文档库 最新最全的文档下载
当前位置:文档库 › 水的粘滞系数表(1-40℃)

水的粘滞系数表(1-40℃)

水的粘滞系数表(1-40℃)

水的粘滞系数表(1-40℃)

℃μ

1 1.7313

2 1.6728

3 1.6191

4 1.5674

5 1.5188

6 1.4728

7 1.4284

8 1.3860

9 1.3462

10 1.3077

11 1.2713

12 1.2363

13 1.2028

14 1.1709

15 1.1404

16 1.1111

17 1.0828

18 1.0559

19 1.0299

20 1.0050

210.9810

220.9579

230.9358

240.9142

250.8937

260.8737

270.8545

280.8360

290.8180

300.8007

310.7840

320.7679

330.7523

340.7371

350.7225

360.7085

370.6947

380.6814

390.6685

400.6560

表3.2不同水温的粘滞系数(1-40℃)

海洋调查规范1975

粘滞系数表

实验二液体黏度测量 一、实验目的 掌握用奥氏黏度计测量液体黏度的原理和方法。 二、实验器材 奥氏黏度计、支架、玻璃水槽、温度计,秒表、量筒、吸球、酒精、蒸馏水。 图2–1 黏度测量的实验装置 三、仪器描述 用奥氏黏度计测量液体黏度的装置如图2–1所示,U 形玻璃管为奥氏黏度计,a 管为粗管,下端有一玻璃泡b ,c 为毛细管。上端有玻璃炮 d ,d的上下各有一刻痕m 和 n ,式(2–3)中的体积V0就是指两刻痕间的体积,G为铅锤,T 为温度计, A 槽内盛满。 四、实验原理 根据流体力学知识,可以证明泊肃叶公式在非分水平均匀圆管中的形式为 (2–1) 式中Q为流量,、分别为流体的密度和黏度系数,g为重力加速度,R为管半径,△P,△h分别是长度为L的管两端的压强差和高度差,用奥氏黏度计测量液体黏度系数时,它的毛细管两端的压强近似等于大气压,所以其压强差

△P0,式(2–1)可写成 (2–2) 本实验用比较法测量液体的黏度系数,在时间t0内,已知黏度系数为,密度为0的液体(称为标准液体)流过黏度计毛细管的体积为 (2–3) 同样实验条件下,让与V0同体积的己知密度为,黏度系数为的待测液体流过黏度计毛细管,所需时间为 t , 则 (2–4) 由式(2–3)和(2–4)可得 (2–5) 式(2–5)为用奥氏黏度计测量液体黏度系数的理论依据,在实验中测出时间 t0、t和对应温度T0、 T ,由表2–3 、表2–4、表2–5分别查出0、0、,根据式(2–5)求出待测液体的黏度系数。 五、实验步骤 1.实验前先将奥氏黏度计用蒸馏水洗干净,再用酒精冲洗。 2.用量筒取一定量(6ml)的酒精,从 a 管口装入黏度计中,装好酒精的黏度计放入插有温度计的恒温水槽中,黏度计的上部玻璃泡 d 应完全浸入水中.并固定在支架上,调整黏度计使之处于垂直状态

落球法测量液体粘滞系数

落球法测量液体粘滞系数 Revised by BLUE on the afternoon of December 12,2020.

落球法测量液体粘滞系数 各种实际液体具有不同程度的粘滞性,当液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。 液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 【实验目的】 1.学习用激光光电传感器测量时间和物体运动速度的实验方法 2.用斯托克斯公式采用落球法测量油的粘滞系数(粘度) 3.观测落球法测量液体粘滞系数的实验条件是否满足,必要时进行修正。【实验原理】 1.当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V是小球体积,ρ是液体mg(m为小球质量)、液体作用于小球的浮力gV 密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 = 6 rv Fπη (1)

粘滞系数

水力学教学辅导 第1章绪论 【教学基本要求】 1、明确水力学课程的性质和任务。 2、了解液体的基本特征,理解连续介质和理想液体的概念和在水力学研究中的作用。 3、理解液体5个主要物理性质的特征和度量方法,重点掌握液体的重力特性、惯性、粘滞性,包括牛顿内摩擦定律及其适用条件。了解什么情况下需要考虑液体的可压缩性和表面张力特性。 4、了解质量力、表面力的定义,理解单位面积表面力(压强、切应力)和单位质量力的物理意义。 5、了解量纲的概念,能正确确定各种物理量的量纲。 【学习重点】 1、连续介质和理想液体的概念。 2、液体的基本特征和主要物理性质,特别是液体的粘滞性和牛顿内摩擦定律及其应用条件。 3、作用在液体上的两种力。 【内容提要和学习指导】 1.1水力学课程的性质和任务 水力学是水利水电工程专业重要的技术基础课,它的任务是研究以水为代表的液体的平衡和机械运动的规律,并依据这些规律来解决工程中的实际问题,为今后学习专业课程和从事专业技术工作打下良好的基础。 1.2 连续介质的概念 连续介质是水力学研究中常用的基本概念。我们在学习普通物理时都知道,世界上一切物质都是由分子构成的。从微观上而言,组成物体的分子都是离散的,其运动状态是随机的呈不均匀状态。这给运用高等数学微积分方法来分析讨论液体的运动带来了很大的困难,因为微积分运算的必要条件是连续性。从宏观上而言,我们所研究的是由液体质点组成的液体的宏观运动。液体质点是由大量分子组成的在微观上充分大而宏观上是非常小的几何点的液体微团,它呈现的运动是由组成质点的大量分子运动的平均,因而宏观运动是均匀而连续的。这样我们就可以提出下列假设:即液体所占据的空间是由液体质点连续地无空隙地充满的,组成液体的质点运动的物理量是连续变化的连续函数。这就是连续介质的概念。这样水力学研究的液体运动就是连续介质的连续运动,可以运用微积分来分析液体运动和建立运动方程,给水力学研究带来极大的方便。

用毛细管法测定液体的粘滞系数

用毛细管法测定液体的粘滞系数 自然界中,一切实际流体(气体、液体)都具有一定的粘 滞性,这可以由流体抗拒形变的内摩擦而显示出来。众所周 知,作用于静止流体及运动中的所谓理想流体任一表面上的 力只有法向力(即正压力);但是对于实际流体而言,当相邻 两层流体各以不同的定向速度运动时,由于流体分子的相互 作用,就会产生平行于接触面的切向力。如图26-1所示, 运动快的流层对运动慢的流层以拉力f ',运动慢的流层则对运动快的流层施以阻力f ,这一对力被称为内摩擦力,或粘滞力。 实验表明,对于给定的流体,作用于接触面积为ds 的相邻两流层上的粘滞力f ,系与垂直于s d 方向上的速度梯度y u d /d 以及接触面积s d 呈正比,其方向与运动方向相反,即: s y u f d d d ?=η 式就是决定流体内摩擦力大小的牛顿粘滞定律。其中,比例系数η是由流体本身性质决定的、反应流体粘滞性大小的物理量,称为粘滞系数(又称动力粘度,简称粘度),其单位为:帕·秒(s Pa ?)。s Pa 1?相当于速度梯度为1s 1-时,作用在2m 1接触面积上的力为N 1的流体所具有的粘度,即: 2m s N 1s Pa 1-??=?。 不同流体具有不同的粘度,同一种流体在不同温度下的粘度也很不相同,而且流体的粘度还与压强有关,但不甚显著。气体的粘度很小,且于2/1T 成比例。由于液体分子间距比气体小千倍以上,层间分子的相互作用力成为产生内摩擦的主要原因,所以其粘度比气体大4210~10倍。且其粘度随温度的升高几乎按指数规律地减小,有经验公式: ()c b a -+=θηθ 其中,θη为流体在C θ时的粘度,c b a ,,为因液体种类或温度范围而异的常数。对水而言:当252.43,60070.0==b a 及5423.1=c 时,温度在C 100~C 0 范围内,与精确 实验结果的误差不大于%40.0。因此, 式可以用来验证我们的实验结果。 测定流体的粘度可以有很多种方法,诸如:(1)用各种毛细管粘滞计、 (2)旋

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定 一、实验目的: 1.用落球法测量不同温度下蓖麻油的粘滞系数; 2.了解PID温度控制的原理; 3.练习用秒表测量时间,用螺旋测微器测量直径。 二、实验器材: 变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。 三、实验原理: 当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。 对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。 测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。 粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。例如对于蓖麻油,在室温附近温度每改变1?C,粘滞系数值改变约10%。因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。 1.落球法测定液体的粘滞系数 一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式: (1) (1)式中d为小球直径。由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有: (2) (2)式中ρ为小球密度,ρ0为液体密度。由(2)式可解出粘滞系数η的表达式: (3) 本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:

奥氏粘度计测量液体粘滞系数

奥氏粘度计测量液体粘 滞系数 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

221 10ρρηηt t x =奥氏粘度计测量液体粘滞系数 【实验目的】 掌握奥氏粘度计测定液体粘滞系数的原理和方法。 【实验仪器】 奥氏粘度计、量筒、烧杯、秒表、移液管、洗耳球、温度计、甘油、水等。 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?= (1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘 滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、 L t VL P R 84?=πη (2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘 度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液 体和一种待测粘滞系数的液体,设它们的粘滞系数分别为0η和x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥 氏粘度计的毛细管DB ,分别测出他们所需的时间1t 和2t ,两种液 体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη (3) h g VL t R x ?=22 48ρπη (4) 式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式和(4)式可得: 01122ηρρη?=t t x (5) 如测出等量液体流经DB 的时间1t 和2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。

液体粘滞系数

液体粘滞系数 一、实验内容: 1.用天平测小球的质量; 2.用螺旋测微计测量小球的直径,用游标卡尺和米尺测量玻璃管的直径及刻度线间的长度; 3.用密度计测量蓖麻油的密度。 二、实验步骤: (一)清点主要仪器 1.玻璃圆筒 ( ) 2.温度计 ( ) 3.密度计 ( ) 4.螺旋测微计 ( ) 5.游标卡尺 ( ) 6.米尺 ( ) 7.落球 ( ) 8.秒表 ( ) 9.镊子 ( ) 10.待测液 (蓖麻油 ) (二)测量 1.调节粘度仪底板上的可调螺钉,使玻璃筒轴线沿铅直方向; 2.用游标卡尺测量玻璃筒内直径R ,在圆筒油面下面7~8cm 和筒底上方7~8cm 处作标记线,用米尺测出两标记线间的距离L ; 3.用螺旋测微计测出10个小球的直径取平均值,同时测10个小球质量,求出1个球的质量; 4.用镊子夹起小球在油面中心处放下,用秒表测出小球通过两标记线的距离S 时所需的时间t ,将数据填入表①中; 5.实验前后分别测量一次油液温度,温度计的液泡应在两标记线的正中。 (三)数据表格 量筒内径 R = cm , 蓖麻油温度T = ℃ , T 末= ℃ 小球质量 10m = g , 蓖麻油密度 ρ= g/cm 3 标记线间距 L = cm , 油深 H = cm 表① (四)请老师检查数据签字 (五)请实验技术人员检查仪器签字 (六)清理仪器 (七)数据处理要求 1.计算出η及误差; 2.计算误差时可按以下进行: ()()t L d V m rv g V m 266πρπρη-=-= ∵ V =334r π , Δ(V ρ) =V ρ(ρ ρ?+?r r 3 )

∴ d d t t L L V m V m ?+?+?+-?+?=?ρρηη)( 式中V 为小球体积,v 为小球速度。

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度和温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力、浮力、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ是液体的密度,ρ是小球的密度,g 是当地的重力加速度。 可见,只要测得,即可由(2)式得到液体的粘滞系数。但是注意,上述推导包括(1)、 (2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方法的设计,这些条件大多数都可以满足或近似满足(结合本实验所用仪器和实验步骤,思考

落球法测量液体的粘滞系数

落球法测量液体的粘滞 系数 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

落球法测量液体的粘滞系数 一、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法。 二、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V为小球体积,ρ为液体密度)和粘滞阻力F(其方mg、液体作用于小球的浮力gV 向于小球运动方向相反)。如果液体无限深广,在小球下落速度v较小的情况下,有: =(1) 6 rv Fπη s Pa?,r为小球的半径。 1 2 3 4)媒质不会在球面上滑过; 5)球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大,但是随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即: 于是小球开始作匀速直线运动,由上式可得:

令小球的直径为d ,并用ρπ 36d m = ,t l v =,2 d r =代入上式得: (2) 其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正。测量表达式为: (3) 其中D 为容器的内径,H 为液柱高度。 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 1) 调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点。 2) 将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线。 3) 收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变。 4) 在实验架上放上钢球导管。小球用酒精清洗干净,并用滤纸吸干。 5) 将小球放入钢球导管,看其能否阻挡光线,如不能,则适当调整激光器位置。 2. 用温度计测量油温,在全部小球下落完后再测一次油温,取其平均值。 3. 测量上下两激光束之间的距离l 。 4. 将小球放入钢球导管,当小球落下,阻挡上面的红色激光束,秒表开始记时,到小球落到阻挡下面的红色激光束时,停止记时,读出下落时间,重复6次。 5. 计算蓖麻油的粘滞系数。 五、数据记录和数据处理 表格一

液体粘滞系数的测量

液体粘滞系数的测量 一、实验目的 根据斯托克斯公式用落球法测定洗洁精的粘滞系数 二、实验原理 当半径为r 的光滑圆球,以速度v 在均匀的无限深广的液体中运动时,若速度不大,球也很小,在液体中不产生涡流的情况下,斯托克斯指出,球在液体中所受的阻力F 为 vr F πη6= (3-1) 式中η为液体的粘度,此式称为斯托克斯公式,从上式可知,阻力F 的大小和物体的运动速度成正比例 当质量为m ,体积为v 的小球在密度为ρ的液体中下落时,作用在小球上的力有三个,即: (1)重力mg (2)液体的浮力(3)液体的粘滞阻力vr πη6。 这三个力都作用在同一铅直线上,重力向下,浮力和阻力向上。球刚开始下落时,速度v 很小,阻力不大,小球做加速下降。随着速度的增加,阻力逐渐增大,速度达一定值时,阻力和浮力之和将等于重力,那时物体运动的加速度等于零,小球开始匀速下落,此式的速度成为终极速度。由此式可得 rv g v m πρη6)-=( 将34 3r v π=,得 g rv r m πρπη6343-= (3-2) 由于液体在容器中,而不满足无限深、广的条件,这时实际测得的速度0v 和上述

式中的理想条件下的速度v 之间存在如下关系: ??? ??+??? ? ?+=h r R r v v 3.314.210 (3-3) 式中R 为盛液体圆筒的内半径,h 为筒体中液体的深度,将(3-3)代入式(3-2),得出 ??? ??+??? ? ?+??? ??-=h r R r rv g r m 3.314.2163403πρπη (3-4) 其次,斯托克斯公式是假设在无涡流的理想状态下导出的,实际小球下落时不能使这样理想状态,因此还要进行修正。已知在这时的雷诺数Re 为 ηρ 02Re rv = (3-5) 当雷诺数不甚大(一般在Re<10)时,斯托克斯公式修正为 1 2Re 108019Re 10316-?? ? ??-+=ηπv F (3-6) 则考虑此项修正后的粘度测得值0η等于 1 20Re 108019Re 1631-?? ? ??-+=ηη (3-7) 实验时,先由式(3-4)求出近似值η,用此η代入式(3-5)求出Re ,最后由式(3-6)求出最值0η。若Re 值很大时,粘滞力F 与粘质系数无关,而与液体密度有关;同时,F 不在v 、r 的一次方成正比,而是与v 、r 的平方成正比。 三、实验器材与器具 玻璃圆筒,停表,螺旋测微计,游标卡尺,物理天平,密度计,温度计,小球,镊子,漏斗,待测液体(洗洁精) 四、实验内容 实验装置如图所示,在圆筒油面下方7~8cm 和筒底上方7~8cm 处,分别设标记1N 、2N ,对1N 、2N 间距离l ,油筒半径R ,油的深度h ,选取适当仪器 会测量待测油的密度ρ用密度计去测量。 F f P L H D

水的粘度计算表-水的动力粘度计算公式

水的黏度表(0?40 C)

水的物理性质

F3 Viscosity decreases with p ressure (at temp eratures below 33 Water's p ressure-viscosity behavior [534] can be explained by the in creased p ressure (up to about 150 MPa) caus ing deformatio n, so reduci ng the stre ngth of the hydroge n-bon ded n etwork, which is also p artially res pon sible for the viscosity. This reduct ion in cohesivity more tha n compen sates for the reduced void volume. It is thus a direct con seque nee of the bala nee betwee n hydroge n bonding effects and the van der Waals dis persion forces [558] in water; hydroge n bonding p revaili ng at lower temp eratures and p ressures. At higher p ressures (and den sities), the bala nee betwee n hydroge n bonding effects and the van der Waals dis persi on forces is tipped in favor of the dis persion forces and the rema ining hydroge n bonds are stron ger due Viscous flow occurs by molecules movi ng through the voids that exist betwee n them. As the p ressure in creases, the volume decreases and the volume of these voids reduces, so no rmally in creas ing p ressure in creases the viscosity. |:| k -二 _ r 1 3ire S C 去 * . i i screr - 丁" \ . / . 一 '气:r J J: V .; r "舄 ■ 3 口二 K n PV ■ ■ L T 三 n 曲 ? ■ 5 M r 丐 町寸 -; J 百* " T N ; 【 I bl ■呻口 " 口寸津 a “ d c i 0 290 八 rao 800 i woo Pressure, MPa g 亠 C) Co? 4 — □ ] J %一 M J s 」气1 □ u 古 气 a 15 ?” ”〕 阳 "1 ■ \ ■ ID % ;: s' ¥ 口『 屮 n ◎ 9 r 奇 * =' f f- ::[ 丄 备 IT 记 |B - 3 D ■i 电- 'u O 丰759勺; 】I -一 11 L . P

落球法测定液体的粘滞系数

落球法测定液体的粘滞系数 目录 实验目的 (2) 实验仪器 (2) 实验原理 (2) 实验装置 (4) 实验内容 (5) 实验数据及处理 (5) 观察与思考 (12) 实验总结 (13)

落球法测定液体的粘滞系数 实验目的 1、用落球法测定液体的粘滞系数。 2、进一步熟悉基本测量工具的使用。 实验仪器 FD —VM —II型落球法液体粘滞系数测定仪(激光光电传感器计时)、甘油、游标卡尺、温度计、小刚球、小磁钢、螺旋测微器、液体密度计。 实验原理 各种实际流体在流动时,平行于流动方向的内部各层速度是不同的,于是作相对运动的各层流体间存在着粘 滞性摩擦阻力,简称内摩擦力。牛顿给出了表征内摩擦力f的定律:f A——,即f的大小正比于流层移动的 dx 速度梯度和流层间的接触面积,比例系数叫做粘滞系数,它是表征流体相邻流层内摩擦力大小的一个物理量。它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数n称为粘度,它是表征液体粘滞性强弱的重要参数,液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 物体的粘滞系数值因温度不同而变化很大,因而没有注明温度的任何流体的粘滞系数值是毫无意义

粘滞系数

实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3. 学习用半导体激光传感器测量小球在液体中下落的时间 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3-= (1) 式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中作自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力ρgV 、浮力ρ0gV 、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0。经计算可得液体的粘滞系数为 030=--vd Vg Vg πηρρ (2) 小球的体积 3 6 334d r V ππ== (3) 把(3)式代入(2)得 2 018)(v gd ρρη-= (4) 由于(2)式只适用于无限广的液体中,实验时待测液体往往放在半径为R (R>>r )的有限大小的圆柱形玻璃管中,故考虑器壁对小球运动的影响(2)式修正为 )1(18)(02 0D d K v gd +-= ρρη (5) 式中D 为圆筒的直径,d 为小球的直径。 ρ0是液体的密度,ρ是小球的密度,g 是当地的重力加速度。K 为修正系数,一般取2.4。v 0为收尾速度。可以通过测量小球经过距离S 所用的时间t 得到,即t s v = 0则 (5) 式可以改写为 ) 1(18)(2 0D K s tgd +-=ρρη (6) 测定(6)式中的各量,就可求出η。 实验仪器 本实验所用仪器有VM-1落球法液体粘滞系数测定仪与VM-2落球法液体粘滞系数

南昌大学液体粘滞系数的测定实验报告

实验三 液体粘滞系数的测定 【实验目的】 1.加深对泊肃叶公式的理解; 2.掌握用间接比较法测定液体粘滞系数的初步技能。 【实验仪器】 1.奥氏粘度计 2.铁架及试管夹 3. 秒表 4.温度计 5.量筒 6.小烧杯1个 7.洗耳球 【实验材料】 蒸馏水50ml 酒精25ml 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?=(1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、L 各量,则可求得液体的粘滞系数 t VL P R 84?= πη(2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液体和一种待测粘滞系数的液体,设它们的粘滞系数分别为0η和x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB ,分别测出他们所需的时间1t 和2t ,两种液体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη(3) h g VL t R x ?= 22 48ρπη(4)

221 10ρρηηt t x =式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式和(4)式可得: 0 1 122ηρρη?=t t x (5) 如测出等量液体流经DB 的时间1t 和2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。 (2) 用移液管经粘度计粗管端注入6毫升水。用洗耳球将水吸入细管刻度C 上。 (3) 松开洗耳球,液面下降,同时启动秒表,在液面经过刻度D 时停止秒表,记下时间t 。 (4) 重复步骤(2)、(3)测量7次,取1t 平均值。 (5) 取6毫升的酒精作同样实验,求出时间2t 的平均值。 【数据记录与处理】 奥氏粘度计测酒精的粘滞系数数据表 室温T = 27℃ ρ水=0.99654×103kg/m 3ρ酒=0.78352×103kg/m 3 η水=0.855×10-3pa/s η标=1.05×10-3pa/s 计算得出η实=1.057×10-3pa/s 相对误差E=(η实-η标)/η标×100%=0.67% 【实验误差分析】 1.用洗耳球将液体吸至刻度C 处时不能做到恰好到位,导致两液体V 不等。 2.实验过程中对奥氏粘度计的接触使得不与水平面垂直。 3.酒精的密度与理论值有相差。 【注意事项】 1.奥氏粘度计下端弯曲部分很容易折断,操作过程中只能握大管,不要一

液体粘滞系数测定实验

液体粘滞系数测定实验 实验仪器液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。三 实验原理当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f为(1)式中d是小球的直径,v是小球的速度,为液体粘滞系数。就是液体粘滞性的度量,与温度有密切的关系,对液体来说,随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力、浮力、粘滞阻力f。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v0 。经计算可得液体的粘滞系数为(2)式中

是液体的密度,是小球的密度,g是当地的重力加速度。可见,只要测得,即可由(2)式得到液体的粘滞系数。但是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方法的设计,这些条件大多数都可以满足或近似满足(结合本实验所用仪器和实验步骤,思考一下哪些条件被满足,是如何做到的),唯独“无限广延”在实验中是无法实现的。因此,为了准确测出液体的粘滞系数,我们需要进一步对实验进行设计,下面将分别在实验上采用外推法和在理论上对计算公式进行修正进行测量,这些方法体现了实验手段和理论手段在物理实验中的作用和特点,同时反映出针对同一个问题如何在实验中层层深入,不断提高测量结果的准确程度,而这正是物理学实验的魅力所在。四 实验设计4、1 外推法的实验设计与测量4、1、1横向“无限广延”之外推h图1多管落球法测量液体粘滞系数仪用上述落球法测量出来的收尾速度与液体尺度有关,那么我们不妨在实验中就对液体尺度的依赖关系进行定量研究,如果该依赖关系存在规律,则有可能对我们的测量带来帮助或指引。由于上述讨论中对液体的形状没有做具体要求,我们在实验中采用试管作为容器,这样得到具有轴对称性的液柱,于是我们要研究的就是液柱的尺度大小对的影响。为简化测量,可先固定液柱的高度,改变液柱横截面积,这可以用一组直径不同的试管来实现(见图1)。将这

粘滞系数

实验报告 实验题目:落球法测定液体的粘度 实验目的:是通过用落球法和转筒法测量油的粘度,学习并掌握测量的原理和方法。 实验器材:量筒、密度计、温度计、金属球、螺旋测微器、游标卡尺、直尺 实验原理: 当一种液体相对于其他固体、气体运动,或同种液体内各部分之间有相对运动时,接触面之间存在摩擦力。这种性质称为液体的粘滞性。粘滞力的方向平行于接触面,且使速度较快的物体减速,其大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘度。η表征液体粘滞性的强弱,测定η可以用落球法,通过测量小球在液体中下落的运动状态来求。 1.斯托克斯公式的简单介绍 一个在静止液体中缓慢下落的小球受到三个力的作用:重力、浮力和粘滞阻力。粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度很小,球的半径也很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程出发可导出著名的斯托克斯公式: 6 =(1) Fπη vr 式中F是小球所受到的粘滞阻力,v是小球的下落速度,r是小球的半径,η是液体的粘度,SI制中,η的单位是s Pa?。斯托克斯公式是由粘滞液体的普遍运动方程导出的。 2.雷诺数的影响 液体各层间相对运动速度较小时,呈现稳定的运动状态,如果给不同层内

的液体添加不同色素,就可以看到一层层颜色不同的液体各不相扰地流动,这种运动状态叫层流。如果各层间相对运动较快,就会破坏这种层流,逐渐过渡到湍流,甚至出现漩涡。我们定义一个无量纲的参数——雷诺数R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为v ,液体的密度为ρ0,粘度为η,圆管的直径为2r ,则 02e v r R ρη = (2) 当R e <2000时,液体处于层流状态,当R e >3000时,呈现湍流状态,R e 介于上述两值之间,则为层流、湍流过渡阶段。 奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: ...)1080 191631(62 +-+ =e e R R rv F πη (3) 式中16 3e R 项和1080 192 e R 项可以看作斯托克斯公式的第一和第二修正项。如 R e =0.1, 则零级解(即式(1))与一级解(即式(3)中取一级修正)相差约2%,二级修正项约4102-?,可略去不计,如R e =0.5,则零级解与一级解相差约10%,二级修正项约0.5%仍可略去不计;但当R e =1时,则二级修正项约2%,随着R e 的增大,高次修正项的影响变大。 3. 容器壁的影响 在一般情况下,小球在容器半径为R 、液体的高度为h 的液体内下落,液体在各方向上都是无限广阔的这一假设条件是不能成立的。因此,考虑到容器壁的影响,式(3)变为 ...)1080 191631)(3.31)(4.21(62 +-+++=e e R R h r R r rv F πη (4) 式(4)含R 和h 的因子即反映了这一修正。 4. η的表示

动力粘度单位换算,黏度转换表

动力粘度单位换算,黏度转换表 单位制 国际单位制 (SI)物理单位制 (CGS)单位符号 Pa ? s mPa ? s P cP 换算系数 单位名称 国际单位制 (SI) 帕斯卡?秒 毫帕斯卡?秒 1 1000 1 10 1000 1 物理单位制(CGS) 泊 厘泊 100 1 1 100 1 工程单位制千克力?秒,每平方米× 10 3× 10 3 英制 工程单位制 磅达秒每平方英尺 磅力秒每平方英尺 磅力小时每平方英尺 雷恩 磅力秒 , 每平方英寸 × 10 5 × 10 3 × 10 3 × 10 3 × 10 4 × 10 8 × 10 7 × 10 7 × 10 6 × 10 5 × 10 5 × 10 3 × 10 4 × 10 8 × 10 7 × 10 7 英制 绝对单位制 磅每英尺小时 斯勒格每英尺秒 × 10 -4 × 10 4 × 10 3 × 10 4 备注推行不采用 单位制 工程单位制英制工程单位制 单位符号 kgf ? s/m 2pdl ? s/ft 2lbf ? s/ft 2lbf ? h/ft 2换算系数 单位名称 国际单位 制(SI) 帕斯卡?秒 毫帕斯卡?秒× 10 -4× 10 -4× 10 -5 × 10 -6 × 10 -9 物理单位 制(CGS) 泊 厘泊× 10 -4× 10 -4 × 10 -3 × 10 -5 × 10 -7 × 10 -9 工程单位 制千克力?秒,每平方 米 1× 10 -5 英制磅达秒每平方英尺 1 × 10 -6

工程单位 制 磅力秒每平方英尺 磅力小时每平方英 尺 雷恩 磅力秒 , 每平方英 寸× 10 4 × 10 5 × 10 3 × 10 3 1 × 10 -4 1 英制 绝对单位 制 磅每英尺小时 斯勒格每英尺秒 × 10 -5 × 10 4 × 10 -6 1 × 10 -9 × 10 -4 备注不采用不采用 单位制 英制工程单位制英制绝对单位制 单位符号 reyn lbf ? s/in 2lb/(ft ? h)slug/(ft ? s)换算系数 单位名称 国际单位 制(SI) 帕斯卡?秒 毫帕斯卡?秒 × 10 -4 × 10 -7 × 10 -4 × 10 -7 × 10 3 × 10 -5 物理单位 制(CGS) 泊 厘泊 × 10 -5 × 10 -7 × 10 -5 × 10 -7 × 10 -3 × 10 -5 工程单位 制 千克力?秒,每平方米× 10 -3× 10 -3× 10 4 英制 工程单位 制 磅达秒每平方英尺 磅力秒每平方英尺 磅力小时每平方英尺 雷恩 磅力秒 , 每平方英 寸 × 10 -4 × 10 -3 1 1 × 10 -4 × 10 -3 1 1 × 10 3 × 10 6 × 10 8 × 10 7 × 10 7 1 英制 绝对单位 制 磅每英尺小时 斯勒格每英尺秒 × 10 -8 × 10 -3 × 10 -8 × 10 -4 1 × 10 6 × 10 6 1

液体粘滞系数的测定

实验四 液体粘滞系数的测定 液体的粘滞系数是表征液体黏滞性强弱的重要参数,在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数,准确测量这个量在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法(也称斯托克斯法)是最基本的一种,它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。 【预习思考题】 1. 什么是液体的粘滞性? 2. 金属小球在粘滞性流体中下落时,将受到哪些力的作用? 3. 液体的粘滞系数与那些因素有关? 【实验目的】 1. 观察液体中的内摩擦现象。 2. 掌握用落球法测液体粘滞系数的原理和方法。 3. 学习和掌握一些基本测量仪器(如游标卡尺、螺旋测微计、比重计、秒表)的使用。 【实验原理】 一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力Array即为粘滞阻力。它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引 起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作 用力。不同的液体这种不同液层之间的相互作用力大小是不相同的。所以粘滞阻力 除与液体的分子性质有关外,还与液体的温度、压强等有关。 液体的内摩擦力可用粘滞系数 η来表征。对于一个在无限深广的液体中以速 度 v 运动的半径为 r 的球形物体,若运动速度较小,即运动过程中不产生涡旋,则根据斯托克斯(G.G. Stokes)推导出该球形物体受到的摩擦力即粘滞力为 f = 6πηvr (1) 当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力 f、向上的液体浮力 F和向下的重力 G,如图 1 所示。球体受到液体的浮力可表示为 F = σg4πr3/3 (2) 上式中 σ 为液体的密度,g为本地的重力加速度。球体受到的重力为 45

液体粘滞系数的测量

液体粘滞系数的测试 液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘滞系数,它是表征液体粘滞性强弱的重要参数。液体的粘滞系数和人们的生产,生活等方面有着密切的关系,比如医学上常把血粘滞系数的大小做为人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘滞系数。 测量液体粘滞系数可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘滞系数较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。本实验用落球法测量蓖麻油的粘滞系数。 【预习思考题】 1.为何要对公式(4)进行修正? 2.如何判断小球在液体中已处于匀速运动状态? 3.影响测量准确度的因素有哪些? 【实验原理】 以下阐述落球法测量液体粘滞系数的基本原理。 处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg (m 为小球质量)、液体作用于小球的浮力gV ρ(V 是小球体积,ρ是液体密度)和粘滞阻力 F (其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v 较小情 况下,有 rv F πη6= (1) 上式称为斯托克斯公式,其中r 是小球的半径;η称为液体的粘滞系数,其单位是Pa?s 。 小球在起初下落时,由于速度较小,受到的阻力也就比较小,随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即 r v gV mg 06πηρ+= (2) 此时,小球将以0v 作匀速直线运动,由(2)式可得: r v g V m 06)(πρη-= (3) 令小球的直径为d ,并用'36ρπ d m = ,t l v =0,2 d r =代入(3)式得

相关文档