文档库 最新最全的文档下载
当前位置:文档库 › 元素电负性的周期性变化

元素电负性的周期性变化

元素电负性的周期性变化

元素电负性的周期性变化

1、为了比较元素的原子在化合物中吸引电子能力的大小,美国化学家鲍林于1932年首先提出了用

来衡量元素在化合物中吸引电子的能力。他指定的电负性为,并以此为标准确定其他元素的电负性。

2、金属性越强,金属元素原子越容易电子,对键合电子的吸引能力越,电负性越;倒过来说也成立。

非金属性越强;非金属元素原子越容易电子,对键合电子的吸引能力越,电负性越;倒过来说也成立。

故可以用电负性来度量金属性与非金属性的相对强弱。

3、观察P23图2-14,总结元素电负性的周期性变化

(1)同周期元素从左往右,元素的电负性总体,表明金属性逐渐,非金属性逐渐。(2)同主族元素从上往下,元素的电负性总体,表明金属性逐渐,非金属性逐渐。【问题解决】

根据P23图2-14回答:

(1)一般认为,电负性的元素为非金属元素,电负性的元素为金属元素。而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。

(2)电负性最小的元素是,电负性最大的元素是

(3)电负性数值小的元素在化合物中的化合价为,电负性大的元素在化合物中的化合价为指出下列化合物中化合价为正值的元素,

CH4 NaOH NF3NH3SO2H2S ICl HBr

(4)一般认为,如果两个成键元素间的电负性差值,他们之间通常形成,如果两个成键元素间的电负性差值,他们之间通常形成

判断哪些是离子化合物,哪些是共价化合物?

NaF HCl NO MgO KCl CH4

共价化合物

离子化合物

4、对角线规则

在元素周期表中,某些主族元素与右下方的主族元素(如图)的有些性质是相似的(如硼和硅的含氧酸盐都能形成玻璃且互熔),被称为“对角线规则”。

请查阅电负性表给出相应的解释?

练习:

1、电负性的大小也可以作为判断金属性和非金属性强弱的尺度下列关于电负性的变化规律正确的是()

A.周期表从左到右,元素的电负性逐渐变大B.周期表从上到下,元素的电负性逐渐变大

C.电负性越大,金属性越强D.电负性越小,非金属性越强

2、元素电负性随原子序数的递增而增强的是()

A.Na K Rb B.N P As

C.O S Cl D.Si P Cl

3、根据对角线规则,下列物质的性质具有相似性的是()

A、硼和硅

B、铝和铁

C、铍和铝

D、铜和金

元素周期表中的规律

元素周期表中的规律 一、元素周期表 1、周期表结构 横行——周期:共七个周期,三短三长一不完全。 各周期分别有2,8,8,18,18,32,26种元素。前三个周期为短周期,第四至第六这三个周期为长周期,第七周期还没有排满,为不完全周期。 纵行——族:七主七副一零一VIII,共16族,18列。要记住零族元素的原子序数以便迅速由原子序数确定元素名称。 周期:一二三四五六七 元素种类:28818183226 零族:2He10Ne 18Ar 36Kr54Xe86Rn 二、元素周期表中元素及其化合物的递变性规律 1.原子结构与元素周期表的关系 电子层数= 周期数 主族元素最外层电子数= 主族序数= 最高正化合价 由上述关系,就可以由原子结构找出元素在周期表中的位置,也可以由位置确定原子结构。 2、规律性

由此可见,金属性最强的元素在周期表的左下角即Cs(Fr具有放射性,不考虑),非金属性最强的元素在右上角即F。对角线附近的元素不是典型的金属元素或典型的非金属元素。 3、元素周期表中之最 原子半径最小的原子:H原子 质量最轻的元素:H元素; 非金属性最强的元素:F 金属性最强的元素:Cs(不考虑Fr) 最高价氧化物对应水化物酸性最强的酸:HClO4 最高价氧化物对应水化物碱性最强的碱:CsOH 形成化合物最多的元素:C元素 所含元素种类最多的族:ⅢB 地壳中含量最高的元素:O元素,其次是Si元素 地壳中含量最高的金属元素:Al元素,其次是Fe元素 含H质量分数最高的气态氢化物:CH4 与水反应最剧烈的金属元素:Cs元素 与水反应最剧烈的非金属元素:F元素 常温下为液态的非金属单质是Br2,金属单质是Hg …… 4、特殊性

元素性质的周期性变化的规律

一、原子半径同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;但由于阴离子是电子最外层得到了电子而阳离子是失去了电子所以, (同种元素) (1) 阳离子半径<原子半径(2) 阴离子半径>原子半径(3) 阴离子半径>阳离子半径。短周期中电子填充到最外电子层,同层电子间屏蔽效应弱,因此有效核电荷增加显著,而电子层数不变,核对外层电子吸引力逐渐变大,所以短周期元素原子半径从左到右递减较快。长周期元素中,从第3(ⅢB)族开始,电子填充至到次外层上,这新增加到次外层上的电子对外层电子屏蔽作用强。因此,随核电荷的增加而有效核电荷却增加不多。同一族元素中,由上至下虽然核电荷增加较多,但相邻两元素之间依次增加一个电子层因而屏蔽作用也较大,结果有效核电荷增加不显著。同一族中,从上到下,随着原子序数的递增,元素原子半径递增。主族中从上到下核电荷明显增大,但随电子层数的增加,屏蔽作用增加,因而有效核电荷增加不明显,由于电子层数的增加,原子半径明显增大;副族的过渡元素,第一过渡系与第二过渡系由于有效核电荷增大不及电子层增加的作用,原子半径增大。但由于镧系收缩,使第二、第三过度系同族元素的半径几乎不变,有的甚至减小。 二、电离能同周期主族元素从左到右作用到最外层电子上的有效核电荷逐渐增大,半径逐渐减小,电离能也逐渐增大,稀有气体由于具有稳定的电子层结构,其电离能最大,故同周期元素从强金属性逐渐变到非金属性,直至强非金属性。同周期副族元素从左至右,由于有效核电荷增加不多,原子半径减小缓慢,有电离能增加不如主族元素明显。由于最外层只有两个电子,过渡元素均表现金属性。同一主族元素从上到下,原子半径增加,有效核电荷增加不多,则原子半径增大的影响起主要作用,电离能由大变小,元素的金属性逐渐增强。同一副族电离能变化不规则。 三、电子亲和能变化趋势与电离能相似,具有大的电离能的元素一般电子亲和能也很大 四、电负性一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。过渡元素的电负性值无明显规律。就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大(4.0);周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素(0.7)。一般说来,非金属元素的电负性大于2.0,金属元素电负性小于2.0。

元素周期表的九大规律

第七讲元素周期表和元素周期律 一、分析热点把握命题趋向 热点内容主要集中在以下几个方面:一是元素周期律的迁移应用,该类题目的特点是:给出一种不常见的主族元素,分析推测该元素及其化合物可能或不可能具有的性质。解该类题目的方法思路是:先确定该元素所在主族位置,然后根据该族元素性质递变规律进行推测判断。二是确定“指定的几种元素形成的化合物”的形式,该类题目的特点是:给出几种元素的原子结构或性质特征,判断它们形成的化合物的形式。解此类题的方法思路是:定元素,推价态,想可能,得化学式。三是由“位构性”关系推断元素,该类题目综合性强,难度较大,一般出现在第Ⅱ卷笔答题中,所占分值较高。 二.学法指导:1、抓牢两条知识链 (1)金属元素链:元素在周期表中的位置→最外层电子数及原子半径→原子失去电子的能力→元素的金属性→最高价氧化物对应水化物的碱性→单质置换水(或酸)中氢的能力→单质的还原性→离子的氧化性。 (2)非金属元素链:元素在周期表中的位置→最外层电子数及原子半径→原子获得电子的能力→元素的非金属性→最高价氧化物对应水化物的酸性→气态氢化物形成难易及稳定性→单质的氧化性→离子的还原性。

2、理解判断元素金属性或非金属性强弱的实验依据 (1)金属性强弱的实验标志 ①单质与水(或酸)反应置换氢越容易,元素的金属性越强。②最高价氧化物对应的水化物的碱性越强,元素的金属性越强。③相互间的置换反应,金属性强的置换弱的。④原电池中用作负极材料的金属性比用作正极材料的金属性强。⑤电离能 (2)非金属性强弱的实验标志 ①与氢气化合越容易(条件简单、现象明显),元素的非金属性越强。②气态氢化物越稳定,元素的非金属性越强。③最高价氧化物对应的水化物的酸性越强,元素的非金属性越强。④相互间置换反应,非金属性强的置换弱的。⑤电负性 三.规律总结: 1、同周期元素“四增四减”规律 同周期元素从左至右:①原子最外层电子数逐渐增多,原子半径逐渐减小;②非金属性逐渐增强,金属性逐渐减弱;③最高价氧化物对应的水化物的酸性逐渐增强,碱性逐渐减弱;④非金属气态氢化物的稳定性逐渐增强,还原性逐渐减弱。 2、同主族元素“四增四减四相同”规律 同主族元素从上到下:①电子层数逐渐增多,核对外层电子的引

浅谈元素的电负性

浅谈元素的电负性 元素电负性是反映分子中原子对成键电子的吸引能力的概念。其计算方法和在元素周期表中的周期性变化以及各种应用需要在化学学习过程中加以关注。 一、电负性概念的提出 元素的电离势和电子亲和势可反映某元素的原子的失去和获得电子的能力,但这种反映并不完美,因为有些元素在形成化合物时,并没有失去和获得电子。为了更全面地反映分子中原子对成键电子的吸引能力,科学家又提出了元素电负性的概念。 电负性综合考虑了电离能和电子亲和能,它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数字越大,原子在形成化学键时对成键电子的吸引了越强;反之,元素电负性数字越小,原子在形成化学键时对成键电子的吸引了越弱。 二、电负性的计算方法 元素的电负性是衡量分子中原子吸引电子能力大小的一种标度。目前电负性的计算方法有多种,每一种方法的电负性数值都不同,常用的计算方法有三种: (一)莱纳斯·鲍林(L·PauLing)于1932年首先提出的标度:根据化学数据和分子的鍵能,用符号“Xp”表示,指定氟的电负性为4.0,计算其他元素的相对电负性,故元素的电负性没有单位。 (二)1934年密立根(R·S·Mulliken)综合考虑了元素的电离势(I)和电子亲和势(E),提出了新的元素的电负性计算方法:X=1/2·(I+E),这样计算求得的电负性数值为绝对的电负性。密立根的电负性(X)由于没有完整的电子亲和势数据,应用上受到限制。 (三)1957年阿莱(A·L·Aiired)和罗周(E·D·Rochow)在原子核与成键原子的电子静电作用基础上,也提出了计算元素的电负性的公式:XAR=(0.359x2*/r2)+0.744,并得到了一套与鲍林的元素的电负性数值相吻合的数据。 不同的电负性数据,建立在不同的基础上,它们不完全相同,但是都反映了元素的原子在化合物中吸引电子的能力。后两者都与鲍林电负性数值有线性关系,三套数据能较好地吻合,只在某些元素上略有差异。利用电负性值时,必须是同一套数值进行比较;相对来讲,鲍林的电负性标度更加简便,实用。 三、电负性在元素周期表中的周期性变化 同一周期从左到右,有效核电荷递增,原子半径递减,对电子的吸引能力渐

元素周期表的规律总结

元素周期表的规律 一、原子半径 同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;同一族中,从上到下,随着原子序数的递增,元素原子半径递增。 二、主要化合价(最高正化合价和最低负化合价) 同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1价到 +7价),第一周期除外,第二周期的0、F元素除外最低负化合价递增(从-4价到-1价)第 一周期除外,由于金属元素一般无负化合价,故从W A族开始。元素最高价的绝对值与最低价的绝对值的和为8 三、元素的金属性和非金属性 同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增; 同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减; 四、单质及简单离子的氧化性与还原性 同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所 对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强, 简单阳离子的氧化性减弱。元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。 五、最高价氧化物所对应的水化物的酸碱性 同一周期中,从左到右,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱); 同一族中,从上到下,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。 元素的最高价氢氧化物的碱性越强,元素金属性就越强;最高价氢氧化物的酸性越强, 元素非金属性就越强。 六、单质与氢气化合的难易程度 同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易; 同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。 七、气态氢化物的稳定性 同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强; 同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。 此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充: 随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面 的元素一般比上面的元素更具有金属性。元素的气态氢化物越稳定,非金属性越强。 同一族的元素性质相近。 以上规律不适用于稀有气体。 八、位置规律判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2 )主族元素的族数等于最外层电子数。 九、阴阳离子的半径大小辨别规律 三看: 一看电子层数,电子层数越多,半径越大, 二看原子序数,当电子层数相同时,原子序数越大半径反而越小三看最外层电子数,当电子层数和原子序数相同时最外层电子书越多半径越小 + 2+ 3+ 2- - r(Na)>r(Mg)>r(AI)>r(S)>r(CI)、r(Na ) >r(Mg )>r(AI 卜 r(0 ) >r(F) r(S2—)>r(CI—)>r(Ar) >r(K+)>r(Ca2+)、r(02—)> r(F—)> r ( Na+) > r ( Mg2+) > r (Al3+)

电负性

课时4 电负性 一、选择题(每小题有1~2个选项符合题意) 1:关于电负性的叙述正确的是() A、同族元素原子序数越大,电负性数值越大 B、同周期元素原子序越大,电负性数值越大 C、电负性数值以F = 4.0最大,因其最易失去电子 D、电负性数值大者金属性较强,电负性数值小者非金属性较强。 2:下列元素电负性最大的是() A O B S C Ge D Sb 3、下列元素电负性最小的是() A H B Li C Na D Cs 4.下列各组元素按电负性大小排列正确的是() A .F>N>O B.O>Cl>F C.As>P>H D. Cl>S>As 5、下表是元素周期表中短周期的一部分,其中电负性最小的元素是() A.W B.X C. Y D.Z 6、下列化合物中所表示的化合价为正价的元素不正确的是()A.CF4(C显正价) B.HClO (H 和Cl显正价) C. SiC (C显正价) D.PCl3 (P显正价) 二、填空: 7、(1)电负性用于衡量_____________________________________________的能力,电负性数值的大小可以用于衡量元素的__________、________的强弱。一般认为,电负性________(填“大于”或“小于”,下同)1.8的为非金属元素,电负性_________1.8的为金属元素。两个成键元素的电负性差值__________1.7,它们之间通常形成离子键;,两个成键元素的电负性差值__________1.7,它们之间通常形成共价键。 (2)同一周期,元素的电负性从左到右逐渐___________,表明金属性逐渐________,非金属性逐渐______________;同一主族,元素电负性从上到下逐渐___________,表明金属性逐渐________,非金属性逐渐_____________。 8.填写下列空白: (1)写出表示含有8个质子、10个中子的原子的化学符号:___________________。 (2)周期表中第一电离能最小的元素属于第________族。 (3)周期表中电负性最大的元素位于 ________ ,电负性最小的稳定元素位于 _________。(4)所含元素超过18种的周期是第________、_________周期。 9、根据下表中元素的电负性 试判断下列物质中的化学键,CaF2、SO2、CH4、PCl3、MgO、AsH3、Cl2、HCl。

元素周期表中的几个规律

河北省宣化县第一中学栾春武 一、电子排布规律 最外层电子数为或地原子可以是族、Ⅱ族或副族元素地原子;最外层电子数是~地原子一定是主族元素地原子,且最外层电子数等于主族地族序数.文档来自于网络搜索 二、序数差规律 ()同周期相邻主族元素地“序数差”规律 ①除第Ⅱ族和第Ⅲ族外,其余同周期相邻元素序数差为. ②同周期第Ⅱ族和第Ⅲ族为相邻元素,其原子序数差为:第二、第三周期相差,第四、第五周期相差,第六、第七周期相差.文档来自于网络搜索 ()同主族相邻元素地“序数差”规律 ①第二、第三周期地同族元素原子序数相差. ②第三、第四周期地同族元素原子序数相差有两种情况:第族和第Ⅱ族相差,其它族相差. ③第四、第五周期地同族元素原子序数相差. ④第五、第六周期地同族元素原子序数镧系之前相差,镧系之后相差. ⑤第六、第七周期地同族元素原子序数相差. 三、奇偶差规律 元素地原子序数与该元素在周期表中地族序数和该元素地主要化合价地奇偶性一致.若原子序数为奇数时,主族族序数、元素地主要化合价均为奇数,反之则均为偶数(但要除去元素,它有多种价态,元素也有).零族元素地原子序数为偶数,其化合价视为.文档来自于网络搜索 四、元素金属性、非金属性地强弱规律 ()金属性(原子失电子)强弱比较 ①在金属活动性顺序中位置越靠前,金属性越强. ②单质与水或非氧化性酸反应越剧烈,金属性越强. ③单质还原性越强或离子氧化性越弱,金属性越强.

④最高价氧化物对应地水化物碱性越强,金属性越强. ⑤若→,则比地金属性强. ()非金属性(原子得电子)强弱比较 ①与化合越容易,气态氢化物越稳定,非金属性越强. ②单质氧化性越强,阴离子还原性越弱,非金属性越强. ③最高价氧化物对应地水化物酸性越强,非金属性越强. ④若-→-,则比地非金属性越强. 需要补充地是,除了这些常规地判据之外,还有一些间接地判断方法:如在构成原电池时,一般来说,负极金属地金属性更强.还可以根据电解时,在阳极或阴极上放电地先后顺序来判断等.文档来自于网络搜索 需要注意地是,利用原电池比较元素金属性时,不要忽视介质对电极反应地影响.如--溶液构成原电池时,为负极,为正极;--(浓)构成原电池时,为负极,为正极.文档来自于网络搜索 五、元素周期表中地一些特点 ()短周期只包括前三个周期. ()主族中只有第Ⅱ族元素全部为金属元素. ()族元素不等同于碱金属元素,因为元素不属于碱金属元素. ()元素周期表第列是族,不是Ⅷ族,第、、列是第Ⅷ族,不是Ⅷ族. ()长周期不一定是种元素,第六周期就有种元素. 六、短周期元素原子结构地特殊性 ()原子核中无中子地原子:. ()最外层只有一个电子地元素:、、. ()最外层有两个电子地元素:、、. ()最外层电子数等于此外层电子数地元素:、.

人教版高中化学选修三 《电负性》随堂练习

课时训练6电负性 1.下列是几种原子的基态电子排布式,电负性最大的原子是( ) 解析:根据四种原子的基态电子排布式可知,选项A有两个电子层,最外层有6个电子,应最容易得到电子,电负性最大。 答案:A 2.按F、Cl、Br、I顺序递增的是( ) A.外围电子 B.第一电离能 C.电负性 D.原子半径 解析:F、Cl、Br、I的外围电子数相同,故A项错误;从F~I第一电离能依次减小,原子半径依次增大,电负性依次减小,故B、C错误,D正确。 答案:D 3.在以离子键为主的化学键中常含有共价键的成分,下列各对原子形成的

化学键中共价键成分最少的是( ) ,F ,F ,Cl ,O 解析: 所以共价键成分最少的为B项。 答案:B 4.对价电子构型为2s22p5的元素描述正确的是( ) A.原子半径最小

B.原子序数为7 C.第一电离能最大 D.电负性最大 解析:价电子构型为2s22p5,可知该元素是F元素,故可判断只有D正确。原子半径最小的是H;F原子序数是9;第一电离能最大的是He。 答案:D 5.下列各组元素性质的递变情况错误的是( ) 、Be、B原子最外层电子数依次增多 、S、Cl元素最高正价依次升高 、O、F电负性依次增大 、K、Rb第一电离能逐渐增大 解析:根据元素周期律可知,同一周期从左到右原子最外层电子数依次增多、元素最高正价依次升高、元素原子的电负性依次增大,故A、B、C正确;同一主族,从上到下随着电子层数的增加,元素的第一电离能逐渐减小,故D错误。 答案:D 和Y都是原子序数大于4的短周期元素,X m+和Y n-两种离子的核外电子排布

相同,下列说法中正确的是( ) 的原子半径比Y小 和Y的核电荷数之差为(m-n) C.电负性:X>Y D.第一电离能:XY,原子半径:X>Y,X和Y的核电荷数之差为(m+n)。X比Y更易失电子,第一电离能:X

第章元素与元素性质的周期性习题答

第七章元素与元素性质的周期性 【习题答案】 7.1指出下列各对元素中,谁的第1电离能更高? (a)Li与Cs,(b)Li与F,(c)Cs与F,(d)F与I 解:(a)Li的第1电离能更高。 (b)F的第1电离能更高。 (c)F第1电离能更高。 (d)F的第1电离能更高。 7.2 指出下列各对元素中,谁的电子亲和能更高? (a)C与F,(b)F与I,(c)Te与I 解:(a)F的电子亲和能更高。 (b)F的电子亲和能更高。 (c)I的电子亲和能更高。 7.3 按离子半径递增的顺序,排列下列两组离子: (a)Y3+、Ba2+、Al3+、Co3+、Cs+、La3+、Ir3+、Fe3+ (b)Cl-、H-、I-、Te2-、Ar+ 解:在配位数相同的情况下,(a)Co3+< Fe3+< Ir3+< Al3+< Y3+< La3+< Ba2+< Cs+。 (b)H-< Cl-< I-< Te2-< Ar+。 7.4 试说明下列原子基态电子构型“不规则”的原因:Cr:[Ar]3d54s1;Pd:[Kr]4d10。 解:Cr:[Ar]3d54s1,4s轨道与3d轨道均为半满,半充满结构。Pd:[Kr]4d10,4d轨道为全满,亚层轨道全充满结构。 7.5 写出下列元素原子的基态电子构型(示例,F:[He]2p52s2) Re、La、Cr、Fe、Cu、Ta、Po、Gd、Lu 解:Re:[Xe]4f145d56s2;La:[Xe]5d16s2;Cr:[Ar]3d54s1;Fe:[Ar]3d64s2;Cu:[Ar]3d104s1;

Ta:[Xe]5d36s2;Po:[Xe]6s26p4;Gd:[Xe]4f75d16s2;Lu:[Xe]4f145d16s2 7.6 写出下列离子的基态电子构型(示例,F-:[He]2s22p6),并指出它们的未成对电子数:K+、Ti3+、Cr3+、Fe2+、Cu2+、Sb3+、Sn4+、Ce4+、Eu2+、Lu3+ 解:K+:[Ar],0;Ti3+:[Ar]3d1,1;Cr3+:[Ar]3d3,3;Fe2+:[Ar]3d6,4;Cu2+:[Ar]3d9,1;Sb3+:[Kr]5s2,0;Sn4+:[Kr],0;Ce4+:[Xe],0;Eu2+:[Xe]4f 7,7;Lu3+:[Xe]4f 14,0。 7.7 为什么+4氧化态的铅的氧化性比+4氧化态的锡强很多? 解:因为惰性电子对效应使铅保留6s2电子的趋势比上一周期的锡强很多。 7.8 指出In、Sn、Se和Te的最常见的两种氧化态。 解:In:+1、+3;Sn:+2、+4;Se:+4、+6;Te:+4、+6 7.9 四氯化碳跟水不反应,但三氯化硼在潮湿的空气中容易水解,为什么? 解:四氯化碳很稳定,与水不反应,BCl3为缺电子化合物,为路易斯酸,所以在潮湿的空气中容易水解。 7.10 举例说明镧系收缩对于第6周期过渡元素性质有何影响? 解:镧系收缩使第6周期过渡元素的原子半径和离子半径与同族的第5周期元素的原子半径相近,因此同族元素的晶格能、溶剂化能、配合物形成常数等接近。例如Zr和Hf、Nb 和Ta在自然界矿物中共生,且难于分离。 7.11 第4、第6周期元素性质变化有哪些“反常性”? 解:Ga的金属性不如Al,Ga(OH)3的酸性比Al(OH)3强;砷、硒和溴的最高氧化态不稳定;PCl5和SbCl5稳定存在,但是AsCl5最近才制得,而AsBr5和AsI5是否能存在至今仍不知道。 Tl+、Sn2+、Bi3+比上一周期元素的相应氧化态物种稳定,而Tl3+、Sn4+、PbO2、NaBiO3表现出强氧化性。

元素性质的递变规律教案(精品篇)

专题2 原子结构与元素的性质 第二单元元素性质的递变规律 [学习目标] 1.在必修的基础上,进一步理解元素周期律 2.理解元素性质岁原子序数的递增的周期性变化的本质是核外电子排布的周期性变化3.了解元素电离能、电负性的概念和岁原子序数递增的周期性变化规律 4.了解电离能、电负性的简单应用 [课时安排] 5课时 第一课时 [学习内容] 回顾:元素周期律及元素周期律的具体体现 (1)含义 (2)本质:核外电子排布的周期性变化 (3)具体体现 ①、核外电子排布的周期性变化 ②、元素化合价的周期性变化 ③、原子半径的周期性变化 ④、元素金属性和非金属性的周期性变化 一、原子核外电子排布的周期性 1.随着原子序数的递增,元素原子的外围电子排布从ns1~ns2np6呈现周期性变化 2.根据元素原子外围电子排布的特征,可将元素周期表分成5个区域。具体地说是根据最后一个电子填充在何原子轨道上来分区 (1)s区元素:外围电子只出现在s轨道上的元素。价电子排布为ns1~2,主要包括ⅠA和ⅡA族元素,这些元素除氢以外都是活泼的金属元素,容易失去1个或2个电子形成+1价或+2价离子 (2)p区元素:外围电子出现在p轨道上的元素(s 轨道上的电子必排满)。价电子排布为ns2np1~6,主要包括周期表中ⅢA到ⅧA和0族共6个主族元素,这些元素随着最外层电子数的增加,原子失去电子变得越来越困难,得到电子变得越来越容易。除氢以外的所有非金属元

素都在p区 (3)d区元素:外围电子出现在d轨道上的元素。价电子排布为(n-1)d1~9ns1~2,主要包括周期表中ⅢB到ⅦB和Ⅷ族,d区元素全是金属元素。这些元素的核外电子排布的主要区别在(n-1)d的d轨道上。由于d轨道未充满电子,因此d轨道可以不同程度地参与化学键的形成。 (4)ds区元素:ds区元素与s区元素的主要区别是s 元素没有(n-1)d电子,而ds区元素的 (n-1)d轨道全充满,因此ds区元素的价电子排布是(n-1)d10ns1~2。包括ⅠB和ⅡB,全是金属元素 (5)f区元素:包括镧系元素和锕系元素,它们的原子的价电子排布是(n-2)f0~14(n-1)d0~2ns2,电子进入原子轨道(n-2)f中。由于最外层的电子基本相同,(n-1)d的电子数也基本相同,因此镧系元素和锕系元素的化学性质非常相似。 思考: (1)主族元素和副族元素的电子层结构各有什么特点? (2)周期表中,s区、p区、d区、ds区元素的电子层结构各有什么特点? 包括元素外围电子排布化学性质 s区ⅠA ⅡA族ns1~2除氢外,都是活泼金属 p区ⅢA~ⅦA 0族ns2np1~6非金属性增强、金属性减弱 d区ⅢB~ⅦB Ⅷ族(n-1)d1~9ns1~2均为金属,d轨道上的电子可参与化 学键的形成 ds区ⅠB ⅡB族(n-1)d10ns1~2均为金属,d轨道上的电子不参与化 学键的形成 f区镧系锕系(n-2)f0-14(n-1)d0~2n 镧系元素化学性质相似 锕系元素化学性质相似 (3)具有下列电子层结构的元素位于周期表的哪一个区?它们是金属还是非金属? ns2 ns2np5 (n-1)d5ns2 (n-1)d10ns2 (4)某元素基态(能量最低状态)原子最外层为4s1,它位于周期表的哪个区? (5)已知某元素的原子序数是50。试写出它的原子核外电子排布式。该元素位于周期表的哪一个区?属于金属还是非金属元素? 第二、三课时 [学习内容] 二、元素第一电离能的周期性变化 (一)第一电离能(I1)的概念:气态原子失去一个电子形成+1价气态阳离子所需的最低能量。 注意:原子失去电子,应先最外电子层、最外原子轨道上的电子 (二)第一电离能的作用:可衡量元素的原子失去一个电子的难易程度。I1越小,原子越容易失去一个电子;I1越大,原子越难失去一个电子 (三)I1的周期性变化 1.同一周期,随着原子序数的增加,元素的第一电离能呈现增大的趋势,碱金属的第一电离能最小,稀有气体的第一电离能最大 2.同一主族,随着电子层数的增加,元素的第一电离能逐渐碱小

元素周期表中的递变规律

元素周期表中的递变规律 同周期(左右)同主族(上下) 结构电子层结 构 电子层数相同递增 最外层电子数递增(18或2)相同(族序数)原子核内的质子数递增递增 性质原子半径 递减(除稀有气体元 素) 递增主要化合价 +1+7 —4—1 相似 元素原子失电子能力减弱增强元素原子得电子能力增强减弱 性质应用最高价氧 化物对应 水化物 酸性增强减弱 碱性减弱增强 非金属气 态氢化物 形成难易难易易难 稳定性增强减弱 金属单质与水或酸置换出氢气的难易 程度 变难变容易 短周期元素推断题记忆常见“题眼” (1)位置与结构 a.周期序数等于族序数两倍的短周期的元素是Li。 b.最高正价数等于最低负价绝对值三倍的短周期元素是S。 c.次外层电子数等于最外层电子数四倍的短周期元素是Mg。 d.次外层电子数等于最外层电子数八倍的短周期元素是Na。 e.族序数与周期数相等的短周期元素是H、Be、Al;族序数是周期数两倍的短周期元素是C、S;族序数是周期数三倍的短周期元素是O。 f.只由质子和电子构成的元素原子是H()。 (2)含量与物理性质

a.地壳中质量分数最大的元素是O,其次是Si。 b.地壳中质量分数最大的金属元素是Al。 c.氢化物中氢元素百分含量最高的元素是C。 d.其单质为天然物质中硬度最大的元素是C。 e.其气态氢化物最易溶于水的元素是N。在常温、常压下,1体积水溶解700体积NH 3 。 f.其气态氢化物沸点最高的非金属元素是O。 g.常温下,其单质是有色气体的元素是F、Cl。 h.所形成的化合物种类最多的元素是C。 i.在空气中,其最高价氧化物的含量增加会导致“温室效应”的元素是C。 j.其单质是最易液化的气体的元素是Cl。 k.其单质是最轻的金属元素的是Li。 l.其最高价氧化物的水化物酸性最强的元素是Cl。 m.常温下其单质呈液态的非金属元素是Br。 (3)化学性质与用途 a.单质与水反应最剧烈的非金属元素是F。 b.其气态氢化物与最高价氧化物对应水化物能起化合反应的是N。NH 3+HNO 3 =NH 4 NO 3 。 c.常温下其气态氢化物与其最低价氧化物能反应生成该元素的单质的元素是S。2H2S+SO2=3S+2H2O。 d.在空气中,其一种同素异形体易在空气中自燃的元素是P。 e.其气态氢化物水溶液可雕刻玻璃的元素是F。 f.其两种同素异形体对人类生存都非常重要的元素是O。臭氧(O 3 )层被称为人类和生物的保护伞。 g.能与强碱溶液作用的单质有:Al、Cl 2 、Si、S等。 常见元素化合价的一般规律 (1)金属元素无负价。因为金属元素最外层电子数目少,易失去电子变为稳定结构,故金属元素无负价,除零价外,在反应中只显正价。 (2)氟无正价,氧有正价但无最高正价。氟、氧得电子能力特别强,尤其是氟元素,只能夺取电子而成为稳定结构,除零价外,只显负价。氧只跟氟结合时,才显正价,如在OF2中氧呈+2价。 (3)在1~20号元素中,除O、F外,元素的最高正价等于最外层电子数;元素的最低负价与最高正价的关系为:最高正价+∣最低负价∣=8。 既有正价又有负价的元素一定是非金属元素;所有元素都有零价。 (4)除个别元素外(如氮元素),原子序数为奇数的元素,其化合价也常呈奇数价,原子序数为偶数的元素,其化合价也常呈偶数价,即序奇价奇,序偶价偶。 若原子的最外层电子数为奇数(m),则元素的正常化合价为一系列连续的奇数,从+1 到+m,若出现偶数则为非正常化合价,其氧化物是不成盐氧化物,例如NO 2 、NO;若原子 的最外层电子数为偶数,从—2价到+m。例如:Na 2S、SO 2 、H 2 SO 4 。 离子化合物与共价化合物的判断 (1)根据化合物类别判断 ①强碱、盐、大多数碱性氧化物属离子化合物; ②非金属氧化物、非金属氢化物、含氧酸、有机化合物属共价化合物。

电负性

【课题】第二节原子结构与元素的性质(第三课时) 【教学重点】 1、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质 2、能根据元素的电负性资料,解释元素的“对角线”规则。 3、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质 4、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力 【课前预习】 1、叫键合电子;我们用电负性描述。 2、电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。的电负性一般小于1.8,的电负性一般大于1.8,而位于非金属三角区边界的“类金属”的电负性则在1.8左右,他们既有性又有性。 【教学过程】 【复习】 1、什么是电离能?它与元素的金属性、非金属性有什么关系? 2、同周期元素、同主族元素的电离能变化有什么规律? 【思考与交流】 1、什么是电负性?电负性的大小体现了什么性质?阅读教材p20页表 同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强? 2、电负性. ⑴概念:电负性是原子在化学键中对键合电子____能力的标度,常用符号x表示。x为相对值,无单位。 由图1-23可见,的电负性最大;的电负性最小;H的电负性为,s区金属电负性大多数小于。 ⑵x变化规律:同周期,x左右__ ___;同族,x上下__ ___。 ⑶应用:①用于比较元素金属性、非金属性的相对强弱。一般,金属的x__ ___,非金属

的x_ ___。 ②判断化学键类型。一般认为如果两种成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两种成键元素原子间的电负性差值小于1.7,它们之间通常形成共价键,Δx___ __成离子键,Δx__ ____成共价键。 ③对角线规则 元素周期中处于对角线位置的元素电负性数值相近,性质相似。 【科学探究】 1、根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元 素的电负性变化图。 3、电负性的周期性变化示例 【归纳与总结】 1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。 2、同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。 3、在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”。查阅资料,比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。 (Li、Mg在空气中燃烧产物分别为Li2O、MgO,Be(OH)2、Al(OH)3均为两性氢氧化物,硼和硅的含氧酸均为弱酸,由此可以看出对角线规则的合理性。Li、Mg的电负性分别为1.0、1.2,Be、Al电负性均为1.5,B、Si的电负性分别为2.0、1.8数值相差不大,故性质相似.) 4、原子半径、电离能、电负性的周期性变化规律: 在元素周期表中同周期元素从左到右,原子半径逐渐减小,第一电离能逐渐增大(趋势),电负性逐渐增大。 在元素周期表中同主族从上到下原子半径逐渐增大,第一电离能逐渐减小,电负性逐

元素周期表中规律总结.pdf

“知识梳理”栏 元素周期表中规律的总结 一、编排规律 1、原子序数=质子数=核电荷数=原子核外电子数 2、周期序数=原子核外电子层数 3、主族序数=最外层电子数=价电子数 4、1到7周期可容纳元素种数分别为2、8、8、18、18、32、32(目前7周期只有26种)。 5、主族(除ⅠA族)中,非金属元素种数=族序数-2。 二、“定性”规律 1、若主族元素族数为m,周期数为n,则: ①m-n<0时为金属,且值越小,金属性越强; ②m-n>0时是非金属,越大非金属性越强; ③m-n=0时多为两性元素。 如钫位于第7周期第ⅠA族,m-n=-6<0,钫的金属性最强;F位于第二周期VIIA族,m-n=5>0,F的非金属性最强;铝位于第3周期IIIA族,m-n=0,铝为两性元素。 2、对角线规律:左上右下的两主族元素性质相似。如铍与铝的化学性质相似,均能与 强酸和强碱反应。 3、金属与非金属的分界线附近,金属大都有两性,非金属及其某些化合物大都为原子 晶体(如晶体硼、晶体硅、二氧化硅晶体、碳化硅晶体等)。 4、若将表中第ⅤA与ⅥA之间分开,则左边元素氢化物的化学式,是将H写在后边(如SiH4、PH3、CaH2等);而右边元素氢化物的化学式,是将H写在前边(如H2O、HBr等)。 5、符合下列情况的均是主族元素: ①有1~3个电子层的元素(He、Ne、Ar除外)。 ②次外层有两个或8个电子的元素(稀有气体除外)。 ③最外层电子数多于2个的元素(稀有气体除外)。 三、“序差”规律 1、同一周期IIA、IIIA族元素的原子序数相差可能是1、11或25。 2、同一主族相邻周期元素的原子序数之差可能是2、8、18、32。 3、“左上右下”规律:上下相邻两元素,若位于ⅢB之左(如ⅠA、IIA族),则原子序数之差等于上一元素所在周期的元素种数;若位于ⅢB之右(如IIIA~0族),则原子序数之差等于下一元素所在周期的元素种数。 四、“定位”规律 1、比大小定周期。比较该元素的原子序数与0族元素的序数大小,找出与之相邻的0族元素,那么该元素就和序数大的0族元素处于同一周期。 2、求差定族数。若该元素的原子序数比相应的0族元素多1或2时,则分别位于0族元素下周期的第IA或IIA族;若少1、2、3或4时,则分别位于同周期的第VIIA、VIA、VA、IVA族。 五、性质递变性规律 1、原子(离子)的半径 ①同一周期元素(惰性气体元素除外)从左到右,原子半径逐渐减小。 ②同一主族元素从上到下,原子(或离子)半径逐渐增大。 ③同种元素,阳离子半径<原子半径,阴离子半径>原子半径。

化学元素周期表规律

化学元素周期表规律 (一)元素周期律和元素周期表 1.元素周期律及其应用 (1)发生周期性变化的性质 原子半径、化合价、金属性和非金属性、气态氢化物的稳定性、最高价氧化物对应水化物的酸性或碱性。 (2)元素周期律的实质 元素性质随着原子序数递增呈现出周期性变化,是元素的原子核外电子排布周期性变化的必然结果。也就是说,原子结构上的周期性变化必然引起元素性质上的周期性变化,充分体现了结构决定性质的规律。 2.比较金属性、非金属性强弱的依据 (1)金属性强弱的依据 1/单质跟水或酸置换出氢的难易程度(或反应的剧烈程度)。反应越易,说明其金属性就越强。 2/最高价氧化物对应水化物的碱性强弱。碱性越强,说明其金属性也就越强,反之则弱。 3/金属间的置换反应。依据氧化还原反应的规律,金属甲能从金属乙的盐溶液中置换出乙,说明甲的金属性比乙强。 4/金属阳离子氧化性的强弱。阳离子的氧化性越强,对应金属的金属性就越弱。 (2)非金属性强弱的依据 1/单质跟氢气化合的难易程度、条件及生成氢化物的稳定性。越易与反应,生成的氢化物也就越稳定,氢化物的还原性也就越弱,说明其非金属性也就越强。

2/最高价氧化物对应水化物酸性的强弱。酸性越强,说明其非金属性越强。 3/非金属单质问的置换反应。非金属甲把非金属乙对应的阴离子从其盐溶液中置换出来,说明甲的非金属性比乙强。 如Br2 + 2KI == 2KBr + I2 4/非金属元素的原子对应阴离子的还原性。还原性越强,元素的非金属性就越弱。 3.常见元素化合价的一些规律 (1)金属元素无负价。金属单质只有还原性。 (2)氟、氧一般无正价。 (3)若元素有最高正价和最低负价,元素的最高正价数等于最外层电子数;元素的最低负价与最高正价的关系为:最高正价+|最低负价|=8。 (4)除某些元素外(如N元素),原子序数为奇数的元素,其化合价也常呈奇数价,原子序数为偶数的元素,其化合价也常呈偶数价,即价奇序奇,价偶序偶。 若元素原子的最外层电子数为奇数,则元素的正常化合价为一系列连续的奇数,若有偶数则为非正常化合价,其氧化物是不成盐氧化物,如NO;若原子最外层电子数为偶数,则 正常化合价为一系列连续的偶数。 4.原子结构、元素性质及元素在周期表中位置的关系1/原子半径越大,最外层电子数越少,失电子越易,还原性越强,金属性越强。 2/原子半径越小,最外层电子数越多,得电子越易,氧化性越强,非金属性越强。 3/在周期表中,左下方元素的金属性大于右上方元素;左下方元素的非金属性小于右上方元素。

元素周期表规律总结

知识网络 中子N 原子核 质子Z 原子结构 : 电子数(Z 个)核外电子 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化 ①、原子最外层电子的周期性变化(元素周期律的本质) 元素周期律 ②、原子半径的周期性变化 ③、元素主要化合价的周期性变化 ④、元素的金属性与非金属性的周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核外电子排布 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 决定原子呈电中性 编 排依据 X)(A Z 七 主七副零 和八 三长三短一不全

最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1 、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na +>Mg 2+>Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如 Fe>Fe 2+>Fe 3+ ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 金属性强弱 ③单质的还原性 ④互相置换反应 元素周期表有7个周期,有16个族和4个区。 关键词:同一主族 对角线规则 一、同一主族元素性质的递变规律 同一主族元素结构和性质具有一定的相似性和递变性:从上到下原子半径逐渐增大, 元素的金属性或非金属性强弱的判断依据

元素周期表中的规律

元素周期表中的规律 一、最外层电子数规律 1. 最外层电子数为1的元素:主族(IA族)、副族(IB、VIII族部分等)。 2. 最外层电子数为2的元素:主族(IIA族)、副族(IIB、IIIB、IVB、VIIB 族)、0族(He)、VIII族(26Fe、27Co等)。 3. 最外层电子数在3~7之间的元素一定是主族元素。 4. 最外层电子数为8的元素:0族(He除外)。 二、数目规律 1. 元素种类最多的是第IIIB族(32种)。 2. 同周期第IIA族与第IIIA族元素的原子序数之差有以下三种情况: (1)第2、3周期(短周期)相差1; (2)第4、5周期相差11; (3)第6、7周期相差25。

4. 同主族相邻元素的原子序数: 第IA、IIA族,下一周期元素的原子序数=上一周期元素的原子序数+上一周期元素的数目; 第IIIA~VIIA族,下一周期元素的原子序数=上一周期元素的原子序数+下一周期元素的数目。 三、化合价规律 1. 同周期元素主要化合价:最高正价由+1 +7(稀有气体为0价)递变、最低负价由-4 -1递变。 2. 关系式:(1)最高正化合价+|最低负化合价|=8; (2)最高正化合价=主族族序数=最外层电子数=主族价电子数。 3. 除第VIII族元素外,原子序数为奇(偶)数的元素,元素所在族的序数及主要化合价也为奇(偶)数。 四、对角线规律 金属与非金属分界线对角(左上角与右下角)的两主族元素性质相似,主要表现在第2、3周期(如Li和Mg、Be和Al、B和Si)。

五、分界线规律 位于金属与非金属之间的分界线,右上方的元素为非金属(周期表中的颜色为深绿色),在此可以找到制造农药的元素(如Cl、P等),左下角为金属元素(H除外),分界线两边的元素一般既有金属性,又有非金属性;能与酸和碱反应(如Be、Al等),还可找到制造半导体材料的元素(如Si、Ge等)。 六、金属性、非金属性变化规律 1. 同一周期,从左到右(0族除外)金属性减弱,非金属性增强;同一主族,从上到下金属性增强,非金属性减弱。金属性最强的位于左下角的铯,非金属性最强的是位于右上角的氟。 2. 金属性越强,单质越容易跟水或酸反应置换出氢,对应的最高价氧化物水化物碱性越强;非金属性越强,跟氢气反应越容易,生成的气态氢化物越稳定,对应的最高价氧化物水化物酸性越强。 七、半径大小规律 1. 原子半径:同主族——从上到下逐渐增大;同周期——从左到右逐渐减小(0族除外)。 2. 离子半径:同主族——同价离子从上到下逐渐增大;同周期——阴离子半径大于阳离子半径;具有相同的电子层结构的离子——核电荷数越大,离子半径越小。

相关文档
相关文档 最新文档