文档库 最新最全的文档下载
当前位置:文档库 › 彩色滤光片简介

彩色滤光片简介

彩色滤光片简介
彩色滤光片简介

彩色濾光片簡介

彩色化之關鍵零組件

彩色濾光片(Color filter)為液晶平面顯示器(Liquid Crystal Display)彩色化之關鍵零組件。液晶平面顯示器為非主動發光之元件,其色彩之顯示必需透過內部的背光模組(穿透型LCD)或外部的環境入射光(反射型或半穿透型LCD)提供光源,再搭配驅動IC(Drive IC)與液晶(Liquid Crystal)控制形成灰階顯示(Gray Scale),而後透過彩色濾光片的R,G,B彩色層提供色相(Chromacity),形成彩色顯示畫面。

基本結構

彩色濾光片基本結構是由玻璃基板(Glass Substrate),黑色矩陣(Black Matrix),彩色層(Color Layer),保護層(Over Coat),ITO導電膜組成。一般穿透式TFT用彩色光片結構如下圖。

圖一TFT彩色濾光片之結構

顏料分散法

彩色濾光片生產歷史中曾出現印刷法、染色法、染料分散法、電著法、乾膜法等等,但目前最主流的量產方式為顏料分散法(Pigment Dispersed Method),其中顏料分散型彩色光阻(Pigment Dispersed Color Resist,PDCR)為形成彩色層之原材料。

彩色濾光片之製造流程

顏料分散法之彩色層形成類似半導體的黃光微影製程,首先將顏料分散型彩

色光阻塗佈於已形成黑色矩陣的玻璃基板上,經軟烤(Pre-bake),曝光對準(Aligned),顯影(Developed),光阻剝離(Stripping),硬烤(Post-bake)重覆此流程三次形成R,G,B 之三色圖形(Pattern)。

顏料分散法之彩色濾光片之製造流程如下。

圖二顏料分散型彩色濾光片製造流程

畫素設計排列

Pattern圖形是由曝光對準製程中之光罩(Photo Mask)而來,一般皆是由面板廠(Panel)指定,提供設計圖樣。Pattern上之紅、綠、藍(R,G,B)畫素(Pixel)排列方式並不一定,可為馬賽克式、直條式、三角形式、四畫素等方式排列,主要是依顯示器之用途及視訊電極(Pixel Electrode)之形狀和大小而定。一般而言如要顯示AV動態畫面需採用如馬賽克式之不規則設計,如較常顯示文字畫面,如Note book,則採用直條式之設計。

(一)馬賽克式(二)直條式(三)三角形式(四)四畫素

配置式

圖三彩色濾光片之畫素排列方式

生物识别滤光片解读

生物识别滤光片解读 生物识别滤光片属于精密光电薄膜元器件之一,其主要原理是通过特殊的光学设计实现特定波段光源的高透射或高反射效果,帮助终端产品完成生物信息的提取、筛选和转化以及3D景深信息的获取。 一、生物识别滤光片定义 电子设备为获取物体的位置和景深信息,需要以特定波长的红外光作为传感的媒介,因此需要去除太阳光中含有的干扰频段的红外线,保留地表太阳光中较为薄弱的特定频段红外光(例如940nm)。生物识别滤光片的使用可允许上述特定频段的红外光通过,因此也称为窄带滤光片。 生物识别滤光片属于精密光电薄膜元器件之一,其主要原理是通过特殊的光学设计实现特定波段光源的高透射或高反射效果,帮助终端产品完成生物信息的提取、筛选和转化以及3D景深信息的获取。

二、生物识别滤光片作用 与生物识别滤光片不同点在于,红外截止滤光片是利用精密光学镀膜技术在白玻璃、蓝玻璃或树脂片等光学基片上交替镀上高低折射率的光学膜,红外截止滤光片可实现可见光区(400-630nm)高透,近红外光区(700-1,100nm)截止的光学滤光片,并通过实现近红外光区截止以消除红外光对成像的影响。 而生物识别滤光片与红外截止滤光片的透过频段相反,仅允许通过特定频段红外光(例如940nm),并通过特殊的光学设计实现特定波段光源的高透射或高反射效果,生物识别滤片可允许智能手机、AR/VR设备等能够获取特定频段红外光所携带的3D景深信息,并帮助电子产品完成生物信息的提取、筛选和转化以及3D景深信息的获取,以实现3D人脸识别、虹膜识别、手势识别等生物识别功能。 三、生物识别滤光片分类及参数 生物识别滤光片是从窄带滤光片中细分出来的,其定义与窄带滤光片相同。因此,生物识别滤光片在特定的波段允许光信号通过,而偏离这个波段以外的两侧光信号被阻止,生物识别滤光片的通带相对来说比较窄,一般为中心波长值的5%以下。滤光片产品主要按光谱波段、光谱特性、膜层材料、应用特点等方式分类。 光谱波段:紫外滤光片、可见滤光片、红外滤光片、生物识别滤光片; 光谱特性:带通滤光片、截止滤光片、分光滤光片、中性密度滤光片; 膜层材料:软膜滤光片、硬膜滤光片; 带通型:选定波段的光通过,波段外的光截止。其光学指标主要是中心波长(CWL),半带宽(FWHM)。 短波通型:短于选定波长的光通过,长于该波长的光截止。比如红外截止滤光片,IBG-650。 长波通型:长于选定波长的光通过,短于该波长的光截止,比如红外透过滤光片,IPG-800。 生物识别滤光片主要相关参数有:中心波长、半高宽(带宽)、峰值透过率、截止范围、截止深度(OD值)等。 中心波长:生物识别滤光片的中心波长类似于仪器或设备的工作波长,中心波长是指通带中心位置的波长; 半高宽(带宽):带宽是指通带中透过率为峰值透过率的一半的两个位置之间的距离,有时也叫半高宽; 峰值透过率:生物识别滤光片在通带中最高的透过率大小; 截止范围:截止范围是指除了通带以外,要求截止的波长范围。对于生物识别滤光片而言,有一段是短截止,另一段截止波长高于中心波长的一段;

液晶知识扫盲系列4:彩色滤光片(color filter)

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter? 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色?这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下

颜料细化与彩色滤光片

颜料细化与彩色滤光片 颜料细化与彩色滤光片 1、综述 彩色滤光片(Color filter)是液晶显示器重要组成部件,液晶显示器能呈现彩色的影像,主要依靠彩色滤光片。背光源的白光透过液晶层,照射到彩色滤光片,通过彩色滤光片对应每个象素上的红、绿、蓝三色颜料光阻,形成红、绿、蓝光,最后在人眼中混合形成彩色影像。如图1-1所示。彩色滤光片在TFT—LCD显示面板中的成本比重较大,以15in面板材料成本来看,彩色滤光片占24%左右,是占面板成本比重最大的零组件。 由于用彩色滤光片实现彩色显示非常方便,而且三基色(R,G,B)彩膜在各自特定的光谱范围内具有比较理想的光谱透过率曲线,可获得相当高的色纯度和比较宽阔的彩色再现范围,因此,这种方式已成为液晶显示多色化或全色化的主要方式,尤其在便携式信息终端领域。可见,彩色滤光片的质量及其技术发展对液晶显示器的质量至关重要。 1.1彩色滤光片的性能 彩色层的材料和工艺决定了彩色滤光片的光谱特性、平整度及耐热、耐光和耐化学腐蚀性。对彩色滤光片性能的要求如下。 色纯度和透过率反映显示器件表现色彩的能力和范围。高色纯度和高透过率是TFT- LCD 显示色彩丰富逼真的高画质图象所必备的性能指标。构成彩色层的颜料和颜料光阻是影响色纯度和透过率的决定性因素。应尽可能选择谱峰比较尖锐的颜料,滤掉不必要的波长的光。R 、G 、B 三基色的透射光谱应适中,透射波长范围不能太窄、否则彩色层的透光度太低;透射波长范围也不能太宽、否则三基色光谱将发生重迭,使滤色层的彩色还原能力变差。因此,颜料及颜料光阻的合理选型很重要。 1.2颜料光阻 光阻剂(Photo Resist)是一种感光材料,广泛被使用在半导体及TFT—LCD面板生产线的微影制程;主要成分包括光阻颜料、树脂、溶剂及其他添加剂。 光阻剂有正负型之分,正型光阻分子键被光线照射后会断裂,因此暴露在光线照射的部分易溶于显影液中,一般被应用在TFT Array制程;而负型光阻的分子键,则会因为光线的照射而产生交联(Cross Link)而紧密结合,所以在黄光制程中,被光罩遮蔽的部分,分子间因没有产生交联作用,将被溶于显影液中洗去。目前在TFT产业中,应用于彩色滤光片的光阻属于负型光阻。 表1 颜料光阻的组成 1.3颜料细化

窄带滤光片设计报告

窄带滤光片设计报告 综述: 窄带滤光片是一种带通滤波器,它利用电解质和金属多层膜的干涉作用,可以从入射光中选取特定的波长,窄带滤光片的带通一般比较短,通常为中心波长的5%以下。干涉滤光片是由两块内表面镀有高反射膜(介质或金属膜)的相互平行的高平面度玻璃板或石英板组成,在内表面之间形成多次反射以产生多光束之间的干涉。其作用是让光源中某一窄带光谱的光波以尽可能高的透射率通过,而使其他光谱范围的光波衰减,以获得单色性良好的准单色光。窄带滤光片可代替如光栅那样的昂贵的分光器件,广泛应用于光学实践和工业领域。 设计内容: 窄带滤光片的设计与制作 窄带滤光片工作原理:多光束干涉 由多光束干涉中光程差公式 当相干光束数目很大时,只有确定的n 、d 、i 值,光源中只有严格满足上述公式的波长才能够基本无衰减的通过,微小的偏差使上述条件的波长成分将由于近似相消而衰减,从而实现窄带滤波。 设计要求: 入射介质0n =1;出射介质g n =1.52;入射角0θ=?0;中心波长λπ?i n d M sin 42 20=-=?

=450(亦即参考波长),中心波长透过率大于95%,透射光谱的半0 宽度小于45nm。使用n H=2.26(TiO2), n L=1.45(Al3O2)。 膜系设计: H L H H H H L H 软件模拟效果: 模拟数据: 中心波长:450nm 半波宽度:43nm 中心透过率:95.23%

窄带滤光片的制备过程: 1.清洗镀膜机,安装监控片,将待蒸发的薄膜材料放入蒸发容器 中; 2.清洗玻璃基片,由于设计要求不高,镜片只用酒精进行擦拭。 3.根据膜系设计的结果将设计参数置入镀膜机的控制系统;然后在控制系统的监控下镀膜机镀膜机全自动镀制干涉滤光片。 但是由于在实验过程中机器出现故障,所以临时决定使用溅射的方法来进行镀膜, 在镀膜之前算好每层膜所需要的时间,然后人为的对仪器镀膜时间进行控制,由于我们初次接触,这样的工作由一位博士生学长进行,并在镀膜的同时为我们讲解相关知识。 窄带滤光片实测数据: 中心波长:422nm 半波宽度:57nm 中心透过率:67.14% 误差分析: 1.中心波长向左漂移28nm : 根据公式 2λ =nd ,由于间隔层的光学厚度较小,导致中心波长减小即向左漂移。其造成误差因素包括两个:①使用的镀膜金属中含有杂质,导致其折射率降低,影响了光学薄膜的光学厚度。②镀膜时间计算不准确或在镀膜时,没有掌握好镀膜时间,导致膜厚度较窄,降低了光学厚度。

液晶知识扫盲系列彩色滤光片colorfilter

液晶知识扫盲系列彩色滤光片c o l o r f i l t e r The following text is amended on 12 November 2020.

液晶知识扫盲系列4:彩色滤光片(color filter) 一,什么是color filter 彩色滤光片(Color filter)是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。彩色滤光片通常安装在光源的前方,使人眼可以接收到饱和的某个颜色光线。有红外滤光片,绿色,蓝色等。与UV滤光片,VD滤光片相比,凡是带色的滤光片之总称。如反差滤光片、分色用滤光片、LB滤光片等。 LCD上的color filter一般采用R(red 红),G(green 绿),B(blue蓝) 彩色滤光片来控制色彩的显示。要了解他控制颜色的原理,先要了解TFT-color filter的结 构及组成,才能明白它是如何可以在LCD上显示出我们需要的图像的。 二,color filter的结构 彩色滤光片基本结构是由玻璃基板(Glass Substrate),黑色矩阵(Black Matrix),彩色层(Color Layer),保护层(Over Coat),ITO导电膜组成。一般穿透式TFT用彩色光片结构如下图。 首先,如果我们使用高倍的放大镜观察color filter, 可以看到如下所示,是由每一个很少的RGB小点构成,我们把每一个绿色的,红色或蓝色的小点称之为sub-pixel. 每一个RGB的组合称之为pixel. 而旁边黑色的部分,我们就称之为black matrix(黑色矩阵)。为什么我们要使用RGB颜色这是利用三基色混色原理,自然界中的任何颜色可由RGB三种色彩通过不同的比例混合而成。 Color filter 平面图 理解了它们能够显示任何我们想要的颜色之外,我们再看看他是如何显示的。如下图,是液晶面板的结构图。大致可以分为两部:(1)提供光源的Back light unit(背光源,详细介绍请参考上期介绍)。(2)液晶面板(液晶面板可以简单的看 是color filter 和TFT中间夹着液晶而成)。 详细的结构剖面图如下 Color filter 剖面图 Panel 结构图 三,color filter的显示原理 我们顺着光的路线走,就能明白液晶的显示原理及color filter在LCD显示中的作 用了。 首先,背光源发出我们要的特定色域的光(色坐标的知识后续再讲),光通过下偏光片,把光处理成统一方向的偏向光(与上偏光片偏向相差90度)。光透过ITO (Indium Tin Oxide 氧化铟锡,是一种用在LCD制程上的透明电极,主要利用其可 以导电又能透光的特性),光透过下玻璃基板(用来固定TFT用,也就是TFT是生成在下玻璃基板上的),再透过TFT,TFT是具有开关作用的,类似于每个小窗子。每 个小窗子对应每个color filter的sub-pixel,这里TFT开关的作用,就是用来显示我们需要的图像的,根据电路控制,需要显示的,窗子打开,不需显示的,窗子关闭。光再通过液晶(重点理解,实际上窗子的打开与半闭,实际是控制液晶分子是否发生偏转)偏转传递的方式,光再透过ITO(上下两层ITO就是为了制控TFT的并关用的)传到color filter并透过它,有光透过的地方,就显示该种颜色,光再透过 上玻璃基板(同TFT的基板一样,上琉璃基板是用来固定color filter用的)。然

彩色滤光片RGB漏光不良工艺改善探究

彩色滤光片RGB漏光不良工艺改善探究 针对高清晰液晶显示器制作所需的高开口率彩色滤光片制作过程中出现的RGB漏光不良进行工艺改善探究。实验验证了Align Tolerance、PCP温度及Overlay补正等改善方法对产品的影响情况,同时结合成本及对实际生产的影响进行比较,成功导入最合适的PCP温度、新的Overlay补正方案,降低了高开口率产品的漏光不良发生率。 标签:彩色滤光片;漏光不良;工艺改善 Abstract:In view of the poor RGB leakage caused by the fabrication of high aperture color filters in the production of high-definition liquid crystal display (LCD),process improvement is explored. The experiment verified the effect of Align Tolerance,PCP temperature and Overlay correction on the product. At the same time,compared with the cost and the effect on the actual production,the most suitable PCP was introduced. The temperature and the new Overlay correction scheme have reduced the incidence of poor leakage of products with high opening rate. Keywords:color filter;bad light leakage;process improvement 引言 随着高清晰,高透过率产品技术的发展,液晶面板的关键组件彩色滤光片制作工艺中BM线宽需要更窄,开口率需要更高,阵列基板与彩色滤光片基板对位成盒时所需的精度也越来越高,极易出现对位偏差,而对位偏差又会导致漏光不良。实际生产中不同时间建立的TFT-LCD生产线的设备精度均有差异,因此,在现有生产线设备精度的基础上对彩色滤光片的RGB工艺图形位置和精度的改善研究对控制漏光不良发生及适应高开口率产品的导入具有重要意义。本文从RGB工艺制作过程控制角度,在现有设备精度和开发工艺的基础上探讨如何减少漏光不良的发生。 1 漏光不良及工艺管控 1.1 不良现象 如图1,2所示,分别为三种亚像素透射光下漏光现象,多数情况下漏光是对应亚像素向Overlap方向偏移,不良在成盒工序完成后会形成规则的亮点或亮线。 1.2 漏光不良工艺管控 为保证不同layer位置精度,设计引入Overlay Mark 作为过程监控标志。如图3所示(差异放大20000倍示意图),采用6shot 曝光时,color Pattern和BM

850 nm窄带低通滤光片性能指标管控

客户成品指标850 nm窄带低通滤光片性能指标管控 参考波形

激埃特光电ZK850窄带内部管控指标 1)原材料:HWB830黑玻璃, 直径8.0mm公差要求-0.1mm,厚度:3.5mm公差要求+/-0.1mm 表面质量:双面抛光,抛光面光洁度达到60-40以上最好是40-20标准,无肉眼可视砂眼,划伤,印渍,侧面无抛光印渍,崩边小于0.1mm,倒边小于0.2mm 光谱质量:300nm~800nm T<0.1%, 850nm T>70%, 880nm~1100nm T>85%,重点是中心波长管控T=50%处要求在827nm~836nm之间。 2)浮法玻璃:0.55mm玻璃公差在+/-0.05mm之间 3)S1面850窄带镀膜管控标准:镀膜后冷却1小时测量,中心波长在839nm~846nm之间,峰值透过大于80~90%之间,在80%以上的透过必须有5nm以上的空间(即5nm内的波长所对应的透过率应大于80%以上,以确保波长稳定后的合格率),半带宽FWHM控制:若中心波长在839nm半带宽可以放宽到22~25nm之间,若中心波长在846nm半带宽只能在19nm~21nm. 截止区700nm~820nm T<0.5%,880nm~1100nm T<0.5% 4)S2面分光膜面镀膜管控:只测试S1+S2双面情况下数值。 若S1面镀得峰值透过率大于90%镀完分光膜后,透过率要比只镀一面分光膜的高。即单面镀膜分光54%,S1+S2后由于不受背面4。2%的玻璃反射,将会达到56%左右。遇这种情况,要求高透过的窄带镀分光膜时透过要控制低点。比如53%(这个情况要求品保再做实验以确认实际情况) 相反的若窄带透过率只有70%左右,同样镀54%的分光膜后,将会下降个1%~3%. 5)品保管控:胶合前在投大片材料时,要把S1+S2双面已镀的窄带产品控制在50%~54%之间,需要考虑到分光膜面跟黑玻璃胶合后会有将5%个点的上浮。同时中心波长也会有1~3nm左右的向长波方向移动现象。 若把850多层膜面跟黑玻璃胶合透过率会下降5~15%个百分点,且不稳定。务必不能把S1面和S2面相反胶合,否则后果很难确认。 品保对双面镀膜后的中心波长管控: 中心波长:845nm~847nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在20nm~25nm之间。 中心波长:848nm~852nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在19nm~21nm之间。 中心波长:853nm~855nm之间的峰值透过率在50~55%且850nm透过率必须在50%以上。半带宽在20nm。 测试点一个大片至少要测试5个点,距边缘10mm处的且距离档边角20mm处测一个点,再转90度相同情况下测一次,转三次后再测度最中心区域点。若遇到第四圈特别注意,第四圈靠最外边的边缘15mm内与其它的波长和透过率将变化非常大,要特别测试。并划分出来再投料。 其余圈,圈与圈之间一般会渐变偏长或波长偏短,透过率上也只是渐变化。也有可能遇到因为镀膜操作人员放置玻璃时有斜面现象,造成某圈中的某片镜片变化非常大,要特别跟踪。 6)成品光谱曲线管控: 最高峰值透过率不得高于60%。 850nm处透过率在50~59.5%之间。(这时可以不考滤中心波长位置) 半带宽在18nm~23nm之间,若透过率低半带宽可以宽,透过率高半带宽要窄点。 截止区350nm~820nm T<0.5%, 880~1100nm T<0.5%(在1000-1100nm处可放宽,因为我们检测仪器有误差)

彩色滤光片品质检测方法

彩色滤光片品质检测方法 在LCD的材料中,彩色滤光片(Color Filter;CF)占有相当重要的比例,也因为彩色滤光片的重要性,所以我们必须对于彩色滤光片的生产品质体系有更进一步的了解,以能共同投注心力将其品质更向上提升。 有关彩色滤光片的品管方式:一是彩色滤光片生产工厂品质体系;另一是说明彩色滤光片的品质检查项目与检查方法。 CF生产工厂品质体系 对于品质确认,一般而言可分为四个种类:试作开发,生产,QC检查,及受入检查,如(表一)所示。 在试作开发阶段,品质着重在设计上的评价是否满足原先预期,并尽可能地进行一些试验,以确保将来进入生产后不会发生过于意想不到的疏失。 在生产端,基本上处理生产过程中的品质,是借着工程检查及早发现问题,及时解决,出货前的检查是以与客户协议的规格作最后品质的确认。

在QC的立场而言,必须是有一只脚踏在客户那一边,因此,必须针对产品生产过程作详尽而周延的检查,包括:每批定期抽检来检核工程检查是否确实;对出货产品的抽验也是为了确定生产本身没有因为生产压力而放水;性能检查则是为保障客户的规格有忠实地被满足。 接下来,QC必须以自身公司的立场进行对产品的信赖性检查,以便能向客户保证产品的可靠度。当客户端发现产品有问题时,QC需尽速了解问题,分析产品失效故障的原因,回馈到生产,甚至到设计部门,以确保公司品质的信誉。另外,在客户端也会依据双方订定的规格进行必要项目的全检与抽验工作,确认产品品质OK,以确保其自身的权益。 品质检查项目与检查方法彩色滤光片规格包含:玻璃基板,BM材质性能,彩色滤光膜材质性能,O/C材质性能,ITO材质性能,信赖性测试,检查报告,及品管Issue(抽验方式)。对于彩色滤光片的品质,LCD厂一般是以彩色滤光片厂所提供之检测专用样品(不包含于出货数量中)做各项检测。 另外,由于彩色滤光片占LCD之成本很高,因此LCD厂也会不定期至彩色滤光片厂去查看,进行品质稽核,以了解彩色滤光片之制程状况是否有变化,作法一般是对照彩色滤光片工厂提出的QC工程图。正常来说,LCD厂所配合之彩色滤光片厂是不轻易更换的,其原因

彩色滤光片简介

彩色濾光片簡介 彩色化之關鍵零組件 彩色濾光片(Color filter)為液晶平面顯示器(Liquid Crystal Display)彩色化之關鍵零組件。液晶平面顯示器為非主動發光之元件,其色彩之顯示必需透過內部的背光模組(穿透型LCD)或外部的環境入射光(反射型或半穿透型LCD)提供光源,再搭配驅動IC(Drive IC)與液晶(Liquid Crystal)控制形成灰階顯示(Gray Scale),而後透過彩色濾光片的R,G,B彩色層提供色相(Chromacity),形成彩色顯示畫面。 基本結構 彩色濾光片基本結構是由玻璃基板(Glass Substrate),黑色矩陣(Black Matrix),彩色層(Color Layer),保護層(Over Coat),ITO導電膜組成。一般穿透式TFT用彩色光片結構如下圖。 圖一TFT彩色濾光片之結構 顏料分散法 彩色濾光片生產歷史中曾出現印刷法、染色法、染料分散法、電著法、乾膜法等等,但目前最主流的量產方式為顏料分散法(Pigment Dispersed Method),其中顏料分散型彩色光阻(Pigment Dispersed Color Resist,PDCR)為形成彩色層之原材料。 彩色濾光片之製造流程 顏料分散法之彩色層形成類似半導體的黃光微影製程,首先將顏料分散型彩

色光阻塗佈於已形成黑色矩陣的玻璃基板上,經軟烤(Pre-bake),曝光對準(Aligned),顯影(Developed),光阻剝離(Stripping),硬烤(Post-bake)重覆此流程三次形成R,G,B 之三色圖形(Pattern)。 顏料分散法之彩色濾光片之製造流程如下。 圖二顏料分散型彩色濾光片製造流程 畫素設計排列 Pattern圖形是由曝光對準製程中之光罩(Photo Mask)而來,一般皆是由面板廠(Panel)指定,提供設計圖樣。Pattern上之紅、綠、藍(R,G,B)畫素(Pixel)排列方式並不一定,可為馬賽克式、直條式、三角形式、四畫素等方式排列,主要是依顯示器之用途及視訊電極(Pixel Electrode)之形狀和大小而定。一般而言如要顯示AV動態畫面需採用如馬賽克式之不規則設計,如較常顯示文字畫面,如Note book,則採用直條式之設計。 (一)馬賽克式(二)直條式(三)三角形式(四)四畫素

LCD彩色滤光片行业调查报告

LCD显示面板市场调研 侯朝昭 U201011317 摘要:LCD显示技术是21世纪的重要显示技术,而彩色滤光片作为LCD面板的重要组成部件,在LCD产业链中占有一定的主导地位,而中国在彩色滤光片的生产水平方面与日本、韩国等有很大差距。本文在介绍液晶显示器的重要组成部件彩色滤光片结构及制造原理的基础上,概述了目前中国大陆及世界其他国家在LCD及LCD的组成部件彩色滤光片方面的产业发展状况,并对如何发展中国液晶显示面板上游产业,尤其是如何打破垄断,自制彩色滤光片提出了针对性意见。 关键字:LCD;彩色滤光片;受制于人;打破垄断 一、LCD行业发展现状概述 目前CRT显示技术已经相当成熟,要想在技术上和显示效果上有所突破已经相当困难,在这种情况下,唯有下一代显示技术的主流—LCD(液晶)显示技术获得了极大的发展,随着LCD显示技术的成熟以及产品价格的下降,LCD已成为显示器和电视机市场成长最快的产品[1]。 表1所列世界最大15家电视厂商中,中国大陆虽有6家厂商名列其中,但其规模都偏小,其中最大的TCL公司2012年市占率仅为5.8%,不敌日本的Sony 和东芝,更谈不上韩国三星和LG,中国6家厂商的合计市占率23.8%,也仅比三星一家高近4个百分点,以这样的规模和分散程度去参与世界竞争自当不易,与本土的巨大市场也很不相称。 表1 世界各大液晶生产厂商

随着近年多条TFT-LCD高世代生产线的相继投产,我国平板显示产业整体呈现出高速、良性的发展态势,2012年产业规模达700多亿元。我国在全球市场的占有率提升到11.2%,国内液晶面板的自给率大幅提高,其中电视面板的自给率达到30%,手机面板已能满足境内企业50%的需求[2]。 如此巨大的投资必将极大地拉动产业链上游的巨大需求,带动基板玻璃、液晶材料、偏光片、彩色滤光片、光学薄膜、触摸屏、背光源等相关原材料、元器件及相关设备等上游产业的发展。据测算,2016年之后,我国TFT-LCD产业每年至少需要液晶材料250吨、1.0亿平方米基板玻璃(含彩膜用玻璃)、1.0亿平方米偏光片、5000万平方米彩色滤光片、十几亿平方米光学薄膜、几亿背光源组件以及数以亿计的驱动IC等,其总价值将接近千亿元[2]。 从产业结构上来看,液晶显示产业可以分为上游基本材料制造、中游液晶面板制造及液晶模组、下游的各种光电显示产品。在上游产业众多材料制备的工业要求很高,基本上由日本企业和少数的美韩企业所垄断。中游产业包括液晶面板的制造、模组组装等,其中面板生产基本由日、韩、中国台湾地区所瓜分,由于模组生产对技术要求不高,现阶段许多企业逐步向大陆沿海,例如厦门、上海、深圳等城市转移。下游产业为终端显示产品相关的制造产业,包括各式家电、信息通讯等消费类产品,当前主要集中在中国大陆,或正在大量向中国大陆的相关城市转移[3]。 整体而言,我国液晶面板的上游配套产业起步要更晚一些。至今我们还没能建成完整的上游配套产业。从某种意义上讲,建立一个完整的上游配套工业体系要比建设几条高世代器件生产线更艰巨、更复杂。中国现在还只是刚刚起步,还有很长的路要走。 二、彩色滤光片的市场调研情况 根据最近的走访调研,我参观了苏宁电器、国美电器等电器商场,发现液晶电视的主要品牌如下:三星SAMSUNG、索尼SONY、夏普、LG、飞利浦Philips、海信Hisense、TCL、创维Skyworth、长虹、康佳、东芝等。其中4K超清电视最为流行,以三星的显示效果为最佳。如今的液晶显示已经进入4K时代。 而彩色滤光片是液晶显示器中的三大关键件之一,要想发展TFT-LCD产业,彩色滤光片技术是必须掌握的关键技术。

405nm带通滤光片

405nm带通滤光片 405nm窄带滤光片优点 1)高透过率,光信号衰减率小,有效提升工作距离和光强度 2)高截止深度,有效避免杂光干扰; 3)波长精度高; 4)10多年的光学滤光片生产经验,进口镀膜机制作,IAD离子辅助镀膜技术,确保低温飘,膜层牢固度更强。 405nm FWHM8nm 窄带滤光片指标 BP405 FWHM=8nm CWL:405nm±2nm FWHM:8nm ±2nm Tpeak:T≥45%@405>;±2nm(CWL) Blocking:OD5@200-1200nm Surface:80/50 Substrate:Quartz glass,H-K9L

Circle:φ10mm,φ12.5mm Thickness:4mm 405nm FWHM10nm窄带滤光片指标 BP405 FWHM=10nm CWL:405nm±5nm FWHM:10nm ±5nm Tpeak:>75% Blocking:Tmax<1%@300-380&435-1100nm Surface:80/50 Substrate:Float glass,B270 Size Circle:φ8-φ44mm Square:10×10-40×40mm Thickness:2.0-5mm 405nm窄带滤光片光学谱线图

405nm窄带滤光片应用 酶标仪、SIM酶标仪、荧光分光光度计、生化仪、全自动生化分析仪、半自动生化分析仪、激光扫描共焦显微镜技术、紫外检测器、紫外荧光分析仪、激光显微共焦拉曼光谱系统、全自动酶免分析系统、流式多色检测技术、流式细胞仪、共聚焦荧光显微镜、免疫分析系统、

窄带滤光片在人脸识别中的应用

窄带滤光片在人脸识别中的应用 上海兆九光电技术有限公司汤兆胜博士 人脸识别技术是对人的脸部特征信息进行识别,它是一种生物识别技术。用图像采集装置采集含有人脸的图像或视频流,并根据图像自动检测和跟踪人脸,并对人脸进行特征定位、提取,通过比对辨识达到识别不同人身份的目的。人脸识别的运算是非常巨大的,而初始图像质量的好坏以及算法优劣对识别效率有决定性的影响。这里,我们主要针对人脸识别系统中的图像采集装置所用到的窄带滤光片进行分析,目的是帮助使用者更好地了解窄带滤光片的作用和使用方法,以便正确选择窄带滤光片的技术指标。 由于人脸识别的计算量很大,目前都是基于黑白灰度图像进行识别的。其图像采集的结构示意图如图1所示。 图1人脸识别图像采集示意图 1.光源特点 人脸识别的图像采集装置中,光源一般采用高功率的红外二极管,波长以850nm和940nm居多。为提高识别效率以及提高光的利用率,从光源选择开始就要考虑到整体设计。虽然市面上购买的LED标称值都是850nm或940nm,但在测量具体的LED产品中心波长时发现还是有不少偏差的。 以850nm的LED为例,其实际中心波长有835nm的,也有865nm的。由于人脸识别系统中采用的光源为多颗大功率LED阵列,如果各个LED的中心波长不一致,所有LED的光谱在叠加之后,

综合的光谱带宽会展宽。单个850nm的LED带宽在50nm左右,如果由于中心波长不一致,多个LED叠加后的光谱带宽将会变成很宽。这对后续的窄带滤光片带宽的选择、能量利用率以及信噪比的提高都是十分不利的。所以要求在选择LED光源时,中心波长要一致。另外,LED光源随着工作温度的升高,其中心波长是向长波漂移的,每升高10℃,LED的中心波长向长波漂移1nm左右。而且随着工作温度的升高,LED的发光效率快速下降,当升高到85℃左右时,LED的输出效率降到50%左右。因此要求LED光源的散热效果良好。还有,在选择LED发光管的发散角时,以较小的发散角为好,这样可以提高光源的能量利用率。 2.接收器特点 在人脸识别系统中,接收器基本上采用CCD图像传感器。CCD具有体积小、重量轻、失真度小、功耗低、可低压驱动、抗冲击、抗振动、抗电磁干扰强的优点,因此被广泛应用于各种图像采集系统。 在人脸识别系统中的CCD基本上是硅衬底的,其光谱响应范围为400nm~1100nm,该范围也就是窄带滤光片要考虑的光谱范围。 3.窄带滤光片选择与注意事项 窄带滤光片主要是用来隔离干扰光,透过信号光,充分突显有用信息,减小干扰信息,为后续的图像处理和识别奠定基础。在目前,人脸识别主要应用在各种场合的考勤和门禁系统。有的是安装在室内光线较暗的地方,有的是安装在较为明亮的地方。不同场合下,干扰光的强度是不同的,因此对窄带滤光片的要求也不同。 我们发现,人们经常用隔离可见光透过红外光的红外玻璃作为干扰光隔离滤光片,当然也能收到一定效果。但是,普通的红外玻璃只是隔离了可见和紫外部分的光,并没有隔离红外光。而在实际的干扰光中,从可见到红外都是存在的,因为太阳光的光谱很宽,并且漫反射或散射的太阳光是主要的干扰源。因此,想得到良好的抗干扰效果,必须采用窄带滤光片。吸收型的红外玻璃与窄带滤光片在透过率性能上的比较如图2所示。从图中可以看出,不管是哪种牌号的红外玻璃都只隔离了可见光,对红外光没有任何阻挡效果,而窄带滤光片对信号光谱范围之外的所有干扰光的隔离都是很有效的。 图23mm厚的红外玻璃与0.55mm厚的干涉窄带滤光片曲线比较 4.窄带滤光片带宽的确定

滤光片

滤光片 一、定义 通过所需波长的光波,过滤掉不需要波长光波的一种光学器件。用来选取所需辐射波段的光学器件。滤光片的一个共性,就是没有任何滤光片能让天体的成像变得更明亮,因为所有的滤光片都会吸收某些波长,从而使物体变得更暗。 二、原理 滤光片是在塑料或玻璃基材中加入特种染料或在其表面蒸镀光学膜制成,用以衰减(吸收)光波中的某些光波段或以精确选择小范围波段光波通过,而反射(或吸收)掉其他不希望通过的波段。通过改变滤光片的结构和膜层的光学参数,可以获得各种光谱特性,使滤光片可以控制、调整和改变光波的透射、反射、偏振或相位状态。 三、透射率 透射是入射光经过折射穿过物体后的出射现象。被透射的物体为透明体或半透明体,如玻璃,滤色片等。若透明体是无色的,除少数光被反射外,大多数光均透过物体。为了表示透明体透过光的程度,通常用入射光通量与透过后的光通量之比z来表征物体的透光性质,z被称为光的透射率。 四、光学薄膜 1、光学薄膜干涉原理 光是一种电磁波。可以设想光源中的分子或原子被某种原因激励而振动, 这种振动导致分子或原子中的电磁场发生电磁振动。可以证明, 电场强度与磁场强度两者有 单一的对应关系,同时在大多光学现象中电场强度起主导作用, 所以我们通常将电场振动称为光振动,这种振动沿空间方向传播 出去就形成了电磁波。 电磁波的波长λ、频率f、传播速度v三者之间的关系为: v=λ f 各种频率的电磁波在真空中的速度都是一样的,即3 ×1 08m /s ,常用C 表示。但是在不同介质中,传播速率是不一样的。 假设某种频率的电磁波在某一介质中的传播速度为v,则C 与v 的比值称为这种介质对这种频率电磁波的折射率。 频率不同的电磁波,它们的波长也不同。波长在400到760 nm 这样一段电磁波能引起人们的视觉,称为可见光。普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。每个原子每一次振动所发出的光波只有短短的一列,持续时间约为10- 8秒。我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征——干涉、衍射和偏振等现象。这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波, 这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵 消(产生暗影)或者干涉加强( 产生比两束光能简单相加更强的 光斑) 图像,才是我们观察到的光的干涉现象。光学薄膜可以 满足光干涉的这些条件。如图1所示,它表示一层镀在基底( n2) 上的折射率为n1厚度为d1的薄膜,假定n1 < n2,n0为入射 介质的折射率。入射光束I 中某一频率的波列W 在薄膜的界 面1 上反射形成反射光波W 1,透过界面的光波穿过薄膜在界 面2 上反射后再次穿过薄膜,透过界面1 在反射空间形成反

相关文档