节阀等组成,有色水经有色水管注入实验管道中心,随管道中流动的水一起流动,观察有色水线形态判别流态。专用有色水可自行消色。 4.3 实验原理 流体流动存在层流和紊流两种不同的流态,二者的阻力性质不相同。当流量调节阀旋到一定位置后,实验管道内的水流以流速v 流动,观察有色水形态,如果有色水形态是稳定直线,则圆管内流态是层流,如果有色水完全散开,则圆管内流态是紊流。而定量判别流体的流态可依据雷诺数的大小来判定。经典雷诺实验得到的下临界值为2320,工程实际中可依据雷诺数是否小于2000来判定流动是否处于层流状态。圆管流动雷诺数: e R KQ d Q vd vd ==== ν πνμρ4 (4.1) 式中:ρ──流体密度,kg/cm 3; v ──流体在管道中的平均流速,cm/s ; d ──管道内径,cm ; μ──动力粘度,Pa ?s ;

ν──运动粘度,ρ μ ν= ,cm 2/s ; Q ──流量,cm 3/s ; K ──常数,ν πd K 4 = ,s/cm 3。 4.4 实验方法与步骤 1) 记录及计算有关常数。 管径 d = 1.37 cm, 水温 t = 14.8 ℃ 水的运动粘度 ν=2 000221.00337.0101775 .0t t ++= 0.01147 cm 2/s 常数 ν πd K 4 = = 81.03 s/cm 3 2) 观察两种流态。 滚动有色水塑料管上止水夹滚轮,使有色水流出,同时,打开水箱开关,使水箱充满水至溢流,待实验管道充满水后,反复开启流量调节阀,使管道内气泡排净后开始观察两种流态。关小流量调节阀,直到有色水成一直线 (接近直线时应微调后等待几分钟),此时,管内水流的流态是层流,之后逐渐开大调节阀,通过有色水线形态的变化观察层流转变到紊流的水力特征,当有色水完全散开时,管内水流的流态是紊流。再逐渐关小流量调节阀,观察由紊流转变为层流的水力特征。 3) 测定下临界雷诺数。 I 、 将调节阀打开,使管中水流呈紊流(有色水完全散开),之后关小调节阀,使流量减小。当有色水线摆动或略弯曲时应微调流量调节阀,且微调后应等待稳定几分钟,观察有色线是否为直线,当流量调节到使有色水在全管中刚好呈现出一条稳定的直线时,即为下临界状态;停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算下临界雷诺数。将数据填入表4.1中。 II 、 测完一组数据后重复上述步骤测定另外2组数据。测定下一组数据前一定要确保开始状态为紊流流态,且调节流量时只能逐步关小而不能回调。测定临界雷诺数必须在刚好呈现出一条稳定直线时测定。为了观察到临界状态,调节流量时幅度要小,每调节阀门一次,均须等待稳定时间几分钟。 4) 测定上临界雷诺数。 当流态是层流时,逐渐开启阀门,使管中水流由层流过度到紊流,当有色水线刚好完全散开时即为上临界状态。停止调节流量,用体积法或重量法测定此时的流量,测记水温,并计算上临界雷诺数。测定上临界雷诺数1-2次。 ★操作要领与注意事项:①、测定下临界雷诺数时,务必先增大流量,确保流态处于紊流状态。之后逐渐减小阀门开度,当有色线摆动时,应停止调节阀门开度,等待1分钟后,观察有色线形态,之后继续微调再等待1分钟,直到有色线刚好为直线时,才是紊流变到层流的下临界状态。注意等待时间要足够,微调幅度要小,否则,测不到临界值。②、只能单一方向调节阀门,不能回调,错过临界点必须重做。③、实验时,不要触碰实验台,以免流动受到外界扰动影响。 4.5 实验成果与分析 记录及计算数据至下表中: 实验次数 有色 水线 形态 体积法测流量 雷诺数R e 阀门开度 备注 水体积V (cm 3 ) 时间T (s ) 流量Q (cm 3 /s ) 1 稳定 900 45.26 19.89 1612 1547测下临界值测定下

雷诺实验

雷诺实验 一、实验目的 1、观察液体在圆管中流动时的层流和紊流现象,区分其流动特征及转换情况,加深对层流、紊流形态的感性认识和对雷诺数的理解。 2、测定颜色水在管中不同状态下的雷诺数Re 二、实验原理 液体的两种不同流态及其条件 液体在管道中流动,当流速不同时,会呈现两种不同的流态:层流和紊流。当流速较小时,管中液体质点以平行而互不混掺的方式作直线运动,这种流动形态称为层流;随着流速的增大,液体形成的直线逐渐变得颤动、弯曲,但仍能保持线状运动;流速继续增大,液体的流动开始变得没有固定的形态,液体质点互相混掺和碰撞,向四周扩散,使全管水流着色,这种流动形态成为紊流。它们的区别在于:流动过程中液体层之间是否发生混掺现象。 圆管中恒定流动的流态转化取决于雷诺数:νVd R e = 式中,V ——断面平均流速,m 3/s d ——圆管直径 ν——液体的运动粘滞系数,m 2/s 当Re <Re c (下临界雷诺数)时为层流状态,Re c =2300; 当Re >' c Re (上临界雷诺数)时为紊流状态,Re c 在4000~12000之间。 三、实验步骤 (1)认真阅读实验目的要求,实验原理和注意事项。 (2) 熟悉仪器,核对设备编号,记录管径,水温等有关常数。 (3) 打开供水开关,使水箱充水,待水箱溢流后,关闭阀门,检查测压管液

面是否齐平,若不平则须进行排气调平(多开关几次排走气泡)。 (4)观察流动状态:将阀门微微打开,待水流稳定后,打开装有颜色水的容 器开关,使颜色水注入水流。当颜色水在试验圆管中呈现一条稳定的直线时,此时管内即为层流流态。然后逐渐开大阀门,增大流量,这时颜色水开始颤动、弯曲,并逐渐扩散,当扩散至全管,水流紊乱到看不清流线时,这便是紊流状态。 (5)将阀门开至最大,然后逐步关小阀门,使管内流量逐步减少;每改变一 次流量,均需等待2~3min ,待水流平稳后,测定每次的流量、水温和1,2两段面间的水头损失(即测压管读数之差)。为提高实验精度、便于分析整理结果,实验次数尽可能多一些,要求改变流量不少于10次。 (6) 相反,将阀门由小开至最大,使管内;流速逐渐增大,重复上述步骤(5),也做10次以上。 (7) 查数据记录表是否有缺漏、是否有某个数据明显地不合理,若有此情 况,应进行补正。 (8)实验结束,按步骤(3)校核各测压水面是否处于同一水平面上,然后 关闭电源开关,关闭电源开关,拔掉电源插头。 四、实验数据及整理 1、记录、计算有关常数 实验管径d=Φ14mm 实验温度t= ℃ 运动粘度ν 2、整理、计算表 = cm 2/s

雷诺实验带数据处理

雷诺实验 一、实验目的 1. 观察层流和紊流的流态及其转换特征。 2. 通过临界雷诺数,掌握圆管流态判别准则。 3. 掌握误差分析在实验数据处理中的应用。 二、实验原理 1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有,如图1所示。 2、圆管中恒定流动的流态转化取决于雷诺数。雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则 4Re Q D πυ = 式中 Q ——流体断面平均流量 , L s D ——圆管直径 , mm υ——流体的运动粘度 , 2m 在本实验中,流体是水。水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算 36((0.58510(T 12)0.03361)(T 12) 1.2350)10υ--=??--?-+? 式中 υ——水在t C ?时的运动粘度,2m s ; T ——水的温度,C ?。 3、判别流体流动状态的关键因素是临界速度。临界速度随流体的粘度、密度以及流道的尺寸不同而改变。流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。 4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应

于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。而且极不稳定,只要稍有干扰,流态即发生变化。上临界雷诺数常随实验环境、流动的起始状态不同有所不同。因此,上临界雷诺数在工程技术中没有实用意义。有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。通常均以它作为判别流动状态的准则,即 Re < 2320 时,层流 Re > 2320 时,紊流 该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。 5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。针对圆管中定常流动的情况,容易理解:减小 D ,减小 ,加大v 三种途径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。 6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比,如图2所示。 7 图1 图2 三种流态曲线

雷诺实验实验报告

实验一雷诺实验 一、实验目的 1、观察流体流动时各种流动型态; 2、观察层流状态下管路中流体速度分布状态; 3、测定流动型态与雷诺数Re之间的关系及临界雷诺数值。 二、实验原理概述 流体在流动过程中有两种截然不同的流动状态,即层流和湍流。它取决于流体流动时雷诺数Re值的大小。 雷诺数:Re=duρ/μ 式中:d-管子内径,m u-流体流速,m/s ρ-流体密度,kg/m3 μ-流体粘度,kg/(m·s) 实验证明,流体在直管内流动时,当Re≤2000时属层流;Re≤4000时属湍流;当Re在两者之间时,可能为层流,也可能为湍流。 流体于某一温度下在某一管径的圆管内流动时,Re值只与流速有关。本实验中,水在一定管径的水平或垂直管内流动,若改变流速,即可观察到流体的流动型态及其变化情况,并可确定层流与湍流的临界雷诺数值。 三、装置和流程 本实验装置和流程图如右图。 水由高位槽1,流径管2,阀5,流量 计6,然后排入地沟。示踪物(墨水)由墨水 瓶3经阀4、管2至地沟。 其中,1为水槽 2为玻璃管 3为墨水瓶 4、5为阀 6为转子流量计

四、操作步骤 1、打开水管阀门 2、慢慢打开调节阀5,使水徐徐流过玻璃管 3、打开墨水阀 4、微调阀5,使墨水成一条稳定的直线,并记录流量计的读数。 5、逐渐加大水量,观察玻璃管内水流状态,并记录墨水线开始波动以及墨水 与清水全部混合时的流量计读数。 6、再将水量由大变小,重复以上观察,并记录各转折点处的流量计读数。 7、先关闭阀4、5,使玻璃管内的水停止流动。再开墨水阀,让墨水流出1~ 2cm距离再关闭阀4。 8、慢慢打开阀5,使管内流体作层流流动,可观察到此时的速度分布曲线呈 抛物线状态。 五、实验数据记录和处理 表1 雷诺实验数据记录

流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室 静水压强实验

1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

流体力学实验思考题解答(全)

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

雷诺实验指导

实验一 雷诺实验 一、实验目的 1、观察液体流动时的层流和紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。 2、测定管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。 二、实验原理 1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 液体运动的层流和紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断: Re=Vd/ν Re 称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。 在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。 2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知: f 2 222221111h g 2V a p z g 2V a p z ++γ+=+γ+ 因为管径不变V 1=V 2 ∴=γ +-γ+ =)p z ()p z (h 2211f △h 所以,压差计两测压管水面高差△h 即为1-1和1-2两断面间的沿程水头损失,用重量 法或体积法测出流量,并由实测的流量值求得断面平均流速A Q V = ,作为lgh f 和lgv 关系曲线,如下图所示,曲线上EC 段和BD 段均可用直线关系式表示,由斜截式方程得: lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线的斜率 式中:1 2f f v l g v lg h lg h lg tg m 1 2 --= θ= 实验结果表明EC=1,θ=45°,说明沿程水头损失与流速的一次方成正比例关系,为层流区。BD 段为紊流区,沿程水头损失与流速的1.75~2次方成比例,即m=1.75~2.0,其中AB 段即为层流向紊流转变的过渡区,BC 段为紊流向层流转变的过渡区,C 点为紊流向层流转变的临界点,C 点所对应流速为下临界流速,C 点所对应的雷诺数为下监界雷诺数。A 点为层流向紊流转变的临界点,A 点所对应流速为上临界流速,A 点所对应的雷诺数为上临界雷诺数。

雷诺实验及其数据处理

雷诺实验 一、实验目的要求 1.观察层流、紊流的流态及其转捩特征; 2.测定临界雷诺数,掌握圆管流态判别准则; 3.学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。 二、实验装置 实验装置如下图所示:

自循环雷诺实验装置图 1 自循环供水器 2 实验台 3 可控硅无级调速器 4 恒压水箱 5 有色水水管 6 稳水隔板 7 溢流板8 实验管道9 实验流量调节阀 供水流量由无级调速器调控使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。本恒压水箱还设有多道稳水隔板,可使稳水时间缩短到3~5分钟。有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。为防止自循环水污染,有色指示水采用自行消色的专用色水。 三、实验原理

流体在管道中流动存在两种流动状态,即层流与湍流。从层流过渡到湍流状态称为流动的转捩,管中流态取决于雷诺数的大小,原因在于雷诺数具有十分明确的物理意义即惯性力与粘性力之比。当雷诺数较小时,管中为层流,当雷诺数较大时,管中为湍流。转捩所对应的雷诺数称为临界雷诺数。由于实验过程中水箱中的水位稳定,管径、水的密度与粘性系数不变,因此可用改变管中流速的办法改变雷诺数。 雷诺数 KQ d Q vd R e === ν πν4 ; K =νπd 4 四、实验方法与步骤 1.测记实验的有关常数。 2.观察两种流态。 打开开关3使水箱充水至溢流水位。经稳定后,微微开启调节阀9,并注入颜色水于实验管内使颜色水流成一直线。通过颜色水质点的运动观察管内水流的层流流态。然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征。待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。 3.测定下临界雷诺数。 ① 将调节阀打开,使管中呈完全紊流。再逐步关小调节阀使流量减小。当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态; ② 待管中出现临界状态时,用重量法测定流量; ③ 根据所测流量计算下临界雷诺数,并与公认值(2320)比较。偏离过

实验四 雷诺实验

实验四 流动状态实验----雷诺实验 一、实验目的 1. 观察层流和紊流的流态及其转换特征; 2. 通过临界雷诺数,掌握圆管流态判别准则; 3. 学习在流体力学中应用无量纲参数进行试验研究的方法,并了解其使用意义。 二、实验原理 1、实际流体的流动会呈现出两种不同的型态:层流和紊流,它们的区别在于:流动过程中流体层之间是否发生混掺现象。在紊流流动中存在随机变化的脉动量,而在层流流动中则没有,如图1所示。 2、圆管中恒定流动的流态转化取决于雷诺数。雷诺根据大量实验资料,将影响流体流动状态的因素归纳成一个无因次数,称为雷诺数Re ,作为判别流体流动状态的准则 Re d υγ = 式中 υ——流体断面平均流速 , s cm d ——圆管直径 , cm γ——流体的运动粘度 , s cm 2 在本实验中,流体是水。水的运动粘度与温度的关系可用泊肃叶和斯托克斯提出的经验公式计算 2 0.0178 10.03370.000221t t γ= ++ 式中 γ——水在t C ?时的运动粘度,cm 2; t ——水的温度,C ?。 3、判别流体流动状态的关键因素是临界速度。临界速度随流体的粘度、密度以及流道的尺寸不同而改变。流体从层流到紊流的过渡时的速度称为上临界流速,从紊流到层流的过渡时的速度为下临界流速。 4、圆管中定常流动的流态发生转化时对应的雷诺数称为临界雷诺数,对应

于上、下临界速度的雷诺数,称为上临界雷诺数和下临界雷诺数。上临界雷诺数表示超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取值范围。而且极不稳定,只要稍有干扰,流态即发生变化。上临界雷诺数常随实验环境、流动的起始状态不同有所不同。因此,上临界雷诺数在工程技术中没有实用意义。有实际意义的是下临界雷诺数,它表示低于此雷诺数的流动必为层流,有确定的取值。通常均以它作为判别流动状态的准则,即 Re < 2320 时,层流 Re > 2320 时,紊流 该值是圆形光滑管或近于光滑管的数值,工程实际中一般取Re = 2000。 5、实际流体的流动之所以会呈现出两种不同的型态是扰动因素与粘性稳定作用之间对比和抗衡的结果。针对圆管中定常流动的情况,容易理解:减小 d ,减小v ,加大v 三种途径都是有利于流动稳定的。综合起来看,小雷诺数流动趋于稳定,而大雷诺数流动稳定性差,容易发生紊流现象。 6、由于两种流态的流场结构和动力特性存在很大的区别,对它们加以判别并分别讨论是十分必要的。圆管中恒定流动的流态为层流时,沿程水头损失与平均流速成正比,而紊流时则与平均流速的1.75~2.0次方成正比,如图2所示。 7 图1 图2 三种流态曲线

【免费下载】 土木工程流体力学实验报告答案

实验一 管路沿程阻力系数测定实验1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线):如图示O—O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设,,由能量方程可得21v v =∑=0j h ???? ??+-???? ??+=-γγ221121p Z p Z h f 1112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-=γγ 1 12226.126.12H h h H p +?+?+-=γ ∴()()1 22211216.126.12h h H Z H Z h f ?+?++-+=-) (6.1221h h ?+?=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。2.据实测m 值判别本实验的流动型态和流区。 ~曲线的斜率m=1.0~1.8,即与成正比,表明流动为层流 f h l g v lg f h 8.10.1-v (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。接管口处理高中资料试卷电保护进行整核对定值试卷破坏范围,或者对某

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2% 误差时,可产 生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

雷诺实验

雷诺实验 一、理论概述 英国物理学家雷诺在1883 年发表的论著中,不仅通过实验确定了层流和湍流两种流动状态,而且测定了流动损失与这两种流动状态的关系。雷诺实验装置如图1 所示。 当管2 中的水流速度较低时,如拧开颜色 水瓶4 下的阀门,便可看到一条明晰的细小的 着色流束,此流束不与周围的水相混,如图 2(a)所示。如果将细管5 的出口移至管2 进口 的其它位置,看到的仍然是一条明晰的细小的 着色流束。由此可以判断,管2 内的整个流场 呈一簇互相平行的流线,这种流动状态称为层 流(或片流)。当管2 内的流速逐渐增大时, 图1 雷诺实验装置 开始着色流束仍呈清晰的细线,当流速增大到 1- 水箱;2-玻璃管;3-阀门; 一定数值,着色流束开始振荡,处于不稳定状4-颜色水瓶;5-细管;6-量筒 态,如图2(b)所示。如果流速在稍增加,振荡 的流束便会突然破裂,着色流束在进口段的一定 距离内完全消失,而与周围的流体相混,颜 色扩散至整个玻璃管内,如图2(c)所示。这时流 体质点作复杂的无规则的运动,这种流动状 态称为湍流(或湍流)。由层流过渡到湍流的速度 极限值成为上临界速度,以v 表示之。继续增大流速,将进一步增加流动的紊 乱程度。如果管内流速自高于上临界速度逐渐降 低,则会发现,当流速降低到比上临界流速更低 的下临界速度v时,原先处于湍流状态的流动便 会稳定地转变为层流状态,着色流束重新成为一 条明晰的细小的直线。 由雷诺实验可以看出,粘性流 体存在两种流动状态-层流与湍流。当流速超过上临界速度v'时,(c)湍流层流转变为湍流;当流速低于下临界速度v时,湍流转变为层流;当流速介于上、下临界速度之间时,流体的流动状态可能是层流也可能是湍流,与实验的起始状态和有无扰动等因

实验一 雷诺实验

学号姓名 实验一雷诺实验 一、基本原理 雷诺(Reynolds)用实验方法研究流体流动时,发现影响流动类型的因素除流速u外,尚有管径(或当量管径)d,流体的密度ρ及粘度μ,并且由此四个物理量组成的无因次数群Re=duρ/μ的值是判定流体流动类型的一个标准。 Re<2000~2300时为层流 Re>4000时为湍流 2000

因此确定了温度及流量,即可唯一的确定雷诺数。 数据记录: 五、注意事项 1、雷诺实验要求减少外界干扰,严格要求时应在有避免振动设施的房间内进行,由于条件不具备演示实验也可以在一般房间内进行,因为外界干扰及管子粗细不均匀等原因,层流的雷诺数上界到不了2300,只能到1600左右。 2、层流时红墨水成一线流下,不与水相混。 3、湍流时红墨水与水混旋,分不出界限。

相关文档