文档库 最新最全的文档下载
当前位置:文档库 › 移频键控FSK调制与解调系统设计实验

移频键控FSK调制与解调系统设计实验

移频键控FSK调制与解调系统设计实验
移频键控FSK调制与解调系统设计实验

实验课程名称:通信原理实验_

实验项目名称移频键控FSK调制与解调系统设计实验实验成绩

实验者曾娟专业班级信息1001组别

同组者实验日期

一、实验目的、意义

数字频率调制是数据通信中使用较早的一种通信方式,由于这种调制解调方式容易实现,抗噪声和抗衰减性能强,因此在中低速数据通信系统中得到较为广泛的应用。通过此综合实验,应达到:

1.进一步加深对数字调制中的移频键控FSK调制器与解调器工作原理及电路组成的理解与掌握。

2.学会综合地、系统地应用已学到的知识,对移频键控FSK调制与解调系统电路的设计与

仿真方法,提高独立解决问题的能力。

二、设计任务与要求

1.设计任务:

构建并设计一个数字移频键控FSK传输系统,具体要求是:

主载波频率:11800HZ

载波1频率:2950HZ(四分频)

载波2频率:1475HZ(八分频)

数字基带信号NRZ:15位M序列,传输速率约为400波特。(32分频)

2.设计要求:

FSK调制器可以采用数字门电路构成电子开关电路(或集成模拟开关)与采用集成模拟

乘法器,利用键控法实现。

FSK解调器可以采用非相干解调法或过零检测法实现。

传输信道不考虑噪声干扰,采用直接传输。

整个系统用EWB软件仿真完成。

三、2FSK 调制与解调系统原理与电路组成

1.方案论证(2FSK调制与解调系统原理的简要说明)

1)FSK调制信号的产生

实现数字频率调制的方法很多,总括起来有两类。直接调频法和移频键控法。注意到相邻两个振荡器波形的相位可能是连续的,也可能是不连续的,因此有相位连续的FSK及相位不连续的FSK之分。并分别记作CPFSK及DPFSK。

实用电路中还可以借助于数字电路来实现移频键控,晶振输出的主载波,通过不同次数的分频(或倍频)器,可得到两种不同频率的载波,其相位也不完全相等。当数字基带信号g(t)为高电位时,与非门1关闭。与非门2打开,输出频率为f2的信号。当g(t)为低电位时与非门1打开,与非门2关闭,输出频率为f1的信号。这样,经过相加器相加后,就可输出2FSK 信号。这种方法实现移频键控电路集成化程度高、体积小、可靠性高。

图1频率键控调制器

2.单元电路设计

1)主载波振荡器电路设计

主要提供2FSK 的载波和信码的定时信号,可用集成电路(555)构成多谐振荡器,产生的振荡频率为11800Hz 载波,要求输出频率可调。

已知由(555)构成多谐振荡器的振荡频率为:

则R1=3.6K R2=2.8K (可调) C=0.01uF

图2 555 定时器接成的多谐振荡器

2)M 序列产生电路 实际的数字基带信号是随机的,为了实验和测试的方便,一般都用M 序列产生器产生的

伪随机序列来充当数字基带信号。本次设计采用三级线性移位寄存器(选用74LS74双D2片),形成长度为23-1=7位码长的伪随机码序列,码率约为400bit/s ,如图3所示:

图3 M 序列发生器电路图

3)分频器

将主载波按设计要求,一般用D 触发器构成适当的分频电路,获得载频f1、f2和M序列所需的时钟信号(电路设计方法参见实验四或其它有关资料)。

C

R R T

f )2(1121+=

=

8分频器

4分频器

5)波形变换电路

由于555产生的是方波,因此要有一个积分电路将其转化为正弦波,如图5

图4 波形变换电路

4)调制器

调制器可以采用数字门电路构成电子开关电路(或直接选用集成模拟开关)与采用集成模拟乘法器。这里使用与门和或门,

图5 调制电路

6)非相干解调电路

对于非相干检测法,其系统电路构成如图5.5所示。在了解与掌握了2FSK 非相干检测法系统电路的基础上,进行自己的设计与实验。需要设计的单元电路有:

图6 2FSK 非相干解调电路原理图

①高通滤波器

采用RC 无源电路,构成三阶高通滤波器。已知2FSK 的中心频率:12()/2f f f =+,且滤波器的通带频率:1/2H f kRC =,所以有:1/C fR =,1/R fC = 。

则有C1=C2=C3=0.6uf R1=R2=R3=50?

②低通滤波器

低通滤波器选用一般RC 滤波器电路,因信码速率为400波特,其电路元件参数: R=0.5K Ω C=1uF

③电压比较器

电压比较器用运算放大器构成迟滞比较器,目的是防止干扰,参考电压设定为0.22V 。

3.总体电路原理图与元件清单 (1)总体电路原理图

图6 总体电路原理图

(2)元器件清单

序号元器件名称型号规格数量备注

1 运算放大器 2

2 555定时器 1

3 D触发器74LS 8

4 固定电阻10K 2

5 固定电阻 3.6k 2

6 固定电阻500Ω 1

7 固定电阻50Ω 3

8 可变电阻 2.8K/50% 1

9 固定电容0.01uf 1

10 固定电容1uf 1

11 固定电容10uf 1

12 固定电容0.6uf 3

13 可变电感0.9mH/50% 1

14 二极管 1

15 门电路若干

四、实验内容与测试数据

1.FSK调制器的测量

1)检测,调整多谐振荡器输出的载波信号

测量波形频率数备注

11800Hz 主时钟

2)调测分频器的分频比

测量波形频率数备注

1474Hz 8分频

2590Hz 4分频

M序列

3)M序列发生器产生的为随机码的检测

测量波形频率数备注

386Hz M序列定

时脉冲

386Hz M序列

4)FSK调制输出信号的测量

测量波形频率数备注

1474Hz 信码为

“0”

2950Hz 信码为

“1”

1474Hz/ 2950Hz 信码为“M 序列”

2.FSK解调器的测量试验(非相干解调电路的测量)

测量波形备注

高通滤波器输出波

检波器输出信号形

及低通输出波形

电压比较器输出信

号波形

五、实验小结

经过这次试验,对FSK解调有了更深刻的认识,通过对EWB软件的使用,我明白了如何使用EDA软件来弥补实验未得到的结果,收益颇多。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

MFSK的调制与解调

目录 前言 (1) 正文 (1) 2.1 课程设计的目的及意义 (1) 2.2 多进制数字调制 (1) 2.3 MFSK简介 (1) 2.4 MFSK信号的频谱、带宽及频带利用率 (2) 2.5 MFSK调制与解调的原理 (3) 3 仿真结果与分析 (3) 3.1 八进制的随机序列 (3) 3.2 调制后的信号 (4) 3.3 加入高斯白噪声后的已调信号 (5) 3.4 MFSK的解调 (6) 3.4.1 滤除高斯白噪声 (6) 3.4.2 相干解调后的信号 (7) 3.4.3 非相干解调后的信号 (7) 3.5 MFSK系统的抗噪声性能 (8) 3.5.1 相干解调时的误码率 (8) 3.5.2 非相干解调时的误码率 (8) 课程设计总结 (9) 致谢 (9) 参考文献 (10) 附录 (11)

前言 MFSK——多进制数字频率调制,简称多频制,是2FSK方式的推广。它是用不同的载波频率代表各种数字信息。在数字通信系统中,数字调制与解调技术占有非常重要的地位。随着MATLAB技术的发展,数字通信技术与MATLAB的结合体现了现代数字通信系统发展的一个趋势。文中介绍了MFSK调制解调的原理,并基于MATLAB实现MFSK调制解调的程序代码设计,仿真结果表明设计方案是可行的。 正文 2.1 课程设计的目的及意义 本次课程设计我所做的课题是一个多进制频移键控MFSK的调制与解调项目,这就要求我们需要完成信号的调制解调以及抗噪声性能的分析等问题。 通过我们对这次项目的学习和理解,综合运用课本中所学到的理论知识完成一个多进制频移键控MFSK的调制与解调项目的课程设计。以及锻炼我们查阅资料、方案比较、团结合作的能力。学会了运用MATLAB编程来实现MFSK调制解调过程,并且输出其调制及解调过程中的波形,并且讨论了其调制和解调效果,分析了抗噪声性能,增强了我的动手能力,为以后学习和工作打下了基础。 2.2 多进制数字调制 二进制键控调制系统中,每个码元只传输1b信息,其频带利用率不高。而频率资源是极其宝贵和紧缺的。为了提高频带利用率,最有效的办法是使一个码元传输多个比特的信息。这就是将要讨论的多进制键控体制。多进制键控体制可以看作是二进制键控体制的推广。这时,为了得到相同的误码率,和二进制系统相比,接要用更大的发送信号功率。这就是为了传输更多信息量所要付出 的代价。由二进制数字调制系统的性能比较可得知,各种键控体制的误码率都决定于信噪比:r=a 2 2σn2 (r表示信号码元收信号信噪比需要更大,即需码元功率a 2 2 和噪声功率σn2之比)。 现在,设多进制码元的进制数为M,一个码元中包含信息K比特,则有k=log2M;若想把码元 功率a 2 2平均分配给每比特,则每比特分得的功率为P b=a2 2k ;这样每比特的信噪功率比为:r b=r k ; 在M进制中,由于每个码元包含的比特数K和进制数M有关,所以在研究不同M值下的错误率时,适合用r b为单位来比较不同体制的性能优劣。 所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK)、多进制频移键控(MFSK)以及多进制相移键控(MPSK或MDPSK)。也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK)或它的特殊形式多进制正交幅度调制(MQAM)等。 2.3MFSK简介 多进制数字频率调制(MFSK)简称多频制,是2FSK方式的推广。它是用不同的载波频率代表不同种数字信息。多进制频移键控(MFSK)的基本原理和2FSK是相同的,其调制可以用频率键控法和模拟调频电路来实现,不同之处在于使用键控法的时候供选的频率有M个。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

4psk调制与解调

课程设计任务书 学生姓名:王成刚专业班级:通信0906班 指导教师:许建霞工作单位:信息工程学院 题目: 设计一个4PSK调制解调系统 初始条件: 本设计基于数字信号处理技术基础实验,通过自行设计程序并在电脑上利用MATLAB软件进行仿真。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰 写等具体要求) 1)4PSK信号波形的载频和相位参数应随机置或者可有几组参数组合供选择 2)系统中要求加入高斯白噪声 3)4PSK解调方框图采用相干接收形式 4)分析误码率 参考书目: [1]谢自美.电子线路设计·实验·测试(第三版).武汉:华中科技大学出版社 [2]康华光. 电子技术基础模拟部分.高等教育出版社,2005 [3]康华光. 电子技术基础数字部分.高等教育出版社,2005 [4]樊昌信. 通信原理(第五版).北京:国防工业出版社,2005 时间安排: 第1周,安排任务(鉴主15楼实验室) 第1-17周,仿真设计(鉴主13楼计算机实验室) 第18周,完成(答辩,提交报告,演示) 指导教师签名: 年月日系主任签名:年月日

目录 摘要 (3) Abstract (4) 1 引言 (5) 1.1 背景介绍 (5) 1.2 设计要求 (5) 2 4PSK调制解调的基本原理 (6) 2.12PSK数字调制原理 (6) 2.24PSK的调制和解调 (7) 3 4PSK调制解调系统仿真 (10) 3.1MATLAB软件介绍 (10) 3.22PSK调制解调系统仿真 (11) 3.34PSK调制解调系统仿真 (12) 4 4PSK误码率分析 (15) 4.1 4PSK误码率的计算 (15) 4.24PSK误码率的仿真 (16) 5 总结 (17) 参考文献 (18)

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

角度调制与解调电路范文

1.某超外差接收机的中频为465kHz,当接收931kHz的信号时,还收到1kHz的干扰信号,此干扰为( A )A.干扰哨声B.中频干扰 C.镜像干扰D.交调干扰 2.MC1596集成模拟乘法器不可以用作(C )A.振幅调制B.调幅波的解调C.频率调制D.混频 3.若载波u C(t)=U C cosωC t,调制信号uΩ(t)= UΩcosΩt,则调频波的表达式为(A )A.u FM(t)=U C cos(ωC t+m f sinΩt)B.u FM(t)=U C cos(ωC t+m p cosΩt)C.u FM(t)=U C(1+m p cosΩt)cosωC t D.u FM(t)=kUΩU C cosωC tcosΩt 4.单频调制时,调相波的最大相偏Δφm正比于( A )A.UΩB.uΩ(t)C.Ω 5.某超外差接收机的中频f I=465kHz,输入信号载频fc=810kHz,则镜像干扰频率为 (C)A.465kHz B.2085kHz C.1740kHz 6.调频收音机中频信号频率为( A )A.465kHz B.10.7MHz C.38MHz D.不能确定 7.直接调频与间接调频相比,以下说法正确的是(C)A.直接调频频偏较大,中心频率稳定B.间接调频频偏较大,中心频率不稳定C.直接调频频偏较大,中心频率不稳定D.间接调频频偏较大,中心频率稳定8.鉴频特性曲线的调整内容不包括(B)A.零点调整B.频偏调整 C.线性范围调整D.对称性调整 9.某超外差接收机接收930kHz的信号时,可收到690kHz和810kHz信号,但不能单独收到其中一个台的信号,此干扰为(D)A.干扰哨声B.互调干扰 C.镜像干扰D.交调干扰 10.调频信号u AM(t)=U C cos(ωC t+m f sinΩt)经过倍频器后,以下说法正确的是(C)A.该调频波的中心频率、最大频偏及Ω均得到扩展,但m f不变 B.该调频波的中心频率、m f及Ω均得到扩展,但最大频偏不变 C.该调频波的中心频率、最大频偏及m f均得到扩展,但Ω不变 D.该调频波最大频偏、Ω及m f均得到扩展,但中心频率不变 11.关于间接调频方法的描述,正确的是(B)A.先对调制信号微分,再加到调相器对载波信号调相,从而完成调频 B.先对调制信号积分,再加到调相器对载波信号调相,从而完成调频 C.先对载波信号微分,再加到调相器对调制信号调相,从而完成调频 D.先对载波信号积分,再加到调相器对调制信号调相,从而完成调频 12、变频器的工作过程是进行频率变换,在变换频率的过程中,只改变_____A_____频率,而______C_____的规律不变。 (A)载波(B)本振(C)调制信号(D)中频 13、调频系数与___B__、A___有关,当调制信号频率增加时,调频系数____E____,当调制信号幅度增加时,调频系数___D_______。 A)UΩm B) ΩC)Ucm D)增大E)减小F)不变

PSK调制和解调的基本原理回顾

目录 1.实验要求及开发环境 (3) 2. 二、课程设计软件说明 (7) 三、基本原理 (2) 3.1调制方式简介 (2) 3.2OQPSK的含义 (3) 3.3同相正交环法(科斯塔斯环) (5) 四、实验框图原理说明 (12) 4.1实验总框图介绍 (12) 4.2五个子部分的介绍 (7) 4.2.1串并转换 (7) 4.2.2载波调制 (9) 4.2.3 科斯塔斯环解调 (15) 4.2.4 抽样判决 (17) 4.2.5 并串转换 (17) 五、实验结论 (18) 六、调试报告 (19) 6.1频率调制器F M参数设置 (19) 6.2低通滤波器参数设置 (19) 6.3脉冲串的参数设置 (20) 七、实验心得 (21) 八、参考文献 (22)

一、实验要求及开发环境 实验要求:1. 数字相关器子系统 2. 仿真结果分析 实验目的:1.了解PSK直序扩频通信系统的基本原理 2.掌握Systemview的使用 开发环境:PC机开发软件:Systemview Systemview简介 Systemview是一个用于现代工程与科学系统设计及仿的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真。直到一般系统的数学模型建立等各个领域,systemview在友好且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 利用systemview,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统.可用于各种线性或非线性控制系统的设计和仿真。其特色是,利用它可以从各种不同角度、以不同方式,拉要求设计多种滤波器,并可自动完成滤波器的各种指标一如幅频待件(波特图)、传递函数、根轨迹图等之间的转换。它还

信号的相位调制与解调概要

MATLAB仿真信号的相位调制与解调 专业:通信与信息系统 姓名:赵* 学号:********* 指导老师:****教授

摘要 Psk调制是通信系统中最为重要的环节之一,Psk调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。最后,在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。另外,本文还利用Matlab的图形用户界面(GUI)功能为仿真系统设计了一个便于操作的人机交互界面,使仿真系统更加完整,操作更加方便。 关键词:数字调制;分析与仿真;Matlab;Simulink;PSK;QPSK;

1.数字调制技术 (2) 2.PSK调制系统 (3) 2.1 QPSK调制部分,原理框图如图七所示 (6) 2.2 QPSK解调部分,原理框图如图八所示: (8) 3.用Simulink实现PSK调制 (9) 3.1 2PSK仿真 (9) 3.1.1调制 (9) 3.1.2 解调仿真 (12) 3.2 QPSK仿真 (13) 3.2.1 QPSK调制框图 (13) 参考文献 (18)

1.数字调制技术 通信按照传统的理解就是信息的传输与交换。在当今信息社会,通信则与遥感,计算技术紧密结合,成为整个社会的高级“神经中枢”。没有通信,人类社会是不可想象的。一般来说,社会生产力水平要求社会通信水平与之相适应。若通信水平跟不上,社会成员之间的合作程度就受到限制。可见,通信是十分重要的。 通信传输的消息是多种多样的,可以是符号的,文字的,数据和图像的等等。各种不同的消息可以分为两类:一类称为离散消息;另一类称为连续消息。离散消息的状态是可数的或离散的,比如符号,文字或数据等。离散消息也称数字消息。而连续消息则是其状态连续变化的消息,例如,连续变化的语音,图像等。连续消息也称模拟消息。因此按照信道中传输的是模拟信号还是数字信号可以将通信系统分为模拟通信系统和数字通信系统。 数字通信有以下突出的特点:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。第二,当需要保密的时候,可以有效的对基带信号进行人为的“扰乱”,即加上密码。 数字通信系统可以用下图表示: →→→→→→→→信数信信数信 信源 道 字受道源字信 息编编调 解译译信 源 码码调码码者 制 道 器 器 器 器 器 器 图一 数字通信在近20年来得到了迅速的发展,其原因是: (1) 抗干扰能力强 (2) 便于进行各种数字信号处理 (3) 易于实现集成化 (4) 经济效益正赶上或超过模拟通信 (5) 传输与交换可结合起来,传输电话与传输数据也可结合起来,成为一个 统一整体,有利于实现综合业务通信网。

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

通信原理 移频键控FSK调制与解调系统实验报告

移频键控FSK调制与解调系统设计实验 一.实验目的 1.加深对数字调制中移频键控FSK调制器与解调器工作原理及电路组成的理解与掌握。 2.学会综合地、系统地应用已学到的知识,对移频键控FSK调制与解调系统电路的设计与仿真方法,提高独立分析问题与解决问题的能力。 二.实验任务与要求 构建并设计一个数字移频键控FSK传输系统,具体要求是: 主载波频率:11800HZ 载波1频率:2950HZ(四分频) 载波2频率:1475HZ(八分频) 数字基带信号NRZ:7位M序列,传输速率约为400波特。(32分频) FSK调制器可以采用数字门电路构成电子开关电路(或集成模拟开关)与采用集成模拟乘法器,利用键控法实现。 FSK解调器可以采用非相干解调法或过零检测法实现。 传输信道不考虑噪声干扰,采用直接传输。 整个系统用EWB软件仿真完成。 三、2FSK 调制与解调系统原理与电路组成 数字频移键控是用载波的频率的变化来传送数字消息的,即用所传送的数字消息控制载波的频率。实现数字频率调制的方法很多,总括起来有两类。直接调频法和移频键控法。注意到相邻两个振荡器波形的相位可能是连续的,也可能是不连续的,因此有相位连续的FSK 及相位不连续的FSK之分。并分别记作CPFSK及DPFSK。 根据实验任务的要求,本次设计实验采用的是相位连续的FSK调制器与非相干解调器,其电路结构如图1-1所示.: 图1-1 2FSK调制与解调系统电路原理图

1)2FSK 调制系统设计 本次综合设计实验的调制系统主要由主载波振荡器、分频器、M序列发生器、调制器、相加器构成。其调制电路的组成框图如图1-2所示 由图可以看出,当信码为“1”时, 分频链作4分频,即输出频率 图1-2 FSK 调制器电路组成框图 为2950Hz 载波,信码为“0”时,分频链作8分频,输出频率为1475Hz 载波。如此一来,多谐振荡器输出的载波,通过不同次数的分频,就得到了两种不同频率的输出,经相加器后,从而在输出端得到不同频率的已调信号,即FSK 信号,完成了数字基带信号转换为数字频带信号的过程。 ①主载波振荡器电路设计 主要提供2FSK 的载波和信码的定时信号,本设计使用集成电路(555)构成多谐振荡器,产生的振荡频率为11800Hz 载波,其电路如图1-3。。 已知由(555)构成多谐振荡器的振荡频率为: 则R1=3.6K R2=4.7K (可调) 图1-3 555 定时器接成的多谐振荡器 C=0.033uf ②分频器电路设计 将主载波按设计要求,用D 触发器构成适当的分频电路,获得载频f1、f2和M序列所需的时钟信号,因一级D 触发器可实现二分频(选用74LS74双D3片),所以2FSK 系统所需的四、八及32分频器电路如图1-4所示: 图1-4 分频器电路 ③M序列发生器电路设计 实际的数字基带信号是随机的,为了实验和测试的方便,一般都用M 序列产生器产生的伪随机序列来充当数字基带信号。本次设计采用三级线性移位寄存器(选用74LS74双D2片),形成长度为23-1=7位码长的伪随机码序列,码率约为400bit/s ,如图1-5所示: 输出的信码为: 1110010 C R R T f )2(1121+= =

(完整版)振幅调制与解调习题及其解答

振幅调制与解调练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 C 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、对于同步检波器,同步电压与载波信号的关系是 C A 、同频不同相 B 、同相不同频 C 、同频同相 D 、不同频不同相 3、如图是 电路的原理方框图。图中t t U u c m i Ω=cos cos ω;t u c ωcos 0= ( C ) A. 调幅 B. 混频 C. 同步检波 D. 鉴相 4、在波形上它的包络与调制信号形状完全相同的是 ( A ) A .AM B .DSB C .SSB D .VSB 5、惰性失真和负峰切割失真是下列哪种检波器特有的失真 ( B ) A .小信号平方律检波器 B .大信号包络检波器 C .同步检波器 6、调幅波解调电路中的滤波器应采用 。 ( B ) A .带通滤波器 B .低通滤波器 C .高通滤波器 D .带阻滤波器 7、某已调波的数学表达式为t t t u 6 3102cos )102cos 1(2)(??+=ππ,这是一个( A ) A .AM 波 B .FM 波 C .DSB 波 D .SSB 波 8、AM 调幅信号频谱含有 ( D ) A 、载频 B 、上边带 C 、下边带 D 、载频、上边带和下边带 9、单频调制的AM 波,若它的最大振幅为1V ,最小振幅为0.6V ,则它的调幅度为( B ) A .0.1 B .0.25 C .0.4 D .0.6 10、二极管平衡调幅电路的输出电流中,能抵消的频率分量是 ( A ) A .载波频率ωc 及ωc 的偶次谐波 B .载波频率ωc 及ωc 的奇次谐波 C .调制信号频率Ω D .调制信号频率Ω的偶次谐波 11、普通调幅信号中,能量主要集中在 上。 ( A ) A .载频分量 B .边带 C .上边带 D .下边带 12、同步检波时,必须在检波器输入端加入一个与发射载波 的参考信号。 ( C ) A .同频 B .同相 C .同幅度 D .同频同相 13、用双踪示波器观察到下图所示的调幅波,根据所给的数值,它的调幅度为 ( C )

振幅调制与解调电路思考题与习题填空题1调制是用4

第四章振幅调制与解调电路 思考题与习题 一、填空题 4 -1调制是用。 4-2调幅过程是把调制信号的频谱从低频搬移到载频的两侧,即产生了新的频谱分量,所以必须采用才能实现。 4-3在抑制载波的双边带信号的基础上,产生单边带信号的方法有和。4-4、大信号检波器的失真可分为、、和。 4-5、大信号包络检波器主要用于信号的解调。 4-6 同步检波器主要用于和信号的解调。 二思考题 4-1为什么调制必须利用电子器件的非线性特性才能实现?它和小信号放大在本质上有什么不同? 4-2.写出图思4-2所示各信号的时域表达式,画出这些信号的频谱图及形成这些信号的方框图,并分别说明它们能形成什么方式的振幅调制。

图思4-2 4-3振幅检波器一般有哪几部分组成?各部分作用如何?

4-4下列各电路能否进行振幅检波?图中RC为正常值,二极管为折线特性。 图思4-4 三、习题 4-1 设某一广播电台的信号电压u(t)=20(1+0.3cos6280t)cos6.33×106t(mV),问此电台的载波频率是多少?调制信号频率是多少? 4-2 有一单频调幅波,载波功率为100W,求当m a=1与m a=0.3时的总功率、边总功率和每一边频的功率。

4-3在负载R L=100某发射机的输出信号u(t)=4(1+0.5cos t)cos c t(V),求总功率、边频功率和每一边频的功率。 4-4 二极管环形调制电路如图题4-4所示,设四个二极管的伏安特性完全一致,均自原点出点些率为g d的直线。调制信号uΩ(t)=UΩm cosΩt,载波电压u c(t)如图所示的对称方波,重复周期为T c=2π/ωc,并且有U cm>Uωm,试求输出电流的频谱分量。 图题4-4 4-5.画出如下调幅波的频谱,计算其带宽B和在100Ω负载上的载波功率P c,边带功率P SB和总功率P av。。 (1)i=200(1+0.3cosπ×200t)cos2π×107t(mA) (2)u=0.lcos628×103t+0.lcos634.6×l03t(V) (3) 图题6.3-5所示的调幅波。

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

角度调制与解调

实用标准文案 uttt]V,π×10其数学表达式为())=10cos[2π×10 +6cos(21.有一调角波,45utt,指出该调角信号是调频信号还是调10())=3cos(2(1)若调制信号π×4Ω相信号? 若 ut呢?π×10)(t)=3sin(24ΩfF是多少?载波频率是多少?调制信号频率(2)c utt时,)π×(1)当10( )=3cos(2解:4Ωutφttutut),与2成正比,(()中的附加相位偏移△((π×)=6cos(210))= 4ΩΩ故为调相波。 utt时)( )=3sin(2π×当104Ω utφt=6×2π×10(2(π×)中的附加相位偏移△π×(t)=6cos(210 )44 tttt d =4π×10(2π×1010)d)444 φtutut)为调频波。()的积分成正比,则即△( )与(Ωωf=10 (H) 故(2)载波频率:=2π×10 (rad/s) 55Zcc F==10(H) 调制信号频率4Z uttK为2π×20×)=2sin10V,调频灵敏度10 ,.设调制信号2(34fΩ6V,载波振幅为若载波频率为10MH。试求:Z精彩文档. 实用标准文案 (1)调频波的表达式; Ωω;,调频波的中心角频率(2)调制信号的角频率 c

f;最大频率偏△(3)m m;(4)调频指数f (5)最大相位偏移为多少? (6)最大角频偏和最大相偏与调制信号的频率变化有何关系?与振幅变化呢?解:(1)因调制信号为正弦波,故调频波的表达式为: utUωt-cos( () )= cFMcm 将各已知条件代入上式得 utt-) 10 )=6cos(2π×10×(6FM tt) π×10-25.12cos10 =6cos(2 47(2)调制信号角频率Ω=10 rad/s ;调频波的中心角频率4ω=2π×10×10 rad/s =2π×10 rad/s 76c f===4×10(H 最大频偏△(3)) 4Zm 精彩文档. 实用标准文案 m==25.12(rad) 调频指数(4)f (5)最大相位偏移可用调频指数表示,故为25.12rad

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

FSK信号调制与解调技术

1 引言 1。1 研究的背景与意义 现代社会中人们对于通信设备的使用要求越来越高,随着无线通信技术的不断发展,人们所要处理的各种信息量呈爆炸式地增长.传统的通信信号处理是基于冯·诺依曼计算 机的串行处理方式,利用传统的冯·诺依曼式计算机来进行海量信息处理的话,以现有的 技术,是不可能在短时间内完成的。而具于并行结构的信息处理方式为提高信息的处理速度提供了一个新的解决思路。 随着人们对于通信的要求不断提高,应用领域的不断拓展,通信带宽显得越来越紧张。人们想了很多方法,来使有限的带宽能尽可能的携带更多的信息。但这样做会出现一个问题,即:信号调制阶数的增加可以提升传送时所携带的信息量,但在解调时其误码 率也相应显著地提高。信息量不断增加的结果可能是,解调器很难去解调出本身所传递的信息。如果在提高信息携带量的同时,能够找到一种合适的解调方式,将解调的误码率控制在允许的范围内,同时又不需要恢复原始载波信号,从而降低解调系统的复杂程度, 那将是很好的。 通信技术在不断地发展,在现今的无线、有线信道中,有很多信号在同时进行着传递,相互之间都会有干扰,而强干扰信号也可能来自于其它媒介。在军事领域,抗干扰技术的研究就更为必要。我们需要通信设备在强干扰地环境下进行正常的通信工作. 目前常用的通信调制方法有很多种,如FSK、QPSK、QAM等.在实际的通信工程中,不同的调制制式由于自身的特点而应用于不同场合,而通信中不同的调制、解调制式就构成了不同的系统.如果按照常规的方法,每产生一种信号就需要一个硬件电路,甚至一个模块,那么要使一部发射机产生几种、几十种不同制式的通信信号,其电路就会异常复杂,体积重量都会很大.而在接收机部分,情况也同样是如此,即对某种特定的调制信号,必须有一个特定的对应模块电路来对该信号进行解调工作。如果发射端所发射的信号调制方式发生改变,这一解调模块就无能为力了.实际上,随着通信技术的进步和发展,现 代社会对于通信技术的要求越来越高,比如要求通信系统具有最低的成本、最高的效率,以及跨平台工作的特性,如PDA、电脑、手机使用时所要求的通用性、互连性等。怎样对多种类型的信号进行智能化处理,而又不增加电路的成本、处理速度以及体积重量等,是我们目前正面临的问题。

相关文档
相关文档 最新文档