文档库 最新最全的文档下载
当前位置:文档库 › 高中物理:力学和电磁学知识点详解【考点突破】

高中物理:力学和电磁学知识点详解【考点突破】

高中物理:力学和电磁学知识点详解【考点突破】
高中物理:力学和电磁学知识点详解【考点突破】

高中物理:力学和电磁学知识点详解【考点突破】

力学部分:

1、基本概念:

力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

2、基本规律:

匀变速直线运动的基本规律(12个方程);

三力共点平衡的特点;

牛顿运动定律(牛顿第一、第二、第三定律);

万有引力定律;

天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

动量守恒定律(四类守恒条件、方程、应用过程);

功能基本关系(功是能量转化的量度)

重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

功能原理(非重力做功与物体机械能变化之间的关系);

机械能守恒定律(守恒条件、方程、应用步骤);

简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:

运动类型受力特点备注

直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

2.匀减速直线运动

曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

合外力指向轨迹内侧

(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

(合外力充当向心力)一般圆周运动的受力特点

向心力的受力分析

简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

4、基本方法:

力的合成与分解(平行四边形、三角形、多边形、正交分解);

三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);

处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t

图像);

解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

针对简谐运动的对称法、针对简谐波图像的描点法、平移法

5、常见题型:

合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况

及运动情况的分析(整体法、个体法)。

动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

动量机械能的综合题:

(1)单个物体应用动量定理、动能定理或机械能守恒的题型;

(2)系统应用动量定理的题型;

(3)系统综合运用动量、能量观点的题型:

①碰撞问题;

②爆炸(反冲)问题(包括静止原子核衰变问题);

③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

④子弹射木块问题;

⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

⑥单摆类问题:

⑦工件皮带问题(水平传送带,倾斜传送带);

⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

机械波的图像应用题:

(1)机械波的传播方向和质点振动方向的互推;

(2)依据给定状态能够画出两点间的基本波形图;

(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

(4)机械波的干涉、衍射问题及声波的多普勒效应。

电磁学部分:

1、基本概念:

电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

2、基本规律:

电量平分原理(电荷守恒)

库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

电场力做功的特点及与电势能变化的关系

电容的定义式及平行板电容器的决定式

部分电路欧姆定律(适用条件)

电阻定律

串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

焦耳定律、电功(电功率)三个表达式的适用范围

闭合电路欧姆定律

基本电路的动态分析(串反并同)

电场线(磁感线)的特点

等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)

电动机的三个功率(输入功率、损耗功率、输出功率)

电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

安培定则、左手定则、楞次定律(三条表述)、右手定则

电磁感应想象的判定条件

感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

通电自感现象和断电自感现象

正弦交流电的产生原理

电阻、感抗、容抗对交变电流的作用

变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题) 3、常见仪器:

示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

4、实验部分:

(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;

②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

(7)用多用电表测电阻及黑箱问题;

(8)练习使用示波器;

(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

5、常见题型:

电场中移动电荷时的功能关系;

一条直线上三个点电荷的平衡问题;

带电粒子在匀强电场中的加速和偏转(示波器问题);

全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程); 通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

通电导线在匀强磁场中的平衡问题;

带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何知识求解;在有界磁场中的运动时间);

闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

带电粒子在复合场中的运动(正交、平行两种情况):

①.重力场、匀强电场的复合场;

②.重力场、匀强磁场的复合场;

③.匀强电场、匀强磁场的复合场;

④.三场合一;

复合场中的摆类问题(利用等效法处理:类单摆、类竖直面内圆周运动);

LC振荡电路的有关问题;

高中物理力学综合试题及答案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为 R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅, 振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的 表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多少个振动过程;(2)从释放到物体停止运动,物体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速 跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

大学物理力学电磁学公式总结

大学物理力学电磁学公式 总结 Newly compiled on November 23, 2020

力学 复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J 平行轴定理 2md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?= 牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 1221 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理经典力学练习题

F 高中物理经典力学练习题 1.一架梯子靠在光滑的竖直墙壁上,下端放在水平的粗糙地面上,有关梯子的受力情况,下 列描述正确的是 ( ) A .受两个竖直的力,一个水平的力 B .受一个竖直的力,两个水平的力 C .受两个竖直的力,两个水平的力 D .受三个竖直的力,三个水平的力 2.如图所示, 用绳索将重球挂在墙上,不考虑墙的摩擦。如果把绳的长度 增加一些,则球对绳的拉力F 1和球对墙的压力F 2的变化情况是( ) A .F 1增大,F 2减小 B .F 1减小,F 2增大 C .F 1和F 2都减小 D .F 1和F 2都增大 3.如图所示,物体A 和B 一起沿斜面匀速下滑,则物体A 受到的力是( ) A .重力, B 对A 的支持力 B .重力,B 对A 的支持力、下滑力 C .重力,B 对A 的支持力、摩擦力 D .重力,B 对A 的支持力、摩擦力、下滑力 4.如图所示,在水平力F 的作用下,重为G 的物体保持沿竖直墙壁匀速下滑, 物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为:( ) A .μF B .μ(F+G) C .μ(F -G) D .G 5.如图,质量为m 的物体放在水平地面上,受到斜向上的拉力F 的作用而没动, 则 ( ) A 、物体对地面的压力等于mg B 、地面对物体的支持力等于F sin θ C 、物体对地面的压力小于mg D 、物体所受摩擦力与拉力F 的合力方向竖直向上 6.如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,则球对挡板的压力为( ) A.mgco s θ B. mgtan θ C. mg/cos θ D. mg 7.如图所示,质量为50kg 的某同学站在升降机中的磅秤上,某一时刻该同学发现磅秤的示数为40kg ,则在该时刻升降机可能是以下列哪种方式运动?( ) A.匀速上升 B.加速上升 C.减速上升 D.减 速下降 8. 如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速 靠岸的过程中( ) A. 绳子的拉力不断增大 B. 绳子的拉力不变 C. 船所受浮力增大 D. 船所受浮力变小 9.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1 和k 2,上面木块压在上面的弹簧上(但不拴接) ,整个系统处于平衡状态.现缓

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

(word完整版)高三物理力学综合测试题

实验高中高三物理力学综合测试题 (时间:90分钟) 一、选择题(共10小题,每小题4分,共计40分。7、8、9、10题为多选。) 1.一辆汽车以10m/s的速度沿平直公路匀速运动,司机发现前方有障碍物立即减速,以0.2m/s2的加速度做匀减速运动,减速后一分钟内汽车的位移是() A.240m B。250m C。260m D。90m 2.某人在平静的湖面上竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中一段深度。不计空气阻力,取向上为正方向,在下面的图象中,最能反映小铁球运动过程的v-t图象是() A B C D 3. 我国“嫦娥一号”探月卫星经过无数人的协 作和努力,终于在2007年10月24日晚6点05 分发射升空。如图所示,“嫦娥一号”探月卫星 在由地球飞向月球时,沿曲线从M点向N点飞行 的过程中,速度逐渐减小。在此过程中探月卫星 所受合力的方向可能的是() 4.设物体运动的加速度为a、速度为v、位移为s。现有四个不同物体的运动图象如图所示,假设物体在t=0时的速度均为零,则其中表示物体做单向直线运动的图象是() 5.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为 A.都等于 2 g B. 2 g 和0 C. 2 g M M M B B A? + 和0 D.0和 2 g M M M B B A? + 6.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则() A.A、B两处的场强方向相同 B.因为A、B在一条电场上,且电场线是直线,所以E A=E B C.电场线从A指向B,所以E A>E B a t a t 2 4 6 -1 1 2 5 6 -1 1 C 3 4 1 S t v 2 4 6 -1 1 2 4 6 -1 1 A B v v v v

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

大学物理电磁学知识点总结

大学物理电磁学知识点总结 导读:就爱阅读网友为您分享以下“大学物理电磁学知识点总结”资讯,希望对您有所帮助,感谢您对的支持! 大学物理电磁学总结 一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0

(真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s 环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L 电磁学 静电场 稳恒磁场稳恒磁场

电场强度:E 磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0 基本计算方法:1、点电荷电场强度:E = ur r u r dF (d F = Idl × B )(T) Idl sin θ 方向:沿该点处静止小磁针的N 极指向。基本计算方法:ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1

r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur ? dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍) 几种常见的带电体的电场强度公式: 几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1

高三物理力学综合测试题

高三物理力学综合测试题 2011-9-28 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行,如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不.可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时 得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上升到最大高度(距离底部) 的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气。活塞下 挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) θF R F

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理力学电磁学公式总结

力学复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= ?? ? ??===)()()(t z z t y y t x x 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= dt ds v v v v dt dz v dt dy v dt dx v z y x z y x =++==== 2 22,, 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 2 222222 ,,,n z y x n z z y y x x a a a a a a r r v a r dt dv a dt dv a dt dv a dt dv a += ++======== ττωα 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J dm r J ?= 2 平行轴定理 2 md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?=

牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 122 1 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA 功率:v F N ?= 功率:ω ?=M N 动能定理:看课合力E E A -== 动能定理:看课合力矩E E A -== 动能: 221mv E k = 动能: 22 1 ωJ E k = 保守力的功 21p p p E E E A -=?-= 重力势能:mgh E p = 重力势能:c p mgh E = 弹性势能:22 1kx E p = 万有引力势能:r m m G E p 2 1-= 机械能守恒条件:只有保守内力做功 碰撞:动量守恒 碰撞:角动量守恒 碰撞定理:0 20112n n n n v v v v e --= (0≤e ≤1)

高三物理力学综合测试题好好-带答案

高三物理力学综合测试题 一、本题共10小题.每小题4分,共40分。在每小题给出的四个选项中。有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的或不答的得0分。 1. 一汽车在路面情况相同的公路上直线行驶,下面关于车速.惯性.质量和滑行路程的讨论,正确的是 ( ) A.车速越大,它的惯性越大 B.质量越大,它的惯性越大 C.车速越大,刹车后滑行路程越长D.车速越大,刹车后滑行的路程越长,所以惯性越大 2. 两个相同的可视为质点的小球A 和B ,质量均为m ,用长度相同的两根细线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、B 两个小球,然后,用一水平方向的力F 作用在小球A 上,此时三根线均处于伸直状态,且OB 细线恰好处于竖直方向如图所示.如果两小球均处于静止状态,则力F 的大小为 ( ) A .0 B .mg C .3/3mg D .mg 3 3. 如图所示,木块A 质量为1kg ,木块B 的质量为2kg ,叠放在水平地面上,AB 间最大静摩擦力为1牛,B 与地面间摩擦系数为0 .1,今用水平力F 作用于B ,则保持AB 相对静止的条件是F 不超过: A .3牛 B .4牛 C .5牛 D .6牛 4. 两辆游戏赛车a 、b 在两条平行的直车道上行驶。0=t 时两车都在同一计时线处,此时比赛开始。它们在四次比赛中的t v -图如图所示。哪些图对应的比赛中,有一辆赛车追上了另一辆( ) 5.在距地面10m 高处,以10m/s 的速度抛出一质量为1kg 的物体,已知物体落地时的速度 为16m/s ,下列说法中正确的是(g 取10m/s 2) ( ) A .抛出时人对物体做功为50J B .自抛出到落地,重力对物体做功为100J C .飞行过程中物体克服阻力做功22J D .物体自抛出到落地时间为1s 6.16世纪末,伽利略用实验和推理,推翻了已在欧洲流行了近两千年的亚里士多德关于力和运动的理论,开启了物理学发展的新纪元。在以下说法中,与亚里士多德观点相反的是( ) A.四匹马拉的车比两匹马拉的车跑得快;这说明,物体受的力越大,速度就越大 B.一个运动的物体,如果不再受力了,它总会逐渐停下来;这说明,静止状态才是物体不受力时的“自然状态” C.两物体从同一高度自由下落,较重的物体下落较快 D.一个物体维持匀速直线运动,不需要力 7.2006年5月的天空是相当精彩的,木星冲日、火星合月、木星合月等景观美不胜收,而3题 B A F 0 F A B 2题 8

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

高中物理力学综合试题与答案

物理竞赛辅导测试卷(力学综合1) 一、(10 分)如图所时,A、B 两小球用轻杆连接, A 球只能沿 A 竖直固定杆运动,开始时,A、B 均静止,B 球在水平面上靠着固定 杆,由于微小扰动, B 开始沿水平面向右运动,不计一切摩擦,设 A B 在下滑过程中机械能最小时的加速度为a,则a= 。 二、(10 分) 如图所示,杆OA 长为R,可绕过O 点的水平 C B 轴在竖直平面内转动,其端点 A 系着一跨过定滑轮B、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略, B 在 α A O 的正上方,O B 之间的距离为H,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M M R ω 三、(10 分)在密度为ρ0 的无限大的液体中,有两个半径为 R、密度为ρ的球,相距为d,且ρ>ρ0,求两球受到的万有引力。 O 四、(15 分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运 动。在某一时刻质量为m1 的物体停下来,而质量为m2 的物体具有垂直连线方向的速度v,求此时线的张力。 五、(15 分)二波源B、C 具有相同的振动方向和振幅, 振幅为0.01m,初位相相差π,相向发出两线性简谐波,二 y v v 波频率均为100Hz,波速为430m/s,已知 B 为坐标原点, C 点坐标为x C=30m,求:①二波源的振动表达式;②二波的O B C x 表达式;③在B、C 直线上,因二波叠加而静止的各点位置。 六、(15 分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k,弹簧的一端固定在 墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x0 处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规 定物体从最右端运动至最左端(或从最左端运动 至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多 少个振动过程;(2)从释放到物体停止运动,物 体共用了多少时间?(3)物体最后停在什么位 O x0 置?(4)整个过程中物体克服摩擦力做了多少 功? 七、(15 分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速 跑动,如图所示,当狼经过 A 点时,一只猎犬以相同的速度从圆心 v0 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上?O R A

高中物理电磁学知识点梳理2

高中物理知识点梳理 电磁学部分: 1、基本概念: 电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速 2、基本规律: 电量平分原理(电荷守恒) 库伦定律(注意条件、比较-两个近距离的带电球体间的电场力) 电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场) 电场力做功的特点及与电势能变化的关系 电容的定义式及平行板电容器的决定式 部分电路欧姆定律(适用条件) 电阻定律 串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系) 焦耳定律、电功(电功率)三个表达式的适用范围 闭合电路欧姆定律 基本电路的动态分析(串反并同) 电场线(磁感线)的特点 等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点 常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管) 电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率) 电动机的三个功率(输入功率、损耗功率、输出功率) 电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截

(完整版)人教版高中物理力学综合测试题

A C D B 力学综合测试题 一、选择题:(每小题4分,共60分,其中1、2两小题为多选题,其余的为单选题。) 1.如下图所示,质量均为m 的两木块a 与b 叠放在水平面上,a 受到斜向上与水平面成θ角的力作用,b 受到斜向下与水平成θ角的力作用,两力大小均为F ,两木块保持静止状态,则( ) A .a 、b 之间一定存在静摩擦力 B .b 与地面之间一定存在静摩擦力 C .b 对a 的支持力一定小于mg D .地面对b 的支持力一定大于2mg 2.如图1-67所示,位于斜面上的物块M ,在沿斜面向上的力F 作用下,处于静止状态,则斜面作用于物块的静摩擦力( ) A .方向可能沿斜面向上 B C .大小可能等于零 D .大小可能等于F 3.对于下图所示的两种情况,若都在A 的受力情况,下面说法中正确的是( ) A .甲、乙两球所受合力都为零 B .甲、乙两球都只受重力作用 C .只有甲球只受重力的作用 D .只有乙球只受重力的作用 4.如图1-61p 速下滑,则( ) A .Q 保持静止,而且没有相对水平面运动的趋势 B .Q 保持静止,但有相对水平面向右运动的趋势 C .Q 保持静止,但有相对水平面向左运动的趋势 D .因未给出所需要的数据,无法对Q 是否运动 或有无运动趋势作出判断 5.如图所示,高度相同的两个光滑轨道AB 和ACD 的总长度相同。现将两个相同的小球同时从A 由静止释放,分别沿两个轨道向下滑行,不计拐角C 处的动能损失,下列 说法中正确的是 ( ) A.沿AB 轨道下滑的小球先到达水平面 B.沿ACD 轨道下滑的小球先到达水平面 C.沿两个轨道下滑的小球同时到达水平面 D.不知道每个斜面的具体倾角大小关系,无法确定 6.有些科学家们推测,太阳系还有一个行星,从地球上看,它永远在太阳的背面,因此人类一直没有能发现它。按照这个推测这颗行星应该具有以下哪个性质( ) A.其自转周期应该和地球一样 B.其到太阳的距离应该和地球一样 C.其质量应该和地球一样 D.其密度应该和地球一样 7.如图所示是一列沿x 轴正向传播的简谐横波在t =0时刻的波形图。已知波速为20m/s ,则在t =0.17s 时刻,关于图中P 质点的运动情况的说法中正确的是( ) 甲 乙

高中【物理】高中物理电磁学所有概念-知识点-公式

高中物理电磁学所有概念-知识点-公式 十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电 势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E =U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:

相关文档
相关文档 最新文档