文档库 最新最全的文档下载
当前位置:文档库 › 双座阀

双座阀

双座阀
双座阀

双座调节阀公称通径mm 15 20 25 40 50 65 80 100 150 200

公称压力MPa 0.6 10

行程mm 10 16 25 40 60

流量特性近似快开型

介质温度℃-15~200(常温型)、-40~+250、-40~+450(中温型)、-100~+200(低温型) 法兰形式法兰密封面形式按JB77,其中铸铁法兰按光滑式,铸钢法兰按凹式

阀体材质PN

(MPa) 0.6,1.6 WCB(ZG230-450) CF3CF8 CF8M

4.0,6.4 WCB(ZG230-450)、ZG1Cr18Ni9Ti、ZG0Cr18Ni12Mo2Ti CF8 CF8M

性能

项目技术指标

不带定位器带定位器

基本误差%±10 ±1.5

回差%8 1.5

死区%6 0.6

允许泄漏量衬里材料为聚三氟乙烯隔膜材料

为:氯丁橡胶,氟橡胶10-4×阀额定容量

无衬里材料为,隔膜材料为:氯

丁橡胶,氟橡胶5×10-6×阀额定容量

可配附件电气定位器或电/气转换器空气过滤减压器电磁阀手轮机构等

额定流量系数Kv偏差%±20

阀体衬里和隔膜材料的组合

阀体材料衬里材料隔膜材料使用温度适用场合

铸铁HT200 无氯丁橡胶0~65℃无腐蚀性介质,水及研磨剂,泥浆类介质

铸铁HT200 聚三氟氯乙烯氟橡胶-15~150℃强酸、强碱、强氧化剂和一般有机溶剂,不适于泥浆介质

铸不锈钢

ZG1Cr18Niti 无氟橡胶-20~200℃一般酸、碱有机溶剂等介质

4、允许压差

公称通径DN(mm) 15 20 25 32 40 50 65 80 100

额定流量系数Kv 8 12 16 28 60 67 90 160 300

公称压力(MPa) 1.0

配用执行机构型号ZMA(B)-2 ZMA(B)-3 ZMA(B)-4

关闭时

允许最大压力

MPa 信号

压力MPa P2=0 120 0.9 0.9 0.40 0.40 0.30 0.2 0.2 0.1 0.05

140 1.0 1.0 0.80 0.80 0.60 0.4 0.4 0.2 0.10

P1=P2 120 0.45 0.45 0.20 0.20 0.15 0.1 0.1 0.05 0.02

140 0.9 0.9 0.40 0.40 0.30 0.2 0.2 0.1 0.05

调节阀的发展历程

调节阀的发展自20世纪初始至今已有八十年的历史,先后产生了十个大类的调节阀产品、自力式阀和定位器等,调节阀和控制阀的发展历程如下:

20年代:原始的稳定压力用的调节阀问世。

30年代:以“V”型缺口的双座阀和单座阀为代表产品V型调节球阀问世。

40年代:出现定位器,调节阀新品种进一步产生,出现隔膜阀、角型阀、蝶阀、球阀等。50年代:球阀得到较大的推广使用,三通阀代替两台单座阀投入系统。

60年代:在国内对上述产品进行了系列化的改进设计和标准化、规范化后,国内才才有了完整系列产品。现在我们还在大量使用的单座阀、双座阀、角型阀、三通阀、隔膜阀、蝶阀、球阀七种产品仍然是六十年代水平的产品。这时,国外开始推出了第八种结构调节阀——套筒阀。

70年代:又一种新结构的产品——偏心旋转阀问世(第九大类结构的调节阀品种)。这一时期套筒阀在国外被广泛应用。70年代末,国内联合设计了套筒阀,使中国有了自己的套筒阀产品系列。

80年代:改革开放期间,中国成功引进了石化装置和调节阀技术,使套筒阀、偏心旋转阀得到了推广使用,尤其是套筒阀,大有取代单、双座阀之势,其使用越来越广。80年代末,调节阀又一重大进展是日本的Cv3000和精小型调节阀,它们在结构方面,将单弹簧的气动薄膜执行机构改为多弹簧式薄膜执行机构,阀的结构只是改进,不是改变。它的突出特点是使调节阀的重量和高度下降30%,流量系数提高30%。

90年代:90年代的调节阀重点是在可靠性、特殊疑难产品的攻关、改进、提高上。到了90年代末,由前泽公司推出了第十种结构的产品——全功能超轻型阀。它突出的特点是在可靠性上、功能上和重量上的突破。功能上的突破——唯一具备全功能的产品,故此,可由一种产品代替众多功能上不齐全的产品,使选型简化、使用简化、品种简化;在重量上的突破——比主导产品单座阀、双座阀、套筒阀轻70~80%,比精小型阀还轻40~50%;可靠性的突破——解决了传统调节阀等各种不可靠性因素,如密封的可靠性、定位的可靠性、动作的可靠性等。该产品的问世,使中国的调节阀技术和应用水平达到了九十年代末先进水平;它是对调节阀的重大突破;尤其是电子式全功能超轻型阀,必将成为下世纪调节阀的主流。调节阀结构组成

调节阀通常由电动执行机构或气动执行机构与阀体两部分共同组成。直行程主要有直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。角行程主要有:V型电动调节球阀、电动蝶阀、通风调节阀、偏心蝶阀等。

调节阀种类

按用途和作用、主要参数、压力、介质工作温度、特殊用途(即特殊、专用阀)、驱动能源、结构等方式进行了分类,其中最常用的分类法是按结构将调节阀分为九个大类,6种为直行程,3种为角行程。

a.两位阀:主要用于关闭或接通介质;

b.调节阀:主要用于调节系统。选阀时,需要确定调节阀的流量特性;

c.分流阀:用于分配或混合介质;

d.切断阀:通常指泄漏率小于十万分之一的阀。

按主要参数分类

1 按压力分类

(1)真空阀:工作压力低于标准大气压;

(2)低压阀:公称压力PN≤1.6MPa;

(3)中压阀:PN2.5~6.4MPa;

(4)高压阀:PNl0.0~80.0MPa,通常为PN22、PN32;

(5)超高压阀:PN≥IOOMPa。

2 按介质工作温度分类

(1)高温阀:t>450℃;

(2)中温阀:220℃≤t≤450℃;

(3)常温阀:-40℃≤t≤220℃;④低温阀:-200℃≤t≤-40℃。

常用分类法

这种分类方法既按原理、作用又按结构划分,是目前国内、国际最常用的分类方法。一般分为九个大类:

直行程气动调节阀(1)单座调节阀;

(2)双座调节阀;

(3)套筒调节阀;

(4)角形调节阀;

(5)三通调节阀;

(6)隔膜阀;

(7)蝶阀;

(8)球阀;

(9)偏心旋转阀。前6种为直行程,后三种为角行程。

这九种产品亦是最基本的产品,也称为普通产品、基型产品或标准产品。各种各样的特殊产品、专用产品都是在这九类产品的基础上改进变型出来的。

按主要特殊用途来分(即特殊、专用阀)

(1)软密封切断阀;

(2)硬密封切断阀;

(3)耐磨调节阀;

(4)耐腐蚀调节阀;

(5)全四氟耐蚀调节阀

(6)全耐蚀合金调节阀;

(7)紧急动作切断或放空阀;

(8)防堵调节阀;

(9)耐蚀防堵切断阀;

(10)保温夹套阀;

(11)大压降切断阀;

(12)小流量调节阀;

(13)大口径调节阀;

(14)大可调比调节阀;

(15)低S节能调节阀;

(16)低噪音阀;

(17)精小型调节阀;

(18)衬里(橡胶、四氟、陶瓷)调节阀;

(19)水处理专用球阀;

(20)烧碱专用阀;

(21)磷铵专用阀;

(22)氯气调节阀;

(23)波纹管密封阀……

按驱动能源分类

(1)气动调节阀;

(2)电动调节阀;

(3)液动调节阀。

调节阀CV值(流量系数)

流通能力Cv值()是调节阀选型的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。

根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。

调节阀流量特性

调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下:

(1)等百分比特性(对数)

等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量(2)线性特性(线性)

线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

(3)抛物线特性

流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。

从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀应用

在现代化工厂的自动控制中,调节阀起着十分重要的作用,这些工厂的生产取决于流动着的液体和气体的正确分配和控制。这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要*某些最终控制元件去完成。最终控制元件可以认为是自动控制的“体力”。在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用。

调节阀是最终控制元件的最广泛使用的型式。其他的最终控制元件包括计量泵、调节挡板和百叶窗式挡板(一种蝶阀的变型)、可变斜度的风扇叶片、电流调节装置以及不同于阀门的电动机定位装置。

尽管调节阀得到广泛的使用,调节系统中的其它单元大概都没有像它那样少的维护工作量。在许多系统中,调节阀经受的工作条件如温度、压力、腐蚀和污染都要比其它部件更为

严重,然而,当它控制工艺流体的流动时,它必须令人满意地运行及最少的维修量。

调节阀在管道中起可变阻力的作用。它改变工艺流体的紊流度或者在层流情况下提供一个压力降,压力降是由改变阀门阻力或“摩擦”所引起的。这一压力降低过程通常称为“节流”。对于气体,它接近于等温绝热状态,偏差取决于气体的非理想程度(焦耳一汤姆逊效应)。在液体的情况下,压力则为紊流或粘滞摩擦所消耗,这两种情况都把压力转化为热能,导致温度略为升高。

常见的控制回路包括三个主要部分,第一部分是敏感元件,它通常是一个变送器。它是一个能够用来测量被调工艺参数的装置,这类参数如压力、液位或温度。变送器的输出被送到调节仪表——调节器,它确定并测量给定值或期望值与工艺参数的实际值之间的偏差,一个接一个地把校正信号送出给最终控制元件——调节阀。阀门改变了流体的流量,使工艺参数达到了期望值。

在气动调节系统中,调节器输出的气动信号可以直接驱动弹簧一薄膜式执行机构或者活塞式执行机构,使阀门动作。在这种情况下,确定阀位所需的能量是由压缩空气提供的,压缩空气应当在室外的设备中加以干燥,以防止冻结,并应净化和过滤。

当一个气动调节阀和电动调节器配套使用时,可采用电一气阀门定位器或电一气转换器。压缩空气的供气系统可以和用于全气动的调节系统一样来考虑。

在调节理论的术语中,调节阀既有静态特性,又有动态特性,因而它影响整个控制回路成败。静态特性或增益项是阀的流量特性,它取决于阀门的尺寸、阀芯和阀座的组合结构、执行机构的类型、阀门定位器、阀前和阀后的压力以及流体的性质。第5章中将详细地介绍这些内容。

动态特性是由执行机构或阀门定位器一执行机构组合决定的。对于较慢的生产过程,如温度控制或液位控制,阀的动态特性在可控性方面一般不是限制因素。对于较快的系统,如液体的流量控制,调节阀可能有明显的滞后,在回路的可控性方面一定要有所考虑。一般只有控制系统的专家才需要关心调节阀的动态持性,关于应用阀门定位器的正规考虑如第9章中所讨论的,将满足大多数调节阀装置的需要。

自动调节阀的历史可追溯到自力式调压阀,它包括一个带有重物杆的球形阀,重物用来平衡阀芯力,从而得到某种程度的调节,另一种早期的自力式调压阌的形式是压力平衡式调压阀。工艺过程的压力用管线接到弹簧薄膜调压阀的薄膜气室上。无论是减压阀、阀后压力式调压阀或是差压调压阀都笔够从这种基型阀门的变更而制造出来。

气动变送器和调节器的出现,就必然地导致气动词节阀的应用。它们本质上是减压阀或阀后压力式调压阀,改用仪表压缩空气来代替工艺过程的流体。现在许多生产减压阀的公司已经发展成为调节阀制造厂。调节阀的应用从数量上和复杂性方面继续不断地得到发展,许多阀门的阀体和附件的改进可以用来解决各种各样的问题。本手册的意图是使工程们熟悉调节阀的结纸醉金迷和因素,帮助仪表工程师在应用中选用最好的阀体、执行机构和附件。

调节阀属于控制阀系列,主要作用是调节介质的压力、流量、温度等等参数,是工艺环路中最终的控制元件。调节阀按行程特点可分为:直行程和角行程。直行程包括:单座阀、双座阀、套筒阀、角形阀、三通阀、隔膜阀;角行程包括:蝶阀、球阀、偏心旋转阀、全功能超轻型调节阀。调节阀按驱动方式可分为:气动调节阀、电动调节阀和液动调节阀;按调节形式可分为:调节型、切断型、调节切断型;按流量特性可分为:线性、等百分比、抛物线、快开。调节阀适用于空气、水、蒸汽、各种腐蚀性介质、泥浆、油品等介质。

调节阀计算公式

调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数

Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。

1.一般液体的Kv值计算

a.非阻塞流

判别式:△P<FL(P1-FFPV)

计算公式:Kv=10QL

式中:FL-压力恢复系数,见附表

FF-流体临界压力比系数,FF=0.96-0.28

PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa

PC-流体热力学临界压力(绝对压力),kPa

QL-液体流量m/h

ρ-液体密度g/cm

P1-阀前压力(绝对压力)kPa

P2-阀后压力(绝对压力)kPa

b.阻塞流

判别式:△P≥FL(P1-FFPV)

计算公式:Kv=10QL

式中:各字符含义及单位同前

2.气体的Kv值计算

a.一般气体

当P2>0.5P1时

当P2≤0.5P1时

式中:Qg-标准状态下气体流量Nm/h

Pm-(P1+P2)/2(P1、P2为绝对压力)kPa

△P=P1-P2

G -气体比重(空气G=1)

t -气体温度℃

b.高压气体(PN>10MPa)

当P2>0.5P1时

当P2≤0.5P1时

式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》3.低雷诺数修正(高粘度液体KV值的计算)

液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为:

式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量m/h

对于单座阀、套筒阀、角阀等只有一个流路的阀

对于双座阀、蝶阀等具有二个平行流路的阀

式中:Kv′―不考虑粘度修正时计算的流量系

ν―流体运动粘度mm/s

FR -Rev关系曲线

FR-Rev关系图

4.水蒸气的Kv值的计算

a.饱和蒸汽

当P2>0.5P1时

当P2≤0.5P1时

式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。

b.过热水蒸汽

当P2>0.5P1时

当P2≤0.5P1时

式中:△t―水蒸汽过热度℃,Gs、P1、P2含义及单位同前。

调节阀常见故障处理方法

1)清洗法

管路中的焊渣、铁锈、渣子等在节流口、导向部位、下阀盖平衡孔内造成堵塞或卡住使阀芯曲面、导向面产生拉伤和划痕、密封面上产生压痕等。这经常发生于新投运系统和大修后投运初期。这是最常见的故障。遇此情况,必须卸开进行清洗,除掉渣物,如密封面受到损伤还应研磨;同时将底塞打开,以冲掉从平衡孔掉入下阀盖内的渣物,并对管路进行冲洗。投运前,让调节阀全开,介质流动一段时间后再纳入正常运行。

2)外接冲刷法

对一些易沉淀、含有固体颗粒的介质采用普通阀调节时,经常在节流口、导向处堵塞,可在下阀盖底塞处外接冲刷气体和蒸汽。当阀产生堵塞或卡住时,打开外接的气体或蒸气阀门,即可在不动调节阀的情况下完成冲洗工作,使阀正常运行。

3)安装管道过滤器法

对小口径的调节阀,尤其是超小流量调节阀,其节流间隙特小,介质中不能有一点点渣物。遇此情况堵塞,最好在阀前管道上安装一个过滤器,以保证介质顺利通过。带定位器使用的调节阀,定位器工作不正常,其气路节流口堵塞是最常见的故障。因此,带定位器工作时,必须处理好气源,通常采用的办法是在定位器前气源管线上安装空气过滤减压阀。

4)增大节流间隙法

如介质中的固体颗粒或管道中被冲刷掉的焊渣和锈物等因过不了节流口造成堵塞、卡住等故障,可改用节流间隙大的节流件—节流面积为开窗、开口类的阀芯、套筒,因其节流面积集中而不是圆周分布的,故障就能很容易地被排除。如果是单、双座阀就可将柱塞形阀芯改为“V”形口的阀芯,或改成套筒阀等。例如某化工厂有一台双座阀经常卡住,推荐改用套筒阀后,问题马上得到解决。

5)介质冲刷法

利用介质自身的冲刷能量,冲刷和带走易沉淀、易堵塞的东西,从而提高阀的防堵功能。常见的方法有:①改作流闭型使用;②采用流线型阀体;③将节流口置于冲刷最厉害处,采用此法要注意提高节流件材料的耐冲蚀能力。

6)直通改为角形法

直通为倒S流动,流路复杂,上、下容腔死区多,为介质的沉淀提供了地方。角形连接,介质犹如流过90弯头,冲刷性能好,死区小,易设计成流线形。因此,使用直通的调节阀产生轻微堵塞时可改成角形阀使℃用。

密封性能差的解决方法(5种方法)

1)研磨法

细的研磨,消除痕迹,减小或消除密封间隙,提高密封面的光洁度,以提高密封性能。

2)利用不平衡力增加密封比压法

执行机构对阀芯产生的密封压力一定,不平衡力对阀芯产生顶开趋势时,阀芯的密封力为两力

相减,反之,对阀芯产生压闭趋势,阀芯的密封力为两力相加,这样就大大地增加了密封比压,密封效果可以比前者提高5~10倍以上.一般dg≥20的单密封类阀为前一种情况,通常为流开型,若认为密封效果不满意时,改为流闭型,密封性能将成倍增加.尤其是两位型的切断调节阀,一般均应按流闭型使用。

3)提高执行机构密封力法

提高执行机构对阀芯的密封力,也是保证阀关闭,增加密封比压,提高密封性能的常见方法。常用的方法有:

①移动弹簧工作范围施工、安装要点

1)、安装位置、高度、进出口方向必须符合设计要求,连接应牢固紧密。

2)、安装在保温管道上的各类手动阀门,手柄均不得向下。

3)、阀门安装前必须进行外观检查,阀门的铭牌应符合现行国家标准《通用阀门标志》GB 12220的规定。对于工作压力大于1.0 MPa 及在主干管上起到切断作用的阀门,安装前应进行强度和严密性能试验,合格后方准使用。强度试验时,试验压力为公称压力的1.5倍,持续时间不少于5min,阀门壳体、填料应无渗漏为合格。严密性试验时,试验压力为公称压力的1.1倍;试验压力在试验持续的时间应符合GB 50243标准要求,以阀瓣密封面无渗漏为合格。

②改用小刚度弹簧;

③增加附件,如带定位器;

④增加气源压力;

⑤改用具有更大推力的执行机构。

4)采用单密封、软密封法

对双密封使用的调节阀,可改用单密封,通常可提高10倍以上的密封效果,若不平衡力较大,应增加相应措施,对硬密封的阀可改用软密封,又可提高10倍以上密封效果。

5)改用密封性能好的阀

在不得已的情况下,可考虑改用具有更好的密封性能的阀.如将普通蝶阀改用椭圆蝶阀,进而还可改用切断型蝶阀、偏心旋转阀、球阀和为之专门设计的切断阀。

调节阀外泄的解决方法(6种方法)

1)增加密封油脂法

对未使用密封油脂的阀,可考虑增加密封油脂来提高阀杆密封性能。

2)增加填料法

为提高填料对阀杆的密封性能,可采用增加填料的方法。通常是采用双层、多层混合填料形式,单纯增加数量,如将3片增到5片,效果并不明显。

3)更换石墨填料法

大量使用的四氟填料,因其工作温度在-20~+200范围内,当温度在上、下限,变化较大时,其密封性便明显下降,老化快,寿命短。柔性石墨填料可克服这些缺点且使用寿命长。因而有的工厂全部将四氟填料改为石墨填料,甚至新购回的调节阀也将其中的四氟填料换成石墨填料后使用。但使用石墨填料的回差大,初时有的还产生爬行现象,对此必须有所考虑。℃

4)改变流向,置P2在阀杆端法

当△P较大,P1又较大时,密封P1显然比密封P2困难.因此,可采取改变流向的方法,将P1在阀杆端改为P2在阀杆端,这对压力高、压差大的阀是较有效的.如波纹管阀就通常应考虑密封P2。

5)采用透镜垫密封法

对于上、下盖的密封,阀座与上、下阀体的密封.若为平面密封,在高温高压下,密封性

差,引起外泄,可以改用透镜垫密封,能得到满意的效果。

6)更换密封垫片

至今,大部分密封垫片仍采用石棉板,在高温下,密封性能较差,寿命也短,引起外泄。遇到这种情况,可改用缠绕垫片,“O”形环等,现在许多厂已采用。

调节阀振动的解决方法

1)增加刚度法

对振荡和轻微振动,可增大刚度来消除或减弱,如选用大刚度的弹簧,改用活塞执行机构等办法都是可行的。

2)增加阻尼法

增加阻尼即增加对振动的摩擦,如套筒阀的阀塞可采用“O”形圈密封,采用具有较大摩擦力的石墨填料等,这对消除或减弱轻微的振动还是有一定作用的。

3)增大导向尺寸,减小配合间隙法

轴塞形阀一般导向尺寸都较小,所有阀配合间隙一般都较大,有0.4~lmm,这对产生机械振动是有帮助.因此,在发生轻微的机械振动时,可通过增大导向尺寸,减小配合间隙来削弱振动。

4)改变节流件形状,消除共振法

因调节阀的所谓振源发生在高速流动、压力急剧变化的节流口,改变节流件的形状即可改变振源频率,在共振不强烈时比较容易解决。具体办法是将在振动开度范围内阀芯曲面车削0.5~1.0mm。如某厂家属区附近安装了一台自力式压力调节阀,因共振产生啸叫影响职工休息,我们将阀芯曲面车掉0.5mm后,共振啸叫声消失。

调节阀的工作原理

调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。

调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。

流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。

根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。

调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下:

(1)等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。

(2)线性特性(线性)线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。(3)抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。

从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀又名控制阀,通过接受调节控制单元输出的控制信号,借助动力操作去改变流体流量。

调节阀一般由执行机构和阀门组成。如果按其所配执行机构使用的动力,调节阀可以分为气动调节阀、电动调节阀、液动调节阀三种,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体介质(如油等)压力为动力的电液动调节阀,另外,按其功能和特性分,线性特性,等百分比特性及抛物线特性三种.现场总线型调节阀等。

调节阀的阀体类型选择

调节阀的阀体种类很多,常用的阀体种类有直通单座、直通双座、角形、隔膜、小流量、三通、偏心旋转、蝶形、套筒式、球形等。在具体选择时,可做如下考虑:

(1) 阀芯形状结构

主要根据所选择的流量特性和不平衡力等因素考虑。

(2) 耐磨损性

当流体介质是含有高浓度磨损性颗粒的悬浮液时,阀的内部材料要坚硬。

(3) 耐腐蚀性

由于介质具有腐蚀性,尽量选择结构简单阀门。

(4) 介质的温度、压力

当介质的温度、压力高且变化大时,应选用阀芯和阀座的材料受温度、压力变化小的阀门,当温度≥250℃时应加散热器。

(5) 防止闪蒸和空化

闪蒸和空化只产生在液体介质。在实际生产过程中,闪蒸和空化会形成振动和噪声,缩短阀门的使用寿命,因此在选择阀门时应防止阀门产生闪蒸和空化。

调节阀执行机构的选择

为了使调节阀正常工作,配用的执行机构要能产生足够的输出力来保证高度密封和阀门的开启。

对于双作用的气动、液动、电动执行机构,一般都没有复位弹簧。作用力的大小与它的运行方向无关,因此,选择执行机构的关键在于弄清最大的输出力和电机的转动力矩。对于单作用的气动执行机构,输出力与阀门的开度有关,调节阀上的出现的力也将影响运动特性,因此要求在整个调节阀的开度范围建立力平衡。

执行机构类型的确定

对执行机构输出力确定后,根据工艺使用环境要求,选择相应的执行机构。对于现场有防爆要求时,应选用气动执行机构。从节能方面考虑,应尽量选用电动执行机构。若调节精度高,可选择液动执行机构。如发电厂透明机的速度调节、炼油厂的催化装置反应器的温度调节控制等。

调节阀的作用方式选择

调节阀的作用方式只是在选用气动执行机构时才有,其作用方式通过执行机构正反作用和阀门的正反作用组合形成。组合形式有4种即正正(气关型)、正反(气开型)、反正(气开型)、反反(气关型),通过这四种组合形成的调节阀作用方式有气开和气关两种。对于调节阀作用方式的选择,主要从三方面考虑:a)工艺生产安全;b)介质的特性;c)保证产品质量,经济损失最小

减压控制阀的设计

*******学院 毕业课题(设计) 题目减压控制阀的设计 指导教师 院系 班级 学号 姓名 年月日

摘要 随着工业技术的不断发展,使得越来越多的机器设备使用上了高效的液压系统,在不同规格,不同型号,不同大小的液压设备里,我们都可以发现一个共同的控制元件—液压控制阀。它的性能和寿命在很大程度上决定了液压系统的稳定性。但是我发现仅仅是安装了液压控制阀还是完全不够的,有些机器还会发生机械元件过热,推进器失灵,没有过载保护而产生的机器毁坏。而这些事故都是因为液压系统压力过大而产生的问题。本文将着重研究减压控制阀的设计,并对减压阀结构进行探究。意在不断优化减压阀的整体性能。 关键词:压力控制阀, 技术调节阀, 管式连接, 阀芯

目录 1引言 (1) 1.1压力控制阀的介绍 (1) 1.2减压控制阀的介绍 (1) 1.2减压阀的运行机制 (2) 1.4减压阀的生活作用 (2) 2减压控制阀的设计 (3) 2.1定比减压阀 (3) 2.2减压阀研究优化设计 (5) 2.3定差减压阀 (6) 2.4导阀和主阀研究的重要性 (7) 3 减压控制阀的导阀设计 (8) 3.1主要结构尺寸确定 (9) 3.2先导锥阀角2的选定 (11) 3.3减压阀的定值输出方式 (12) 4主阀弹簧的设计 (12) 4.1弹簧外径的计算 (14) 4.2弹簧曲度系数计算 (15) 4.3弹簧的工作圈数 (16) 5减压阀设计中有关注意事项 (17) 6研究课题的优化设计 (18) 6.1观点 (18) 参考文献 (19) 致谢 (20)

第一章引言 液压元件减压处理技术在功率密度、结构组成、响应速度、调速保护、过载保护、电液整台等方面都具有一定的优势,使其成为现代传动的重要技术手段和不可替代的关键基础技术之一,这些应用已经遍及了国民经济各个领域。 压力控制阀的介绍: 压力控制阀是指用来对液压系统中液流的压力进行控制与调节的阀。压力控制阀是控制和调节液流压力的阀的总称,简称压力阀。它是采取使作用在阀芯上的液压力与阔芯弹簧力相平衡的方法,建立和维持被控液体的工作压力。如果弹簧力是可调的,则被控液体的压力也可随之改变,从而达到控制和调节液流压力的目的。压力阀都并联在油路系统中加以使用。当被控液体由于外界原因压力升高超过弹簧预调压力时,阀芯与弹簧的平衡关系被破坏,此肘,阀芯将被迫移动,打开通路向回油管路泄油(溢流),使被控油液的压力仍维持在弹簧预调压力的水平;有时阀芯移动不是打开回油通路,而是改变其专设节流减压口的通流断面,即改变其压力降,来使预调减压油路的工作压力维持不变;有时则有意提高油液压力,使其进入另一工作油路,以达到顺序动作的目的。压力控制阀是制压力的阀的总称。按用途分为溢流阀﹑减压阀和顺序阀。 减压控制阀的介绍: 减压控制阀隶属液压控制阀这一大类,拥有以下特征: 1.减压阀是能够将出口压力调节到低于进口压力的控制阀。减压阀可以减低系统中任一分支液压油路的压力,用来满足液压设备执行元件的需要,常见于各种液压控制系统、夹紧系统、辅助系统及润滑系统中。 2.按调节要求的不同其可以分为定值减压阀、定比减压阀和定差减压阀。定压减压阀控制出口压力为定值,使液压系统中某一部分比供油压力更低的稳定压力;定比减压阀可以控制它的进、出口压力保持恒定的比例;定差减压阀可以控制进、出口压力差为恒定的大小。

调节阀操作说明书

气缸直行程控制阀 使用说明书 成都欧浦特控制阀门有限公司 ChengDu OPTIMUX Control Valves Co.,Ltd

一、 概述 OPGL 气缸直行程控制阀是成都欧浦特控制阀门有限公司引进美国先进技术,集多年成功的专业制造经验而生产的产品。该系列控制阀采用高刚性、大推力的气缸式执行机构,气源压力可达1.0MPa,气缸强大的推力可克服很高的介质流体压力。(OPGL 电动控制阀所配用的电动执行机构,根据用户要求确定)。自动对中心无螺纹连接卡入式阀座,使维修工作轻而易举,简单快捷。粗壮的阀杆及与其一体式的阀芯,能够承受高压差而阀芯不致脱落。另外它还综合了传统的单座控制阀、双座控制阀和笼式控制阀的优点,泄漏量小、稳定性好、允许压差高,使OPGL 气缸直行程控制阀充分显示出其独有的特点,它代表了国际九十年代末控制阀最先进的主流,我们相信广大客户在使用OPGL 气缸直行程控制阀时很快会发现其越来越多的优点。 在安装使用和维护OPGL气缸直行程控制阀前阅读本说明书将会给你很大的帮助。安装、操作或维修阀门时,使用和维修人员一定要充分地阅读安装说明,了解它的结构特点和拆装方法步骤,才能保证其安全运行。 OPGL 电动控制阀的用户请阅读本说明书和相应配套的电动执行机构的说明书。 OPGL 气缸直行程控制阀国内独家生产,具有国家发明专利的高科技产品。 二、 结构特点 1、OPGL 气缸直行程控制阀技术先进,性能卓越。具有调节、切断、切断压差大、泄漏量小等全部功能,特别适用于允许泄漏量小、而阀前后压差较大的自控系统,可同时替代薄膜式单座阀、双座阀及笼式阀。 2、标准化、模块化设计,库存备件少、维修更方便。 3、带弹簧的双作用气缸式执行机构,材质为压铸铝合金,体积小、重量轻,配双作用阀门定位器,动作灵敏、定位精度高,活塞的上部和下部同时接受纯净的压缩空气,气缸内部免受腐蚀。气源压力最高可达1.0MPa,推力大、行程速度快、使用寿命长。气源故障时弹簧可使阀门自动关闭或打开,保证了系统的安全。特殊设计的气缸卡环结构可使气关、气开方式在现场很方便地更换。同时具备了单作用执行机构和双作用执行机构的功能和优点。 4、自动调准中心插入式无螺纹连接阀座,通过阀盖和阀笼固定在阀体内,易于拆出、维修方便,控制阀可以在线检修,阀芯阀座密封面的优化设计和超精加工无需研磨就可以达到极小的泄漏量。 5、阀芯和阀杆为一体式,阀杆较传统类型阀杆粗3~4倍,可承受高压差并消除了阀芯脱落、阀杆弯曲断裂的事故隐患。 6、双顶式导向结构,阀芯与阀笼无接触,彻底消除了阀笼导向所引起的阀芯擦伤、阀笼卡死等阀门应用问题。 7、阀笼有多种设计:分别用于一般工况和高温高压差的严酷工况。如:消除气蚀型、降噪型,保护阀芯和阀体免受气蚀的损坏,大幅度降低噪音。 8、维修简单、快捷、经济,阀体不必从管线上拆下来,只需拧下阀盖法兰上的螺母,阀盖、阀芯、阀座零件就可很方便的依次取出检查,反之亦然。

多孔式套筒控制阀节流孔的设计

| Control Valve Magazine | July 2016 70Application Story 设计与制造 应用园地 文/吴建曼 陈志滔 浙江金锋自动化仪表有限公司 The Design of Throttling Holes for Multi-holes Cage Guided Control Valve 阀笼节流孔的设计 引言 在工业自动化流体控制系统中,控制阀是得到广泛应用的流体控制设备之一,用来调节系统的流量或者压力参数。当阀门前后压差较大时介质流过控制阀节流处,由于节流口面积的急剧变化,流通面积缩小,流速升高,压力下降,易产生阻塞流,出现闪蒸空化现象,这种现象是诱发阀内件破坏以及噪音的主要原因。当阀门前后压差不大时,介质正常流动选用常规的控制阀即可满足要求。而当压差较大时,为了降低噪音以及消除气蚀的破坏,我们必须要采用多孔式套筒控制阀来解决这个问题。多孔式套筒控制阀降压的原理是采用了带有多孔式节流的阀笼,当介质从各对小孔喷射进去后,介质从各阀笼的小孔流过,分担总压差的一部分。各个阀笼的局部压差能防止液体压力低于汽化压力,消除气泡的形成。根据阀门前后压差的不同阀内件可设计成一级降压,二级降压,三级降压,这种阀内件的设计在国内外的各个厂家中都是十分常见的。其中最著名的就是Fisher公司的Cavitrol系列阀内件(见图1)。 对于工程师来说该类型阀内件的结构设计是不复杂的只要根据阀门的腔体将多个套筒阀笼相互嵌套形成一个降压阀笼组放置在阀体内即可;而真正的难点在于如何根据给定的额定Cv值以及流量特性来确定阀笼上的孔大小,数 本文介绍如何根据给定的额定Cv值来对多孔式套筒控制阀阀笼上的节流孔进行设计,节流孔的设计包括孔大小、数量以及排列形式的确定。再利用CFD软件对设计方法进行流体模拟分析来论证计算方法的准确性,为广大控制阀设计人员提供一种计算方法。 图1 Cavitrol系列阀内件 量以及排列形式,额定Cv值以及流量特性对于一台控制阀的调节性能是至关重要的。在笔者与国内众多厂家的技术人员接触过程中了解到对于多孔式阀笼节流孔大小、数量设计这一问题上,很多技术人员给出的设计依据是将同口径阀门的阀笼上节流孔总面积与传统套筒控制阀的窗口面积进行比值然后得出Cv值也成正比关系。由于传统的套筒控制阀与多孔式的套筒控制阀流阻系数的不同,将节流面积与阀门的额定Cv 值成正比关系作为设计依据显然不够严谨。下面笔者就将对这一问题进行剖析,为广大控制阀设计人员提供一种计算方法。 设计原理 一台阀门的总流通能力C v 受两个因 素影响,即阀座的流通能力C Vb 及多孔式阀笼的流通能力C vc 。从理论上讲提高C vb 或C vc 可以使阀的C v 增加。但阀座的流通能力C vb 取决于阀的公称通径,公称通径确定后,一般阀座直径也就确定了,所以C vb 是定值。阀门的总流通能力可以用以下公式概括: 当阀笼为一级降压时,阀门的总流通能力C V : 阀座的流通能力C Vb :一级阀笼的流通能力C vc1: C V = 1+1C vb 21C vc12 C Vb = πD b 2K b 4×25.42 C Vc1=×n 1 πD c12K c1 4×25.42

差压变送器用控制阀门的原理及设计

差压变送器用控制阀门的原理及设计 今天为大家介绍一项国家发明授权专利—差压变送器用控制阀门。该专利由宝山钢铁股份有限公司申请,并于2018年8月10日获得授权公告。 内容说明本发明涉及流体压力测量领域,具体来说,本发明涉及一种差压变送器用控制阀门,连接于工艺管道与差压变送器之间。 发明背景差压测量仪表也就是差压变送器,是仪表在线检测中一项非常常用的测量方式,差压变送器采用工艺管道流体流向截流产生相对高、低压,并通过采样管道将高低压引入到仪表,由仪表将检测到的高低压的压差进行相应的转换,并将转换后的结果由标准信号输出,从而完成测量。 现用差压变送器测量与管道的典型连接方法,左部为工艺管道,将工艺管道流体流向由节流孔板200产生相对高、低压(下高上低),高、低压由工艺管道的采样口引出经过一次阀10a、10b分别到达高压侧阀20a和低压侧阀20b,并通过高压侧阀20a和低压侧阀20b 接入差压变送器100进行测量,平衡阀30用于仪表零点校验;高压侧排污阀21a和低压侧排污阀21b用于排污。 现用的技术存在如下问题:(1)差压变送器在实际使用中需要根据不同的要求进行操作,分别是差压变送器的运行、零点调整、停运。三个阀门为保证减少对差压变送器的冲击,根据不同的状态操作如下:运行:先开低压侧阀20b再开高压侧阀20a;零点调整:先关高压侧阀20a再关低压侧阀20b,再打开平衡阀30;停运:先关高压侧阀20a再关低压侧阀20b。从上述可以看到,阀门的操作有先后顺序比较烦琐; (2)由于现场实际使用的差压变送器数量很多,使用一段时间后,差压变送器上原先标注的高、低压字样变得模糊不清,容易出现操作失误,从而对仪表的冲击比较大; (3)在打开高压侧排污阀21a和低压侧排污阀21b排污的时候,会引起管道卸压,造成测量仪表压力的严重不平衡,形成测量的严重干扰,从而影响到工艺控制,严重时引起停机。 发明内容本发明所要解决的技术问题是提供一种差压变送器用控制阀门,其能够便于简化

120型控制阀主阀结构设计

摘要 由于经济的迅猛发展,资本在全球市场内的流通,跨区域间的合作愈加密切,铁路运输压力越来越大。现代机车正向着―多拉快跑‖的方向发展,列车的制动技术在铁路的发展中也变的尤为重要。论文首先介绍了制动的相关知识,包括120 阀的制动原理;然后分析了120型控制阀的构造,并进行120型空气控制阀主阀部的结构设计;最后以120控制阀为研究对象,705试验台为平台,进行了120 控制阀的性能试验研究。通过对试验数据的分析,可以得知120型空气控制阀的各项指标是否符合国家标准。 试验结果表明,120型控制阀主阀部在实际应用中仍具有较高的可靠性。性能试验中出的主阀故障现象也可以作为120阀在铁路运用中可能出现的故障提供参考,分析试验中的故障原因也可以作为实际检修中的借鉴。同时发现,现有705型试验台上有关120型阀的评价体系中还有不妥当,还有需要改进的地方。 关键词: 120型控制阀;列车制动;705试验台;性能试验

ABSTRACT Due to the rapid economic development and the flow of capital in the global market, the cross-regional cooperation is becoming much closely which increases the railway transport pressure. Modern locomotive is going towards the direction of ―carry more and run faster ", the train's braking technology is particularly important in the development of the railway. In this paper, The braking-related knowledge is introduced first, including the braking principle of 120 valves. After analyzing the structure of the type 120 control valve, design the structure of the main Department of 120 valves. Finally, use 120 control valves for the study and the 705 test bed as a platform to simulate the working status of 120 control valves and problems that may arise. Through the analysis of experimental data, to check if the sensitivity of the 120 air control valve is meet with national standards. The test results show that the main department of 120 the control valve still has a higher reliability in practical applications. The main department of valve failure in the simulation experiments can also be a reference that may occur in the railway. Analyze the reasons for the failure in the test can be used as a reference in the actual repair. Also there is something need to improve of the evaluation system which the existing 705-type test stands about 120 of the valve Keywords:120 main valve; train brake; type 705 experiment platforms; research on the capability

调节阀手册

调节阀手册第一章概述 O.P.小洛维特 在现代化工厂的自动控制中,调节阀起着十分重要的作用,这些工厂的生产取决于流动着的液体和气体的正确分配和控制。这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要靠某些最终控制元件去完成。最终控制元件可以认为是自动控制的“体力”。在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用。 调节阀是最终控制元件的最广泛使用的型式。其他的最终控制元件包括计量泵、调节挡板和百叶窗式挡板(一种蝶阀的变型)、可变斜度的风扇叶片、电流调节装置以及不同 于阀门的电动机定位装置。 尽管调节阀得到广泛的使用,调节系统中的其它单元大概都没有像它那样少的维护工作量。在许多系统中,调节阀经受的工作条件如温度、压力、腐蚀和污染都要比其它部件更为严重,然而,当它控制工艺流体的流动时,它必须令人满意地运行及最少的维修量。 调节阀在管道中起可变阻力的作用。它改变工艺流体的紊流度或者在层流情况下提供一个压力降,压力降是由改变阀门阻力或"摩擦"所引起的。这一压力降低过程通常称为“节流”。对于气体,它接近于等温绝热状态,偏差取决于气体的非理想程度(焦耳一汤姆逊效应)。在液体的情况下,压力则为紊流或粘滞摩擦所消耗,这两种情况都把压力转 化为热能,导致温度略为升高。 常见的控制回路包括三个主要部分,第一部分是敏感元件,它通常是一个变送器。它是一个能够用来测量被调工艺参数的装置,这类参数如压力、液位或温度。变送器的输出被送到调节仪表一一调节器,它确定并测量给定值或期望值与工艺参数的实际值之间的偏差,一个接一个地把校正信号送出给最终控制元件一一调节阀。阀门改奕了流体的流量,使工艺参数达到了期望值。 在气动调节系统中,调节器输出的气动信号可以直接驱动弹簧-薄膜式执行机构或者活塞式执行机构,使阀门动作、在这种情况下,确定阀位所需的能量是由压缩空气提供的,压缩空气应当在室外的设备中加以干燥,以防止冻结,并应净化和过滤。 当一个气动调节阀和电动调节器配套使用时,可采用电-气阀门定位器或电-气转换器。压缩空气的供气系统可以和用于全气动的调节系统一样来考虑。 在调节理论的术语中,调节阀既有静态特性,又有动态特性,因而它影响整个控制回路成败。静态特性或增益项是阀的流量特性,它取决于阀门的尺寸、阀芯和阀座的组合结构、执行机构的类型、阀门定位器、阀前和阀后的压力以及流体的性质。第5章中将详细地介绍这些内容。 动态特性是由执行机构或阀门定位器-执行机构组合决定的。对于较慢的生产过程,如温度控制或液位控制,阀的动态特性在可控性方面一般不是限制因素。对于较快的系统,

控制阀细节分析之8_控制阀模块化设计

控制阀细节分析之八——控制阀模块化设计 李宝华 摘要:模块化设计是先进制造技术的现代设计方法,对控制阀产品进行模块化设计是发展趋势。从系统论出发,一个好产品首先要全系统通盘考虑,有一个响应全局的结构;再由系统结构决定部件功能;细节决定功能的完善与缺陷。在决定系统结构后,在结构没有问题的前提下,细节决定成败。本文试对控制阀模块化设计以及部分厂家的模块化控制阀产品进行探讨和细节分析 关键词:模块化设计;控制阀系统结构;细节优化;分析 引言 控制阀(Control valve,国标GB/T 17213.1-1998定义为控制阀,国内旧称调节阀)是终端控制元件,决定着过程控制是否及时有效,在整个控制回路中较为重要但又是长期以来技术比较薄弱的环节。 国内外控制阀的生产厂家众多,造成控制阀品种多、规格多、参数多,质量参差不齐。相比之下,国产控制阀更显弱势,原有的产品设计理念和制造模式使其与国外控制阀厂家的技术差距加大,产品质量更存有较多问题,需要努力和改进的地方很多。 不同厂家的同类型控制阀的设计差异、技术特点和应用情况如何?产品设计理念向何方转变?都是大家关注的问题。针对大多数厂家都能生产的直通单座控制阀,本文试对控制阀模块化设计以及部分厂家的模块化控制阀产品进行探讨和细节分析。 模块化设计 模块化设计(Modular Design缩写MD)是先进制造技术的现代设计方法,也是上世纪九十年代初国际上迅速发展的快速设计技术(Rapid Design Technology缩写RDT)中的重要组成,面对整个产品系统的标准化、组合化设计。 模块化设计是对一定范围内的不同功能或相同功能而不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,并通过对模块的选择和组合构成不同产品的设计方法。分散的相对独立的模块遵守共同的明确规则,以保证这些模块能够组合成一个完整的系统,并能够随时加入新的模块增加系统功能。动态的模块化设计创造了选择权,缩短了产品生产周期,事后竞争性再集中大大增强了产品的灵活性和竞争力。从产品的集中设计到模块化分散设计是一种创新,是工业产品的发展趋势。 从系统论出发,一个好产品首先要全系统通盘考虑,有一个响应全局的结构;再由系统结构决定部件功能。细节决定功能的完善与缺陷。在决定系统结构后,在结构没有问题的前提下,细节决定成败。模块化设计就是系统结构优先、部件功能优化、模块动态组合,用现代设计技术实现包括控制阀在内的工业产品先进制造的成功之路。 控制阀模块化设计 控制回路中向来薄弱的是终端控制元件(控制阀、执行机构),源自OREDA的回路故障分析,终端控制元件的故障率占了全部故障的50%。传统的控制阀产品性能落后、功能单一、维修不便,在技术上急待改进和创新,发展的方向应是控制阀模块化设计以及数字化应用。 控制阀模块化设计也是遵守从系统结构入手,将整个控制阀系列产品按照功能切分成有限多的通用模块(不变部分)和专用模块(变化部分),各模块独立开发并要求具有更多更好的性能,优化设计并尽可能多地在不同口径的阀门中采用相同的零部件,基于大部分部件确定使用通用模块、少部分按用户技术条件选择专用模块,从而快速响应市场,组合成满足需求的控制阀产品。 模块化设计的控制阀以其全新的系统结构、优化的模块部件、简便的计算与选型、高安全性和可靠性,以及产品紧凑坚固、号型齐全多样、部件通用可换、易于维护检修,使控制阀整体功能和性能明显提升。有统计资料显示,采用模块化设计的控制阀与传统设计的控制阀相比,其零部件数量可减少25%,成本可降低20%,可组成的品种规格可增加40%之多。对最终用户来说,会更有利于设备管理和运行维护,并能大幅度减少备件库存数量。对制造厂而言,工装模具数量将明显减少,中间产品数量和库存也将大大减少,响应市场更快。 对控制阀实施模块化设计较早出现在欧洲的控制阀厂家及其产品系列,在上世纪八、九十年代,德国SAMSON公司有模块化的紧凑型240/250/280系列控制阀、德国ARCA公司有模块化的ECOTROL 控制阀。而全球生产控制阀历史最久的美国FISHER公司(属EMERSON集团)一直坚守传统的设计、推崇原有的E家族系列控制阀,最终也在2004年推出模块化GX型控制阀。中国的控制阀制造厂也开

阀门使用说明书

阀门安装使用说明书 1、阀门的安装及拆卸的注意事项 1.1维护保养和安装使用注意要点 一).阀门应放在干燥通风的室内,通径两端须密封防尘; 二).长期存放应定期检查,并在加工表面上涂油,防止锈蚀; 三).阀门安装前应仔细核对标志是否与使用要求相符; 四).安装时应清洁内腔和密封面,检查填料是否压紧,连接螺栓是否均匀拧紧; 五).阀门应按照允许的工作位置安装,但须注意检修和操作的方便; 1.2其他注意事项: 1)阀门一般应在管路安装之前定位。配管要自然,位置不对不能硬扳,以免留下预应力; 2)低温阀门在定位之前应尽量在冷态下(如在液氮中)做启闭试验,要求灵活无卡壳现象; 3)液体阀应配置成阀杆与水平成10°倾斜角,避免液体顺着阀杆流出,冷损增加;更主要的是要避免液体触及填料密封面,使之冷硬而失去密封作用,产生泄漏; 4)安全阀的连接处应有弯头,避免直接冲击阀门;另外要保证安全阀不结霜,以免工作时失效; 5)截止阀的安装应使介质流向与阀体上标示的箭头一致,使阀门关闭时压力加在阀顶的锥体上,而填料不受负荷。但对不经常启闭而又需要严格保证在关闭状态下不漏的阀门(如加温阀),可有意识地反装,以借助介质压力使之紧闭; 6)大规格的闸阀、气动调节阀应该竖装,以免因阀芯的自重较大而偏向一方,增加阀芯与衬套之间的机械磨损,造成泄漏; 7)在拧紧压紧螺钉时,阀门应处于微开状态,以免压坏阀顶密封面; 8)所有阀门就位后,应再作一次启闭,灵活无卡住现象为合格;

9)天气寒冷时,水阀长期闭停,应将阀后积水排除。汽阀停汽后,也要排除凝结水。阀底有如丝堵,可将它打开排水。 10)非金属阀门,有的硬脆,有的强度较低,操作时,开闭力不能太大,尤其不能使猛劲。还要注意辟免对象磕碰。 11)新阀门使用时,填料不要压得太紧,以不漏为度,以免阀杆受压太大,加快磨损,而又启闭费劲。 确认管道上的盲板是否拆掉,以及施工时操作过的阀门要恢复施工前的启闭状态。 1.3阀门安装的注意事项 1.3.1阀门安装之前,要确认阀门符合设计要求和有关标准。 1.3.2在搬运和安装阀门时,要谨防磕碰划伤的事故 1.3.3安装阀门前,管道内部要清洗,除去铁屑等杂质,防止阀门密封座夹杂异物。另外,安装时的阀门应是关闭状态。 1.3.5在安装阀门时,要确认介质流向、安装形式及手轮位置是否符合规定。

控制阀项目规划设计方案

控制阀项目 规划设计方案 规划设计/投资方案/产业运营

控制阀项目规划设计方案说明 21世纪以来,随着科学技术的不断进步,原有的控制阀产品已不能满 足市场的需求,一些带有自动化控制技术的智能控制阀产品逐步受到市场 的欢迎,自此,我国智能控制阀行业步入了快速发展期。在此期间市场上 涌现出一批控制阀厂商,国营企业中以吴忠仪表、川仪股份等为行业龙头,而民营企业如智能自控、浙江力诺等也以优质的产品和服务成为不可忽视 的市场参与者。 该控制阀项目计划总投资18745.66万元,其中:固定资产投资 13263.95万元,占项目总投资的70.76%;流动资金5481.71万元,占项目 总投资的29.24%。 达产年营业收入38915.00万元,总成本费用30017.34万元,税金及 附加360.34万元,利润总额8897.66万元,利税总额10485.26万元,税 后净利润6673.24万元,达产年纳税总额3812.01万元;达产年投资利润 率47.47%,投资利税率55.93%,投资回报率35.60%,全部投资回收期 4.31年,提供就业职位594个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做 好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安

全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生的要求,保障职工的安全和健康。 ...... 报告主要内容:基本情况、建设背景分析、项目市场分析、产品及建设方案、项目选址说明、项目建设设计方案、项目工艺说明、环境保护概述、项目安全卫生、项目风险说明、节能分析、项目进度方案、项目投资规划、经济效益分析、综合评价结论等。

“SD”调节阀使用说明书

COPES-VULCAN 带快速更换 内部部件的单座“SD”调节阀 安装、运行、维护使用说明书 SINGLE WEB “SD” TYPE CONTROL VALVE WITH QUICK CHANGE TRIM

目录 引言 (4) 第一部分安装 (6) 1.1 验收 (6) 1.2 储存 (6) 1.3 安装 (6) 1.4 调试前复检 (9) 1.5 执行机构及配件 (10) 1.6 运行要求 (10) 第二部分维护 (11) 2.1 注意事项 (11) 2.2 例行检查 (11) 2.3 从调节阀上拆卸执行机构 (14) 2.4 解体调节阀 (15) 2.5 装配调节阀 (20)

2.6 装配执行机构 (28) 2.7 研磨阀塞及套筒 (31) 图1 调节阀剖面图 (33) 图2 螺栓紧固顺序 (36) 表1 紧固力矩 (37) 表2 阀塞和阀杆组件紧固力矩 (38)

引言 SD型调节阀是用于高温高压工况下的调节阀,其尺寸范围为3/4”、1”、1.5”、2”、3”、6”、8”、10”、12”、14”和16”(20mm、25 mm、40 mm、50 mm、80 mm、150 mm、200 mm、250 mm和300 mm、350 mm、400 mm),ANSI压力磅级由150磅级到2500磅级。每个阀门由几个分项组件组成。例如在图一中,阀体组件包含阀体〔1〕、阀盖螺栓〔13〕及阀盖螺母〔14〕和阀盖/阀体密封垫圈〔15〕。 阀盖组件包含阀盖〔2〕、盘根螺栓及螺母〔11〕和〔12〕,及根据阀门与执行机构的几种不同连接方式所需要配备的零件:压块连接包含压块〔22〕及内六角螺栓〔23〕;螺杆连接包含螺纹环〔32〕;螺栓连接包含螺栓〔33〕和螺母〔34〕。 盘根组件包含支撑环〔7〕、盘根〔8〕、盘根压盖或盖圈〔9〕及盘根紧固件〔10〕组成。如果采用双盘根自然就包含两套盘根〔8〕及一个隔离套环〔24〕。 阀塞组件的构成取决于种类及尺寸,阀塞有平衡及非平衡式之分,尺寸有全尺寸及变径之分。 非平衡单座阀塞包含阀塞〔3〕、阀座〔5〕、套筒〔4〕、阀杆〔6〕、阀杆固定销〔17〕、和阀塞密封垫圈〔16〕。 平衡单阀座阀塞包含阀塞〔3〕、阀座〔5〕、套筒〔4〕、阀杆〔6〕、阀杆固定销〔17〕、和阀塞密封垫圈〔16〕及阀塞密封,也就是通常所称的”U”杯型密封圈〔18a〕其耐温范

纯机械自动控制阀门的设计及控制原理分析

龙源期刊网 https://www.wendangku.net/doc/7c1040655.html, 纯机械自动控制阀门的设计及控制原理分析作者:张宇涵 来源:《科学与信息化》2019年第03期 摘要近年来,我国机械自动化技术越来越完善。阀门是流体系统中的重要组成部门,阀门的应用能够对流体流动的流量、方向以及压力等进行控制。就目前来看,对纯机械自动控制阀门的相关研究较少,市场上成熟的纯机械自动控制阀门也相对较少,而纯机械自动控制阀门有着使用方便、自动化程度高、成本低等优点。基于以上,本文从纯机械自动控制阀门概述入手,提出了一种新型纯机械自动控制阀门,并探讨了其设计方案和控制原理,旨在为纯机械自动控制阀门的设计和研发实践提供参考。 关键词纯机械;自动控制;阀门;设计 引言 目前对自动阀门的研究大多数是有源控制,事实上无源控制的能够进行自动调节,是一种纯机械自动控制的阀门,它的应用和操作灵活、简单且方便,所以,加大对纯机械自动控制阀门的研究具有重要意义,基于此,本文对纯机械自动控制阀门的设计及控制原理进行主要分析。 1 纯机械自动控制阀门的设计 本文以Irristat阀门为基础,以土壤水分张力为主要设计原理。Irristat阀门的自动控制主要是通过水分平衡原理来实现的,借助真空压力表的读数,张力计能够对土壤水分情况进行监测,以监测结果为基础来实现对阀门的自动化控制。在整个控制过程中,张力计相当于一个土壤温度的传感器,Irristat阀门通过内部凝胶吸水膨胀及失水收缩来判断土壤中水分情况,从而通过阀门来实现对水流量的自动化控制,实现灌溉自动化,其不需要计算机和传感器,属于一种无源自动控制阀门,通过纯机械来实现阀门的自动化控制。本文提出的纯机械自动控制阀门结构设计如图所示:阀门结构主要包括控制元件、两个弹簧(一个缓冲弹簧即弹簧1,一个复位弹簧即弹簧2)、进水口以及两个出水口组成,通过弹簧1能够推动阀芯移动,当阀芯锥形面封堵进水口的时候,则阀门关闭,灌溉停止,通过阀门2可以推动阀芯反向移动,封住进水口的阀芯锥形面会慢慢后退,从而实现阀门入水口的逐渐开启,灌溉恢复[1]。 2 纯机械自动控制阀门的控制原理 2.1 纯机械自动控制阀门的控制原理分析 对纯机械自动控制阀门的控制原理进行分析有利于了解阀门的操作,对阀门的应用和设计都具有重要意义。纯机械自动控制阀门中的自动控制元件材料有一种叫湿敏材料,湿敏材料对水是比较敏感的,也就是如果土壤中的含水量特别大,水分还在增多的过程中,此时湿敏材料

风量调节阀使用说明书

风量调节阀CVD 安装指导手册

风量调节阀CVD安装指导手册 1.CVD风量调节阀简介 CVD型风量调节阀是妥思公司为中国市场推出的空调通风系统中风量调节和压力控制的阀门。 CVD型调节阀为用户提供方形和圆形阀门,可选配手动机构、电动弹簧复位、电动双位、电动连续调节执行器等,形式多样能满足用户不同要求。 CVD型风量调节阀根据用户要求,叶片可做成平行叶片、对开叶片形式。圆形阀门也可做成碟阀。 (1)手动风量调节阀示意图 (2)电动风量调节阀示意图

2. 风量调节阀安装指导说明 风量调节阀的选用与安装依据下列国家规范与标准以及建筑标准设计图集执行《采暖通风与空气调设计规范》GB50019-2003 《通风与空调工程施工质量验收规范》GB50423-2002 《洁净室施工及验收规范》JGJ71-90 《风量调节阀》JB/77228-94 《通风管道技术规程》JGJ141-2004 《薄钢板法兰风管制作及安装》07K133 《风管支吊架》03K132 《管道与设备保温》98R418 《管道与设备保冷》98R419

风量调节阀安装,依据国家建筑标准设计图集07K120《风阀选用与安装》进行。说明如下: 1.运到施工现场的风阀产品,安装单位应报监理验收,根据装箱清单开箱查验合格证、检测报告和安装指导说明文件等,逐个校验产品的型号、规格、材质、标识及控制方式是否符合设计文件的规定,并应做好记录和各方签字确认。 2.风阀在就位安装之前应逐个检测其结构是否牢固、严密,进行开关操作试验,检查是否灵活可靠;对电动风阀要逐个通电试验并检测,做好试验记录。3.风阀就位前必须检查其适用范围、安装位置、气流方向和操作面是否正确。4.风阀的开闭方向、开启角度应在可视面有准确的标识。 5.安装在高处的风阀,其手动操纵装置宜距露面或操作平台1.5-1.8m。 6.风阀的操作面距墙、顶和其他设备、管道的有效距离不得小于200mm,且风阀不应安装于结构层或孔洞内。阀周边缝宽度宜大于150mm。 7.检查连接风管预留的法兰尺寸、配钻孔径与孔距、法兰面的平整度和平行度、垫片材质和厚度、非金属风管的连接方式等是否符合要求。 8.检查支、吊架位置及做法是否符合规范或设计文件要求。单件风阀重量大于50kg的应设单独的支、吊架;电动风阀一般宜设单独支、吊架;用于软质非金属风管系统的风阀一般也宜设单独支、吊架。 9.用于洁净通风系统的风阀安装前必须按要求清洁阀体内表面,达到相应的洁净标准后封闭两端,封装板在就位后方可去除。擦洗净化空调系统风阀内表面应采用不掉纤维的材料,擦洗干净后的风阀不得在没有做好墙面、地面、门窗的房间内存放,临时存放场所必须保持清洁。 10. 输送介质温度超过80℃的风阀,除按设计要求做好保温隔热外,还应仔细核 对伸缩补偿措施和防护措施。 11. 设于净化系统中效过滤器后的调节风阀叶片轴如有外露,则应对其与阀间的缝隙进行密封处理,确保不泄露。 12. 连接风阀与风管法兰、薄钢板法兰或无法兰连接的紧固件均应采用镀锌件。除镀锌板材料的风阀外,不锈钢、铝合金材料的风阀连接件均应同材质,且其支、吊架如是钢质,还应采用厚度不小于60mm的防腐木垫或5mm橡胶板垫,使之与阀体绝缘。 13. 法兰垫片厚度设计无规定时,一般不小于3mm;垫片不应凸入阀内,不宜突出法兰外,净化系统的法兰垫片应选用弹性好、不透气、不产尘的材料,如橡胶板或硅胶板等,严禁采用泡沫塑料、厚纸板、石棉绳、铅油麻丝及油毡纸等含开孔孔隙和易产尘的材料。密封垫厚度根据材料弹性大小决定,一般为4-6mm,一对法兰的密封垫规格、性能及垫层厚度应相同。严禁在密封垫上涂刷涂料,法兰密封尽量减少接头,做接头时要采用阶梯形或企口形,并涂密封胶,如下图所示:14. 风阀安装的水平度误差不大于3%,垂直度误差不大于2%,不单独设支、吊架的风阀安装公差随风管一起控制精度。采用薄钢板法兰风管连接应符合下列规定: 14.1 连接完整无缺损,表面应平整,无明显扭曲。 14.2 弹簧夹或紧固螺栓的间隔不应大于150mm,且分布均匀,无松动现象。 15. 风阀安装后一般与风管系统一同进行严密性检测与试验,但为了减少风阀的调整试验次数,应对电动风阀和洁净系统、实验室风系统的风阀单独进行安装完

多功能水泵控制阀的原理及设计

多功能水泵控制阀的原理及设计 今天为大家介绍一项国家发明授权专利——多功能水泵控制阀。该专利由爱合肥瑞联阀门有限公司申请,并于2016年11月30日获得授权公告。 内容说明本发明涉及阀门技术领域,尤其涉及一种多功能水泵控制阀。 发明背景水泵控制阀就是水压控制的阀门,根据使用目的﹑功能及场所的不同可演变成遥控浮球阀﹑减压阀﹑缓闭止回阀和流量控制阀等。比如现有技术中常见的缓闭止回阀,该阀门中的阀瓣启闭是由流体控制,在进水时,流体推开阀瓣并连通进水段和出水段;不进水时,阀瓣在自身重力或流体逆流的反推力下,阀瓣关闭进水段,阀瓣关闭避免过力撞击在进水段上并产生噪音,因此在阀体底部安装有缓冲装置,可以减轻阀瓣的撞击力,但是会影响阀瓣的密封性;或者如目前现有技术申请的(申请号为201120220005 .7 )新型缓闭止回阀,该止回阀中在阀瓣上连接活塞杆,活塞杆上端连接至少两个缓冲装置,该结构所解决的问题是“在活塞杆带动阀板旋转时,有时由于驱动力过大,阀板与介质流道内壁碰撞会产生噪音,也容易破坏阀板与介质流道内壁之间的硬密封,从而影响缓闭止回阀的密封性能。” 从上述的两个现有技术文件中来看,其结构所解决的都是阀瓣的缓冲问题,但是其结构存在一个很大的问题,由于止回阀的阀瓣的打开是靠流体推动的,因此阀瓣对流体起到很大的阻力,阀瓣无法转动至水平方向,阀瓣改变从进水段进入的流体方向,并使流体撞击在阀体的通道内壁,这不仅减小阀门的流量,而且流体对通道的撞击产生很大的噪音和震动,对阀体也是具有很大的损伤,特别是如上述第二个现有技术申请的(申请号为201120220005 .7 )新型缓闭止回阀,该阀瓣的朝向进水口的端面是内凹形状,这种内凹形状增大了对流体的阻力。 然而就现有技术公开的止回阀,在阀瓣的启闭时,通道内产生巨大的水锤,虽然缓冲装置能缓慢开启或关闭阀瓣,减小水锤,但还是不可避免地产生较大的水锤和噪音。 发明内容本发明要解决上述现有技术存在的问题,提供一种多功能水泵控制阀,阀瓣打开的角度大,对流体产生的阻流小,同时也减小噪音和水锤。

电动调节阀说明书

调节阀 电动调节阀是工业自动化过程控制中的重要执行单元仪表。随着工业领域的自动化程度越来越高,正被越来越多的应用在各种工业生产领域中。与传统的气动调节阀相比具有明显的优点:电动调节阀节能(只在工作时才消耗电能),环保(无碳排放),安装快捷方便(无需复杂的气动管路和气泵工作站)。阀门按其所配执行机构使用的动力,按其功能和特性分为线性特性,等百分比特性及抛物线特性三种 阀门结构 由电动执行机构和调节阀连接组合后经过机械连接装配、调试安装构成电动调节阀。主要零件 零件材料:阀体、阀盖、填料压盖、阀杆、阀瓣、密封圈、指示标、阀杆螺母、螺帽套 材料:灰铸铁、铸钢、不锈钢、黄铜 工作原理 工作电源:DC24V,AC220V,AC380V等电压等级。 输入控制信号:DC4-20MA或者DC1-5V。 反馈控制信号:DC4-20MA(负载电阻碍500欧姆以下) 通过接收工业自动化控制系统的信号(如:4~20mA)来驱动阀门改变阀芯和阀座之间的截面积大小控制管道介质的流量、温度、压力等工艺参数。实现自动化调节功能。 新型电动调节阀执行器内含饲服功能,接受统一的4-20mA或1-5V·DC的标准信号,将电流信号转变成相对应的直线位移,自动地控制调节阀开度,达到对管道内流体的压力、流量、温度、液位等工艺参数的连续调节。 流量特性 电动调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经电动调节阀的相对流量与它的开度之间关系。 电动调节阀的流量特性有:线性特性,等百分比特性及抛物线特性三种。 应用领域 电力、化工、冶金、环保、水处理、轻工、建材等工业自动化系统领域。 安装 电动调节阀最适宜安装为工作活塞上端在水平管线下部。温度传感器可安装在任何位置,整个长度必须浸入到被控介质中。 电动调节阀一般包括驱动器,接受驱动器信号(0-10V或4-20MA)来控制阀门进行调节,也可根据控制需要,组成智能化网络控制系统,优化控制实现远程监控。

控制阀的设计分析

减温减压控制阀的设计分析 减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的 自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分 的结构的优化设计方案和材质的选用。 减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分的结构的优化设计方案和材质的选用。 目前国内还没有针对减温减压控制阀进行更深入的研制和开发,而国内炼油化工企业对减温减压控制阀的需求量还很大。因减温减压控制阀的短缺且无替代产品,每年都需要花费大量外汇从国外进口这种减温减压控制阀。该产品的研制成功,将替代国外进口的产品,满足炼油化工企业的生产需要、节省大量投资。 由于减温减压控制阀使用工况条件比较恶劣,主要用于控制温度高、压差较大的调节。设计选择了输出力大的ZMSZ-4型多弹簧气动薄膜执行机构。即采用8组组合弹簧均匀地分布于膜头之内,这样采用较小的弹簧组替代较大的独立弹簧的方式,降低了加工成本,缩小了整体尺寸,使轴向长度缩短为原来普通结构的1/3左右,特别是减温减压控制阀采用这种结构后体积大大缩小,降低了安装难度,方便了工艺配管的设计。同时节约了材料,降低了制造难度,控制了制造成本,上海明精提高了产品零配件的通用程度。 1.2 阀内件 阀内件是减温减压控制阀的关键部件,它直接影响减温减压控制阀的流量特性。过去通常采用普通单座阀芯、阀座,但这种型式阀内件的可调比较小,使用压差较低。由于现场工作条件苛刻,经过几年冲刷,阀芯的流量特性发生了较大变化,控制阀的减温减压的工作特性逐渐变坏,就经常出现因汽、水分配不匀而产生打水锤现象,伴随着阀芯震动又出现了阀芯转动、卡滞的现象对生产造成较大影响。因此,对减温减压控制阀阀内件型式进行了研究和设计;针对阀芯所受的不平衡力,阀门可调比较小的具体情况,将阀内件设计成为笼式双座结构。提高减温减压控制阀工作稳定性,增大可调比,消除了噪音. 1.3 分流配水器的结构 分流器配水不均一直是困扰减温减压控制阀应用的难题。目前减温减压控制阀分流配水方式主要有2种顶部配水(阀芯中间)和底部配水结构。采用底部配水结构,在阀的底部配水,不将水直接注入在阀芯上使水不在阀芯上汽化,从而避免了阀芯震动的可能。上海明精为了提高注入与过热蒸汽的换热面积,将分流配水器设计成导流罩的形状,同时在上面开出导流槽,水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化。采用分流配水器的结构和阀内件笼式双座结构具有较为先进水平。 2 材料的性能分析 2.1 机械性能 对于阀门的密封面的硬度指标,最重要的是在高温下材料硬度的变化,高温下控制阀材质的硬度变化见图1。

相关文档