文档库 最新最全的文档下载
当前位置:文档库 › a全等三角形之手拉手模型、倍长中线截长补短法

a全等三角形之手拉手模型、倍长中线截长补短法

a全等三角形之手拉手模型、倍长中线截长补短法
a全等三角形之手拉手模型、倍长中线截长补短法

手拉手模型

要点一:手拉手模型

特点:由两个等顶角的等腰三角形所组成,并且顶角的

顶点为公共顶点

结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°

(3)OA 平分∠BOC

变形:

例 1.如图在直线ABC 的同一侧作

两个等边三角形ABD ?与BCE ?,连

结AE 与CD ,证明

(1)DBC ABE ???

(2)AE 与DC 之间的夹角为?60

(3)BH 平分AHC ∠

变式精练1:如图两个等边三角形ABD ?与BCE ?,连

结AE 与CD ,

证明(1)DBC ABE ???

(2)AE 与DC 之间的夹角为?60

(3)AE 与DC 的交点设为H ,BH 平分AHC ∠

变式精练2:如图两个等边三角形ABD ?与BCE ?,连结AE 与CD ,

证明(1)DBC ABE ???

(2)AE 与DC 之间的夹角为?60

(3)AE 与DC 的交点设为H ,BH 平分AHC ∠

例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H

问:(1)CDE ADG ???是否成立?

(2)AG 是否与CE 相等?

(3)AG 与CE 之间的夹角为多少度?

(4)HD 是否平分AHE ∠?

例3:如图两个等腰直角三角形ADC 与EDG ,

连结CE AG ,,二者相交于点H

问:(1)CDE ADG ???是否成立?

(2)AG 是否与CE 相等?

(3)AG 与CE 之间的夹角为多少度?

(4)HD 是否平分AHE ∠?

例4:两个等腰三角形ABD ?与BCE ?,其

中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE

与CD ,

问:(1)DBC ABE ???是否成立?

(2)AE 是否与CD 相等?

(3)AE 与CD 之间的夹角为多少度?

(4)HB 是否平分AHC ∠?

例5:如图,点A. B. C 在同一条直线上,分别以

AB 、BC 为边在直线AC 的同侧作等边三角形△ABD 、△BCE.连接AE 、DC ,AE 与

DC 所在直线相交于F ,连接FB.判断线段FB 、FE 与FC 之间的数量关系,并证明

你的结论。

【练1】如图,三角形ABC 和三角形CDE 都是等边三角形,点A,E,D,同在一条

直线上,且角EBD=62°,求角AEB 的度数

倍长与中点有关的

线段

倍长中线类

?考点说明:凡是出现中线或类似中线的线段,都可以考虑

倍长中线,倍长中线的目的是可以旋转等长度的线段,从而

达到将条件进行转化的目的:将题中已知和未知条件集中在一对三角形中、构

造全等三角形、平移线段。

【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延

长AD 到E , AD 是BC 边中线 使

DE=AD ,

接BE

方式2:间接倍长

作CF ⊥AD 于F , 延

长MD 到N ,

作BE ⊥AD 的延长线于E 使

DN=MD ,

接BE

连接CD E

D A

B C

【例1】 已知:ABC ?中,AM 是中线.求证:1()2

AM AB AC <+. 【练1】在△ABC 中,59AB AC ==,,则BC 边上的中线AD 的长的取值范围是什

么?

【练2】如图所示,在ABC ?的AB 边上取两点E 、F ,使A E B F =,连接CE 、CF ,求证:AC BC +>EC FC +.

【练3】如图,在等腰三角形ABC 中,AB=AC ,D 是AB 上一点,F 是AC 延长线上的一点,且

BD=CF ,连结DF 交BC 于E .求证:DE=EF(倍长中线、截长补短)

【例2】 如图,已知在ABC ?中,AD 是BC 边上的中线,E

是AD 上一点,延长BE 交AC 于F ,AF EF =,求

证:AC BE =.

【练1】如图,已知在ABC ?中,AD 是BC 边上的中线,E

是AD 上一点,且BE AC =,延长BE 交AC 于F ,

求证:AF EF =

【练2】如图,在△ABC 中,AB>AC ,E 为BC 边的中点,

AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,

交CA 的延长线于G. 求证:BF=CG.

【练3】如图,在ABC ?中,AD 交BC 于点D ,点E 是BC 中

点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若

BG CF =,求证:AD 为ABC ?的角平分线.

【练4】如图所示,已知ABC ?中,AD 平分BAC ∠,E 、F 分

别在BD 、AD 上.DE CD =,EF AC =.

求证:EF ∥AB

【例3】已知AM 为ABC ?的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC

于F .求证:BE CF EF +>.

【练1】在Rt ABC ?中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足

90DFE ∠=?.若3AD =,4BE =,则线段DE 的长度为_________.

【练2】如图,△ABC 中,AB=2AC ,AD 平分BC 且AD ⊥AC ,则∠BAC=______.

【练3】在ABC ?中,点D 为BC 的中点,点M 、N 分别为AB 、AC 上的点,且MD ND ⊥.

(1)若90A ∠=?,以线段BM 、MN 、CN 为边能否构成一个三角形?若

能,该三角形是锐角三角形、直角三角形或钝角三角形?

(2)如果2222BM CN DM DN +=+,求证()22214

AD AB AC =+. 【例4】如图,等腰直角ABC ?与等腰直角BDE ?,P 为CE 中点,连接PA 、PD .

探究PA 、PD 的关系.(证角相等方法)

【练1】如图,两个正方形ABDE 和ACGF ,点P 为BC 的中点,连接PA 交EF 于点Q .

探究AP 与EF 的数量关系和位置关系.(证角相等方法)

【练2】如图,在ABC ?中,AB CD =,BDA BAD ∠=∠,AE 是BD 边的中线.求证:

AE AC 2=

【例5】如图所示,在ABC ?中,AB AC =,延长AB 到D ,使BD AB =,E 为AB 的

中点,连接CE 、CD ,求证2CD EC =.

【练1】已知ABC ?中,AB AC =,BD 为AB 的延长线,且BD AB =,CE 为ABC ?的AB

边上的中线.

求证:2CD CE =

【练2】如图,CB 、CD 分别是钝角△AEC 和锐角△ABC

中线,且AC=AB,∠ACB=∠ABC.求证CE=2CD.

【例16】如图,两个正方形ABDE 和ACGF ,点P 为BC

的中点,连接PA 交EF 于点Q .

探究AP 与EF 的数量关系和位置关系.(倍长中线与手拉手模型综合应用)

【练1】已知:如图,正方形ABCD 和正方形EBGF ,点M 是线段DF 的中点.

⑴试说明线段ME 与MC 数量关系和关系.

⑵如图,若将上题中正方形EBGF 绕点B 顺时针旋转α度数

(?<90α),其他条件不变,上述结论还正确吗?若正确,请你证明;

若不正确,请说明理由.

★全等之截长补短:人教八年级上册课本中,在全等三角形部分介绍了角的平分

线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解

决这一类问题的一种特殊方法(把长边截成两个短边或把两个短边放到一起;出

现角平分线进行翻折;有具体角的度数说明要求角的度数,进而得到角相等,?

全等)

【例10】 如图所示,ABC ?中,0045,90=∠=∠B C ,AD 平分BAC ∠交BC 于D 。求

证:AB=AC+CD 。 【练1】如图所示,在ABC ?中,060=∠B ,ABC ?的角平分线AD 、CE 相交于点O 。求证:AE+CD=AC 。 D A

C B

O E D A

B C

D

O

E

C

B

A

N

M

D

C

B

A

D

C

B

A

【练2】已知ABC

?中,

60

=

∠A,BD、CE分别平分ABC

∠和ACB

∠,BD、CE

交于点O,试判断BE、CD、BC的数量关系,并加以证

明.

【练2】如图,在四边形ABCD中,AD∥BC,AE平分∠BAD

交DC于点E,连接BE,且AE⊥BE,求证:AB=AD+BC.

【练3】已知:如图,在△ABC中,∠A=90°,AB=AC,BD是∠ABC

的平分线。求证:BC=AB+AD.

【练4】点M,N在等边三角形ABC的AB边上运动,BD=DC,∠

BDC=120°,∠MDN=60°,求证MN=MB+NC.

【例11】已知如图所示,在△ABC中,AD是角平分线,且AC=AB+BD,

试说明∠B=2∠C(不只是边,倍角也适用)

【练1】如图,在△ABC中,AB=AC,BD⊥AC交AC于点D.求

证:∠DBC=

2

1

∠BAC.

【例12】如图所示,已知2

1∠

=

∠,P为BN上一点,

且BC

PD⊥于D,AB+BC=2BD,求证:

180

=

+

∠BCP

BAP。

【练1】如图,在四边形ABCD中,BC>BA, AD=CD,

BD平分ABC

∠,

求证:0

180

=

+

∠C

A

【例13】如图所示,在ABC

Rt?中,AB=AC,0

90

=

∠BAC,

CBD

ABD∠

=

∠,CE垂直于BD的延长线于E。求证:BD=2CE。

2

1

D

M

B

C

P

N

A

C

E

D

B C A

【练1】已知:如图示,在Rt △ABC 中,∠A=90°,∠ABC=2

∠C ,BD 是∠ABC 的平分线.求证:CD=2AD .

【练2】如图所示,在ABC ?中,090=∠ABC ,AD 为BAC ∠的平分线,C ∠=300,AD BE ⊥于E 点,求证:AC-AB=2BE 。 【练3】正方形ABCD,E 是BC 上一点,AE ⊥EF,交∠DCH 的平

分线于点F ,求证AE=EF

【练4】已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延

长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE

【例14】如图所示,已知AB //CD ,BCD ABC ∠∠,的平分线恰好交于AD 上一点E ,求证:BC=AB+CD 。

【练1】如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的

连线交AP 于D .求证:AD+BC=AB .

【练2】如图,在正方形ABCD 中,F 是CD 的中点,E 是

BC 边上的一点,且AF 平分∠DAE ,求证:AE=EC+CD .

【练3】在△ABC 中,AD 是BC 边上的高,∠B=2∠C .求证:

CD=AB+BD .

【练4】如图所示,在三角形ABC 中,∠ACB=90°,AC=BC,D 为三角形

ABC 外一点,且AD =BD,DE ⊥AC 交AC 的延长线于点E.试探求ED 、

AE 和BC 之间有何数量关系

【练5】在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,

∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线

P E D C B

A

段AB 与AF 、CF 之间的数量关系,并证明你的结论

【例15】如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证:AB-AC

>PB-PC A

12 P

B C

【练1】已知AM 为ABC ?的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC

于F .

求证:BE CF EF +>.

如图,E 是AOB ∠的平分线上一点,OA EC ⊥,OB ED ⊥,

垂足为C 、D 。求证:(1)OC=OD ; (2)DF=CF 。

构造等边三角形 1、如图,已知△ABC 中,AB=AC,D 是CB 延长线上一

点,∠ADB=60°,E 是AD 上一点,且有DE=DB.求证:AE=BE+BC.

2、在等腰ABC ?中,AB AC =,顶角20A ∠=?,在边AB 上取点D ,使A D B C =,求B D C ∠. 练习1、如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC,DE ⊥AB 于D,如果AC=3cm,

那么AE+DE 等于

A 、2cm

B 、3cm

D

F

D C A

O

B E

C 、4cm

D 、5cm

练习2、在△ABC 和△A'B'C'中,AB=A'B',AC=A'C',点D,D'分别是BC,B'C'的中点,且AD=A'D',证眀:'''C B A ABC ???.

(倍长中线)

练习3、如图,在△ABC 中,BE 是∠ABC 的角平分线,AD ⊥BE ,垂足为D ,求证:∠2=∠1+∠C

练习4、如图(1),已知△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的一条直线,且B 、C 在A 、E 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E

(1)试说明:BD=DE+CE .

(2)若直线AE 绕A 点旋转到图(2)位置时(BD <CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果;

(3)若直线AE 绕A 点旋转到图(3)位置时(BD >CE ),其余条件不变,问BD 与DE 、CE 的关系如何?请直接写出结果,不需说明理由.

如图所示,在Rt △ABC 中,AB =AC ,∠BAC =90°,有过A 的任一条直线AN ,BD ⊥AN 于D ,CE ⊥AN 于E ,求证:DE =BD -CE .(思路:截长补短法)

如图,在△ABC 中,AB=AC,D 是三角形外一点,且∠ABD=60°,BD+DC=AB.求证:∠ACD=60°.(截长补短)

1、如图,等腰直角ABC ?与等腰直角BDE ?,P 为CE 中点,连接PA 、PD .

探究PA 、PD 的关系.(辅助线的连法都一样)

2、已知:如图,正方形ABCD 和正方形EBGF ,点M 是线段DF 的中点. ⑴试说明线段ME 与MC 数量关系和关系.(辅助线的连法都一样)

A B C D A ' B ' C '

D '

⑵如图,若将上题中正方形EBGF绕点B顺时针旋转α度数(?

α),

<90

其他条件不变,上述结论还正确吗?若正确,请你证明;若不正确,请说明理由.

3、已知AM为ABC

∠的平分线分别交AB于E、交AC于F.?的中线,AMB

∠,AMC

求证:BE CF EF

+>.(辅助线的连法都一样)

【阅读理解】

已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)

∴∠AED=∠B=90°,DE=DB

又∵∠C=45°,∴△DEC是等腰直角三角形.

∴DE=EC.

∴AC=AE+EC=AB+BD.

【解决问题】

已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.

【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.

【类比猜想】

任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.

如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC. (1)求证:AM平分∠DAB

(2)试说明线段DM与AM有怎样的位置关系?

(3)线段CD、AB、AD间有怎样的关系?直接写出结果。

全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线 一.填空题(共1小题) 1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC 交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.二.解答题(共10小题) 2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD. 3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN 经过点C,且AD⊥MN于点D,BE⊥MN于点E. (1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE; (2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE; (3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明. 5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由. 6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论. 7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明. 8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N. (1)求证:DM=MN; (2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论. 9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE. 10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.

全等三角形之倍长中线法资料讲解

课题:《全等三角形之巧添辅助线——倍长中线法》 【方法精讲】常用辅助线添加方法一一倍长中线 △ ABC中,AD是BC边中线方式1 :直接倍长延长AD至U E, 例2: ABC中,AD是BAC的平分线,且BD=CD,求证AB=AC 方法1:作DE丄AB于E,作DF 丄AC于F,证明二次全等 方法2 :辅助线同上,利用面积 方法3 :倍长中线AD E 方式2 :间接倍长 作CF丄AD于F,作BE丄AD的延长线于E延长MD到 C 【经典例题】 例1 :△ ABC中,AB=5, AC=3求中线AD的取值范围. 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 N,使DN=MD连接CN C 例3:已知在△ ABC中,AB=AC , D在AB 上, E在AC的延长线上,DE交BC于F,且DF=EF ,求证:BD=CE 方法1 :过D作DG // AE交BC于G,证明△ DGF^A CEF 使DE=AD,连接BE

方法2:过E 作EG // AB 交BC 的延长线于 G ,证明△ EFG^A DFB 方法3:过D 作DG 丄BC 于G,过E 作EHL BC 的延长线于 H,证明A BDG^A ECH 例4:已知在△ ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB 求证:AE 平分 BAC 方法1倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例 6:已知 CD=AB ,/ BDA= / BAD , AE 是厶 ABD 的中线,求证:/ C=Z BAE 提示:倍长 AE 至F ,连结DF,证明A ABE^A FDE ( SAS ,进而证明A ADF ^A ADC( SAS A 提示:倍长 AD 至G ,连接BG ,证明A BDG^A CDA 三角形BEG 是等腰三角形 AC , D E 在 BC 上,且 DE=EC 过 D 作 DF // BA 交 AE 于点 F , DF=AC. 第1题图

吉林省长春市双阳区八年级数学上册第13章全等三角形13.3等腰三角形教案新版华东师大版

等腰三角形 教学目 标知识与技能 进一步理解等腰三角形的判定方法和性质,并能够运用灵活的解决相关问题 过程与方法 了解情况,发现问题,研究讨论,运用知识,解决问 题,提高能力 情感态度与价值观培养学生良好的学习品质. 教学重点等腰三角形的判定和性质 教学难点正确的利用知识解决问题. 教学内容与过程教法学法设计 一. 复习提问,回顾知识,请看下面的问题: 1.有两个角相等的三角形是,三个角都相等的三角形是, 2.如果一个三角形有两边相等,那么这两边所对的角,这是等腰三角形的, 3.等腰三角形的边上的高,线,角的平分线互相重合,可简记为 “三线合一”. 4..等边三角形的三个内角都,并且每个内角都等于°. 5.判定两个三角形全等的方法有: . 6.判定等腰三角形的方法有 . 二. 导入课题,研究知识: 为了更好的理解和掌握等腰三角形的判定方法和性质,灵活的运用知识解答相关的问题本节课我们来复习这一知识. 面向全体学生提出相关的问题。明确要研究,探索的问题是什么,怎样去研究和讨论。. 留给学生一定的思考和回顾知识的时间。 为学生创设表现才华的平台。

三.归纳知识,培养能力: 等腰三角形的判定和性质 四.运用知识,分析解题: 问题1已知等腰三角形的顶角等于低角的4倍,求这个等腰三角形各内角的度数. 问题 2.已知等腰三角形的一边长为4㎝,另一边长为9㎝,求它的周长. 问题3如果一个三角形的两个内角分别为70°和40°,那么这个三角形是什么三角形?为什么? 问题4 如图,已知B D=CE, ∠BDC=∠CEB. 求证:∠ABC=∠ACB. 问题5 如图,在△ABC中,AB=AC, DE∥BC,DE交AB于点D,交AC于点E. 求证:AD=AE. 五.课堂练习:请见教材和练习册 六.课后小结:等腰三角形的知识 七.课后作业:复印给学生. 在复习基础 知识的基础上 运用知识解决 问题. 将知识和实 际问题相结合. 教学反思 E D C B A E D C B A

初中数学全等三角形截长补短

全等三角形——截长补短法 一、知识梳理: 截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 二、典型例题: 例1、如图,在ABC ?中,60BAC ∠=?,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数. 及时练习: 如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . 例2、已知ABC ?中,60A ∠ =,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. D O E C B A

M D C B A P C B A 及时练习: 如图,已知在ABC 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE . 及时练习: 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C . 2 k h + D . h 例4、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O . 求证:OA 平分DOE ∠.

截长补短法例题精编版

截长补短法 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ? ? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°. 分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2 ∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中, ? ? ?==BP BP PD PE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD . ∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE . F E D C B A 图1-2 A B C D P 12 N 图3-1 P 12 N A B C D E 图3-2 A B C D 图1-1

中考数学经典截长补短法突破(含答案)

初中数学全等专题截长补短法 1.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,则∠EAF的度数为( ) A.30° B.37.5° C.45° D.60° 2.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,时DE=AD,则∠ECA的度数为() A.30° B.35° C.40° D.45° 3.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,则下列

说法正确的是() A.CD=AD+BE B.AE=CE+BE C.AE=AD+BE D.AC=AD+BE 4.如图所示,△ABC是边长为1的正三角形,△BDC是顶角为120°的等腰三角形,以D为顶点作一个60°的∠MDN,点M、N分别在AB、AC上,则△AMN的周长为() A.1 B.2 C.3 D.4 5.如图,已知正方形ABCD中,E为BC边上任意一点,AF 平分∠DAE.则下列式子正确的为()

A.AE-BE=EF B.AE-BE=DF C.AE-BE=EC D.AE -BE=AB 1.解题思路:延长EB至点G,使得BG=DF,连接AG,可证明:△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE∴△AEG≌△AEF(SSS) ∴∠EAG=∠EAF, ∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°, ∴∠EAF=45°。答案:C 2.解题思路:在BC上截取BF=AB,连DF,则有△ABD≌△FBD, ∴DF=DA=DE,又∵∠ACB=∠ABC=40°, ∠DFC=180°-∠A=80°,∴∠FDC=60°, ∵∠EDC=∠ADB=180°-∠ABD-∠A=180°-20°-100°=60°,∴△DCE≌△DCF,故∠ECA=∠DCB=40°.故选C. 3.解题思路:在AB上截取AF,使得AF=AD,连接CF,则可先证△ADC≌△AFC,再证明△CEF≌△CEB,就可以得到

三角形全等之倍长中线(类倍长一)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:“三角形全等”的辅助线: 见中线,要________,________之后___________,全等之后_________,_________. 问题2:倍长中线的作法,图中的虚线为辅助线,请叙述图1、图2的辅助线. 三角形全等之倍长中线(类倍长一)(人教版) 一、单选题(共4道,每道25分) 1.已知:如图,点E是BC的中点,∠BAE=∠D. 求证:AB=CD. 如图,先在图上走通思路后再填写空格内容: ①因为点E是BC的中点,考虑延长AE到点F,使EF=AE,连接CF; ②进而利用全等三角形的判定_________,证明_______≌_______; ③由全等可得________________;

④结合已知条件∠BAE=∠D,得∠F=∠D,在△DCF中,利用________________,可得CF=CD,等量代换得AB=CD. 以上空缺处依次所填最恰当的是( ) A.②SAS,△ABE,△ECF; ③AB=CF; ④等角对等边 B.②SAS,△ABE,△DEC; ③AB=CF,∠BAE=∠F; ④等边对等角 C.②SA S,△ABE,△FCE; ③∠ABE=∠FCE,∠BAE=∠F; ④等边对等角 D.②SAS,△ABE,△FCE; ③AB=FC,∠BAE=∠F; ④等角对等边 答案:D 解题思路:

试题难度:三颗星知识点:三角形全等之倍长中线 2.已知:如图,点E是BC的中点,∠BAE=∠D. 求证:AB=CD. 证明:如图,延长DE到点F,使EF=DE,连接BF.

∵E是BC的中点 ∴BE=CE 在△BEF和△CED中 ∴△BEF≌△CED(SAS) ∴____________________________ ∵∠BAE=∠D ____________________________ ∴AB=CD 请你仔细观察下列序号所代表的内容: ①BF=CD,∠EBF=∠C; ②BF=CD,∠F=∠D; ③; ④. 以上空缺处依次所填最恰当的是( ) A.①③ B.②③ C.①④ D.②④ 答案:B 解题思路:

八年级数学上册第13章全等三角形教案1新版华东师大版

全等三角形 教学目标 知识与技能 帮助学生总结一般三角形全等的判定条件,使他们自觉运用各种全等判定法进行说理;通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系. 过程与方法 通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系.习题分析与解答先由学生完成,教师解答疑点。 情感态度与价值 观 通过一般三角形全等判定条件的归纳,帮助学生认识事物间存在着的因果关系和制约的关系. 教学重点 让学生识别三角的哪些元素能用来确定三角形的形状与大小,因而可用来判定三角形全等. 教学难点 灵活应用各种判定法识别全等三角形 教学内容与过程 教法学法设计 一、基础知识复习 1.全等三角形 1、全等三角形的概念及其性质 1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。 2).全等三角形性质: 例.如图, ABC ?≌ADE ?,BC 的延长线交DA 于F ,交DE 于G, 105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数. 二.导入课题,研究知识: 本节课我们来复习全等三角形的有关知识 面向全体学生提出相关的问题。明确要研 究,探索的问题 是什么,怎样去 研究和讨论。. 留给学生一定的思考和回顾知识的时间。 为学生创设表现才华的平台。

三.归纳知识,培养能力: 2.全等三角形的判定方法 1)、两边和夹角对应相等的两个三角形全等( SAS ) 2)、两角和夹边对应相等的两个三角形全等 ( ASA ) 3)、两角和夹边对应相等的两个三角形全等 ( AAS ) 4)、三边对应相等的两个三角形全等 ( SSS ) 5)、一条直角边和斜边对应相等的两个直角三角形全等 ( H L ) 四.运用知识,分析解题: 例:如图,在ABC 中,∠ACB=90?,D 是AC 上一点,AE ⊥BD ,交BD 的延长线于点E ,又 AE=2 1 BD ,求证:BD 是∠ABC 的平分线。 五.课堂练习:请见教材 六.课后小结:《全等三角形》复习 七.课后作业:. 复印给学生. 基础知识复习由学生们以成语接龙的方式完成。教师做最后补充。 教学时应尊重学生已有的经验,鼓励学生探索,适时渗透类比的方法和转化的数学思想。树立辩证唯物主义思想。培养学生刻苦学习的精神。 方法由学生回忆,例题分析由学生完成后,书写解题过程 教学反思 必须手写,是检查备课的重要依据。 D E C B A

全等三角形截长补短拔高练习(含答案)

八年级数学全等三角形辅助线添加之截长补短 (全等三角形)拔高练习 试卷简介:本讲测试题共两个大题,第一题是证明题,共7个小题,每小题10分;第二题解答题,2个小题,每小题15分。 学习建议:本讲内容是三角形全等的判定——辅助线添加之截长补短,其中通过截长补短来添加辅助线是重点,也是难点。希望同学们能学会熟练通过截长补短来做辅助线,进而构造出全等的三角形。 一、解答题(共1道,每道20分) 1.如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:∠1和∠2有何关系? 答案: 解:∠1+∠2=180° 证明:过点C作CF⊥AN于点F,由于AC平分∠NAM,所以CF=CE,则在Rt△ACF和Rt△ACE 中 ∴△ACF≌△ACE(HL),∴AF=AE,由于2AE=AD+AB,所以AB-AE=AF-AD ∴DF=BE,在△CFD和△CEB中所以△CFD≌△CEB(SAS),∴∠2=∠FDC,又∠1+∠FDC=180°,∴∠1+∠2=180°。 解题思路:见到角平分线就要想到作垂直,找到全等关系是解决此类问题的关键 易错点:找到三角形全等的所有条件

试题难度:四颗星知识点:三角形 二、证明题(共8道,每道10分) 1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD. 答案: 延长CE交BA的延长线于点H,由BE平分ABC,BE CE,得CE=EH=CH。 又1+H=90°,,2+H=90° 1= 2 在△ACH和△ABD中 HAC=DAB=90° AC=AB 1= 2 △ACH≌△ABD(ASA) CH=BD CE=CH=BD 解题思路: 根据题意,要证明CE=BD,延长CE与BA,由题意的垂直平分线可得CE的两倍长CH,只需证明CH=BD即可,很显然有全等可以证明出结论 易错点:不能正确利用题中已知条件BF平分∠ABC,CE⊥BD于E,做出辅助线,进而解答。试题难度:三颗星知识点:全等三角形的判定与性质 2. 如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.

(完整版)截长补短法专题

选择第4题图 P D C B A 一、角平分线的性质 一.选择题填空(共10小题) 1.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ∠OA 于点D ,PD=6,则点P 到边OB 的距离为( ) A .6 B .5 C .4 D .3 2.到三角形的三边距离相等的点是( ) A .三角形三条高的交点 B .三角形三条内角平分线的交点 C .三角形三条中线的交点 D .三角形三条边的垂直平分线的交点 3.如图,AD 是∠ABC 的角平分线,则AB :AC 等于( ) A .BD :CD B .AD :CD C .BC :A D D .BC :AC 4.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =,PC =,AB =,AC =,则与的大小关系是( ) A 、> B 、< C 、= D 、无法确定 5.如图,在∠ABC 中,CD 平分∠ACB 交AB 于点D ,DE ∠AC 交于点E ,DF ∠BC 于点F ,且BC=4,DE=2,则∠BCD 的面积是 . 7.如图所示,在∠ABC 中,∠A=90°,BD 平分∠ABC ,AD=2cm ,AB+BC=8,S ∠ABC = . 7.如图4,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,则两平行线间AB 、CD 的距离等于 。 8.如图所示,已知∠ABC 和∠DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论中:①AE=BD ;②AG=BF ;③FG ∠BE ;④∠BOA=60度,(5)、△AGC ≌△BFC ,(6)△DFC ≌△EGC ,(7)CO 平分∠BOE 正确的是 . 二、截长、补短法的专题 例1、 如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90°, 求证:AB =AC +CD . m n c b )(n m +)(c b +n m +c b +n m +c b +n m +c b +

初二数学第十三章全等三角形测试题及答案

全等三角形测试题 一.选择题: 1.在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC≌△A’B’C’, 则补充的这个条件是( ) A.BC=B’C’B.∠A=∠A’C.AC=A’C’D.∠C=∠C’ 2.直角三角形两锐角的角平分线所交成的角的度数是() A.45°B.135°C.45°或135°D.都不对 3.现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中应选取() A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒4.根据下列已知条件,能惟一画出三角形ABC的是() A.A B=3,BC=4,AC=8; B.AB=4,BC=3,∠A=30; C.∠A=60,∠B=45,AB=4; D.∠C=90,AB=6 5.如图3,D,E分别是△ABC的边BC,AC上的点,若∠B=∠C, ∠ADE=∠AED,则() A.当∠B为定值时,∠CDE为定值 B.当∠α为定值时,∠CDE为定值 C.当∠β为定值时,∠CDE为定值 D.当∠γ为定值时,∠CDE为定值 二、填空题: 6.三角形ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大12度,则这个三角形是__三角形. 7.以三条线段3、4、x-5为这组成三角形,则x的取值为____. 8.杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____. 9.△ABC中,∠A+∠B=∠C,∠A的平分线交BC于点D,若CD=8cm,则点D到AB 的距离为____cm. 10.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是____;中线AD的取值范围是____. 三、解答题: 11.已知:如图13-4,AE=AC,AD=AB,∠EAC=∠DAB, 求证:△EAD≌△CAB. 12.如图13-5,△ACD中,已知AB⊥CD,且BD>CB, △BCE和△ABD都是等腰直角三角形,王刚同学说有下列全等三角形: ①△ABC≌△DBE;②△ACB≌△ABD; ③△CBE≌△BED;④△ACE≌△ADE. A B D C E E A D F C B E D 图13-4 B 图13-3

八年级数学 全等三角形截长补短法专题

A D B C E 图2-1 截长补短法 人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例. 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ?? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB . 求证:CD =AD +BC . 分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD 上截取CF =BC ,如图2-2 在△FCE 与△BCE 中, ?? ? ??=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1. A B C D 图1-1 F E D C B A 图1-2 A D B C E F 1 234 图2-2

经典截长补短法巧解

截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长补短法有多种方法。 截长法: (1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。…… 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。……例: H P G F B A C D E 在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证) H P G F B A C D E 方法二(好证不好想) H M P G F B A C D E 例题不详解。

(第2页题目答案见第3、4页) F E D C A B (1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。 求证:EF=DE+BF (1)变形a E F D C A B 正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形b E F D C A B 正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形c j F E A B C D 正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。DB=DC ,∠BDC=120o 。请问现在EF 、BE 、CF 又有什么数量关系? (1)变形 d F E D C A B 正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。AD=3 求?AEF 的面积 (1)解:(简单思路)

华东师大版八年级上册数学13章 《全等三角形》教案3

课题命题 【学习目标】 1.了解命题的概念以及命题的构成,能把命题改为“如果……,那么……”的形式; 2.知道真命题和假命题,会用举例法或画图法等判断一个命题的真假性; 3.在学习的过程中体会数学的逻辑思维能力和有条理的推理能力. 【学习重点】 命题的概念,区分命题的条件和结论. 【学习难点】 区分命题的条件和结论,会把一些简单命题改写成“如果……,那么……”的形式. 行为提示:创景设疑,帮助学生知道本节课学什么. 知识链接:1.平行线的性质定理和判定定理; 2.对顶角的性质和定义; 3.直角的概念和判定. 行为提示:认真阅读课本,独立完成“自学互研”中的题目.在探究练习的指导下,自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识. 学法指导:紧扣“判断一件事情的句子”,有判断语句的是命题,无判断语句的不是命题. 学法指导:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项. 知识链接:1.有一些命题的叙述,其条件和结论并不十分明显,我们可以先把它改写成“如果……,那么……”的形式,再找出它的条件和结论; 2.命题的条件部分有时可用“已知……”或“若……”等形式叙述,结论部分可用“求证……”或 “则……”的形式叙述.情景导入生成问题 相信我能行:判断正误: (1)如果两个角是对顶角,那么这两个角相等; (2)两直线平行,同位角相等; (3)同旁内角相等,两直线平行; (4)相等的角是对顶角; (5)直角都相等. 自学互研生成能力 知识模块一命题的定义 阅读教材P53~P55,完成下面的内容: 定义:表示判断的语句叫做命题. 反之,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.例如:(1)你喜欢数学吗?(2)作线段AB=CD.

全等三角形~截长补短

1 2 截长补短 截长补短”是几何证明题中十分重要的方法, 通常用来证明几条线段的数量关系, 即若 题目条件或结论中含有 a b c ”的条件,需要添加辅助线时可以考虑 截长补短”的方法。 另外的较短线段。 补短法: ①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等 于较长线段。即延长a ,得到b ,证:a b ①延长较短线段中的一条, 使延长后的线段等于较长线段, 一条较短线段。 即延长a ,得到c ,证:b c-a 。 例1.已知:如图,在 △ ABC 中,△仁△Z, △ B=2AC .求证: 1.补短法: 证明:如图,延长 AB 到E ,使BE=BD ,连接DE . △ △ABD 是 △BDE 的一个外角 △ △ABDME + △BDE ABE=BD △ △EMBDE △ △ABD=2 △E △ △ABD=2 △C △ △EMC 在 AADE 和 AADC 中 △ △ADE △△ADC (AAS )截长法:在较长的线段上截取一条线段等于较短线段, 再设法证明较长线段的剩余线段等于 然后证明延长出来的部分等于另 AC=AB+BD . AD AD

1 2 证明:如图,在 CD 上截取CF=CB . △CE 平分△CBD 在△CFE 和 △CBE 中 △AE=AC △AC=AB + BE=AB + BD 2.截长法: 证明:如图,在 AC 上截取AF=AB ,连接DF . 在△ABD 和△AFD 中 AB AF AD AD △ △ABD △△AFD ( SAS ) △ ABMAFD , BD=FD △ △B=2 △C △ △AFD =2 △C △ △AFD 是^DFC 的一个外角 △ △AFD me + 舉DC △ AFDCmC ADF=FC ABD=FC △AC=AF+FC=AB+BD 例2.如图,在四边形 ABCD 中,△ A=AB=90,点 E 为AB 边上一点,且 DE 平分△ ADC , CE 平分△ BCD .求证:CD=AD+BC . CF CB CE CE

几何证明中的截长补短法

平面几何中截长补短法的应用 授课内容:湘教版九年级上册《证明》授课教师:张羽茂授课时间: 讲评内容:证明中的“截长补短法”。 讲评目标:1、通过讲评,查漏补缺,解决几何证明中截长补短法的应用。 2、规范学生证明过程的书写格式。 3、通过讲评提高审题能力,总结解题方法和规律。 讲评重点:规范学生证明过程的书写格式 讲评难点:通过讲评,查漏补缺,解决图形中截长补短法的应用。教具准备:黑板、学生作业本 讲评过程: 一、谈话导入 1、公布全班的整体成绩。 2、表扬进步的学生。 二、讲评 如图,在△ABC中,AD平分∠BAC,∠ B=2∠C,求证:AB+BD=AC. 方法一:(截长法) 方法二:(补短法) 三、课堂练习

1.已知:如图,在正方形ABCD 中,AB=4, AE 平分∠BAC.求AB+BE 的长。 四、课后拓展 1.正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45。 求证:EF=DE+BF 。 五、板书设计 如图,在△ABC 中,AD 平分∠BAC,∠B=2∠C,求证:AB+BD=AC. 已知:如图,在正方形ABCD 中,AB=4,AE 平分∠BAC.求AB+BE 的长。 正方形ABCD 中,点E 在CD 上,点在BC 上,∠EAF=45。求证:EF=DE+BF

六、教学反思与总结 截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。 截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。 补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。 教师工作: 采集信息-----归类点评、指导纠借-----适时检测、落实纠错 学生操作: 作业分析---个体纠借---集体纠错---针对补偿---(依据答案)主动纠错---思考领悟---针对纠错---主动补偿---消除薄弱 教学流程: 作业分析——个体纠错——集体纠错——针对补偿——课堂小结。

第13章全等三角形

第十三章全等三角形 13.1全等三角形 学习导航 目标点击 1.通过一个图形的平移、翻折、旋转,体会全等图形和全等三角形位置变化了,但形状、大小没有变化的特点. 2.理解全等三角形概念及表示方法,知道对应顶点、对应边、对应角及其性质. 知识点拨 (1)能够完全“重合”的两个三角形全等. (2)全等三角形的对应边相等、对应角相等. 例1 填空题: (1)如图13-1-1,①△ACF≌△ABE,AB=AC,则对应角是____,对应边是____. ②△OFB≌△OEC,则对应角是____,对应边是____. 图13-1-1 图13-1-2 (2)如图13-1-2,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C对应角为____,BD边对应边为____. (3)如图13-1-3,△ABC≌△ADE,∠B=∠ADE,∠C=∠E,则对应角是____,对应边是____. 图13-1-3 解:(1)①对应角是∠A与∠A,∠ABE与∠ACF,∠AEB与∠AFC,对应边是AB与AC,BE 与CF,AE与AF. ②对应角是∠BOF与∠COE,∠BFO与∠CEO,∠OBF与∠OCE,对应边是OB与OC,OF 与OE,BF与CE. (2)∠C的对应角是∠DBE,BD的对应边是CA. (3)对应角是∠B与∠ADE,∠C与∠E,∠BAC与∠DAE.对应边是AB与AD,AC与AE,BC与DE. 点拨:由于在全等三角形中,相等的边是对应边,相等的角(或公共角)是对应角,结合图形即可判断出. 例2 如图13-1-4,△ABC≌△DEF,∠A=30°,∠B=50°,BF=2. 求∠DFE的度数与EC的长. 图13-1-4

全等三角形之截长补短法

例题1 如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD. 考点:全等三角形的判定与性质. 专题:证明题. 分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD. 解答:证法一:如答图所示,延长AC,到E使CE=CD,连接DE. ∵∠ACB=90°,AC=BC,CE=CD, ∴∠B=∠CAB=45°,∠E=∠CDE=45°, ∴∠B=∠E. ∵AD平分∠BAC, ∴∠1=∠2 在△ABD和△AED中, ∠B=∠E,∠2=∠1,AD=AD, ∴△ABD≌△AED(AAS). ∴AE=AB. ∵AE=AC+CE=AC+CD, ∴AB=AC+CD. 证法二:如答图所示,在AB上 截取AE=AC,连接DE, ∵AD平分∠BAC, ∴∠1=∠2. 在△ACD和△AED中, AC=AE,∠1=∠2,AD=AD, ∴△ACD≌△AED(SAS). ∴∠AED=∠C=90,CD=ED, 又∵AC=BC,

∴∠B=45°. ∴∠EDB=∠B=45°. ∴DE=BE, ∴CD=BE. ∵AB=AE+BE, ∴AB=AC+CD. 点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系. 例题2 图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC). 考点:全等三角形的判定与性质;三角形三边关系. 专题:计算题. 分析:可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之. 解答:证明:如图延长AD至E,使AD=DE,连接BE. ∵BD=DC,AD=DE,∠ADC=∠EDB ∴△ACD≌△EBD∴AC=BE 在△ABE中,AE<AB+BE,即2AD<AB+AC∴AD<(AB+AC) 点评:本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.

三角形全等之倍长中线

三角形全等之倍长中线 课前预习 1. 填空 (1)三角形全等的判定有: 三边分别___________的两个三角形全等,即(____); 两边和它们的_____分别相等的两个三角形全等,即(____); 两角和它们的_____分别相等的两个三角形全等,即(____); 两角和其中一个角的______分别相等的两个三角形全等,即(____); 斜边和_______边分别相等的两个直角三角形全等,即(____). (2)要证明两条边相等或者两个角相等,可以考虑放在两个三角形中证________;要证明两个三角形全等需要准备______组条件,这三组条件里面必须有______;然后依据判定进行证明,其中AAA ,SSA 不能证明两个三角形全. 2. 想一想,证一证 已知:如图,AB 与CD 相交于点O ,且O 是AB 的中点. (1)当OC =OD 时,求证:△AOC ≌△BOD ; (2)当AC ∥BD 时,求证:△AOC ≌△BOD . O B C D A ? 知识点睛 1. “三角形全等”辅助线: 见中线,要__________,构造______________. 2. 中点的思考方向: ① (类)倍长中线 延长AD 到E ,使DE =AD , 延长MD 到E ,使DE =MD , 连接BE 连接CE D C B A M A B C D

②平行夹中点 F E D C B A 延长FE 交BC 的延长线于点G ? 精讲精练 1. 如图,在△ABC 中,AD 为BC 边上的中线. (1)按要求作图:延长AD 到点E ,使DE =AD ;连接BE . (2)求证:△ACD ≌△EBD . (3)求证:AB +AC >2AD . (4)若AB =5,AC =3,求AD 的取值范围. 2. 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC . 3. 如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE . D C B A D B A D C B A

八年级数学上册第13章全等三角形13.4尺规作图第1课时尺规作图教案新版华东师大版

13.4 尺规作图 第1课时尺规作图(1) 1.掌握五种基本作图的方法. 2.会用五种基本作图的方法来解决简单的作图题. 重点 五种基本作图的方法. 难点 作图语言的叙述. 一、自学教材 自学教材第85~88页,体会前三种基本作图的方法.学生自学教材,交流归纳作一条线段等于已知线段、作一个角等于已知角、作已知角的平分线的方法. 二、探究新知 教师演示作图过程. 1.作一条线段等于已知线段 已知:线段AB.求作:线段A′B′,使A′B′=AB. 作法:(1)作射线A′C′; (2)以点A′为圆心,以AB的长为半径作弧,交射线A′C′于点B′.A′B′就是所要求作的线段. 2.作一个角等于已知角 如图,已知∠AOB和射线O′B′,用尺规作图法作∠A′O′B′=∠AOB. ①以点O为圆心,任意长为半径作弧交OA于点C,交OB于点D; ②以点O′为圆心,OC长为半径作弧,交O′B于点C′; ③以点C′为圆心,CD长为半径作弧交前弧于点A′; ④以点O′为顶点作射线O′A′.∠A′O′B′即为所求. 3.作已知角的平分线 已知:∠AOB.求作:∠AOB的平分线.作法: ①以点O为圆心,适当长为半径作弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,

大于12 MN 的长为半径作弧,两弧在∠AOB 的内部交于点C ;③作射线OC.射线OC 即为所求. 教师活动:同排两个同学互相交流尺规作图的注意事项,并实际动手操作. 学生活动:组织积极讨论,小组交流,代表发言. 教师总结:尺规作图注意事项:①尺规作图只能使用圆规和没有刻度的直尺;②几何作图必须保留作图痕迹. 三、练习巩固 1.如图,已知∠AOB.(1)求作∠EDF ,使∠EDF=∠AOB;(2)求作∠EDF 的平分线DG. 2.如图,已知∠A ,∠B,求作一个角,使其等于∠A-2∠B. 3.如图,已知线段AB,CD,求作一个等腰三角形,使其腰长等于AB,底边长等于CD. 四、小结与作业 小结 1.尺规作图的概念. 2.用尺规作一条线段等于已知线段及线段的和、差的作法. 3.作一个角等于已知角及角的和差的作法. 作业 教材第91页习题13.4第2题. 这节课内容较多,前三个基本作图较简单,主要是学生自学后独立操作,教师演示的目的是规范作图语言,搞清其中的几何道理.后两个作图实际上用到了转化思想,较为复杂,要让学生搞明白作图的原理,是掌握作图步骤的关键. 运用基本作图方法解作图题时,应让学生先分析作图顺序后,再完成.对于作图语言应逐步规范.

(精品)全等三角形——截长补短法

D C B A 全等三角形——截长补短法 一、知识梳理: 截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 二、典型例题: 例1、如图,在ABC ?中,60BAC ∠=?,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数. 及时练习: 如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . 例2、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.

N E B M A D M D C B A D O E C B A 及时练习: 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE . 及时练习: 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C . 2 k h + D . h 例4、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O . 求证:OA 平分DOE ∠.

相关文档
相关文档 最新文档