文档库 最新最全的文档下载
当前位置:文档库 › 三角波到正弦波的转化课程设计

三角波到正弦波的转化课程设计

三角波到正弦波的转化课程设计
三角波到正弦波的转化课程设计

波形转化:从三角波到正弦波的转化

前言

在人们认识自然、改造自然地过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选择不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量所需参数。可见信号源在各种实验应用和实验测试中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量和各种实际需要。

波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。波形发生器多采用模拟电子技术,通过分立元件的组合有效地实现方波、三角波、正弦波的转换。

一.设计目的

1.掌握电子系统的一般设计方法

2.掌握模拟IC器件的应用

3.培养综合应用所学知识来指导实践的能力

4.掌握常用元器件的识别和测试

5.熟悉常用仪表,了解电路调试的基本方。

二.设计要求

在研制、生产、使用、测试和维修各种电子元器件、部件以及整机设备时,都需要有信号源,由它产生不同频率、不同波形的电压、电流信号并加到被测器件、设备上,用其他测量仪器观察、测量被测者的输出响应,以分析和确定它们的性能参数。

而波形发生器是它们中一种更为常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本次课程设计应用所学电路设计构成可产生三角波形,并在此基础上应用二极管整流网络对所产生的三角波整流为正弦波,再对正弦波进行进一步的处理。

使用模拟或者数字的方法设计一个频率可调的三角波发生器,并利用二极管网络将三角波整成正弦波。

三.设计原理

函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的三角波—正弦波函数发生器的设计方法。产生正弦波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。

如图所示:

比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。

3.1三角波产生电路

利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。

3.2工作原理

设t=0时接通电源,有1O Z v V =-,则Z V -经20R 向C 充电,使

输出电压按线

性规律增长。当O v 上升到门限电压T V +

使110N p v v ==时,比较器输出1O v 由Z V -上跳到Z V +,同时门限电压下跳到T V -值。当O v 下降到门限电压T V -

使110N p v v ==时,比较器输出1O v 又由Z V +下跳到Z V -。如此周而复始,产生振荡。由于电容C 的正向与向充

电时间常数相等,输出波形为三角波。其振荡周期为:

1202

4R R C T R = (2.1.6) 如图所示:

3.2三角波--正弦波转换电路的工作原理

用差分放大器作三角波—正弦波的变换电路,利用差分对管的饱和与截止特性进行变换。差分放大器具有工作点稳定,输入阻抗高、抗干扰能力强等优点。特别是做直流放大器时,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。其中RP1调节三角波的幅度,RP2调整电路的对称性,RE2用来减小差分放大器的线性区。C1、C2、C3为隔直电容,C4为滤波电容,滤除谐波分量,改善输出波形。

四.总电路图:

五.部分元器件参数的计算

比较器A1与积分器A2的元件计算如下。

由于 CC m o V RP R R U 1322+=

因此 3

11242132===+cc m o V U RP R R 取R3=10k Ω,则R3+RP1=30 k Ω,取R3=20k Ω, RP1为47 k Ω的电位器。取平衡电阻R1=R2 /(R3+RP1)≈10 k Ω。

因为

21421

3)(4C RP R R RP R f ++=

当1Hz ≤f ≤10Hz 时,取C2=10μF ,则R4=5.1k Ω,RP2=100 k Ω。当 10Hz ≤f ≤100Hz 时,取C1=1μF 以实现频率波段的转换,R4、RP2的值不变。取平衡电阻R6=10 k Ω。

三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取C3=C4=C5=470uf,滤波电容C6视输出的波形而定,若含高次斜波成分较多,C6可取得较小,C6一般为几十皮法至0.1微法。R5=3kΩ与RP4=1.2kΩ相并联,以减小差分放大器的线性区。差分放大器的几静态工作点可通过观测传输特性曲线,调整RP4及电阻R12确定。

六.Multisim仿真图

七.实验总结

这次课程设计让同学们懂得了专业基础知识的重要性,没有好的理论基础就不可能有实践的正确性。通过这次课程设计,加强了同学们的动手、思考和解决问题的能力。在整个设计过程中,边看书边做设计,上网及去图书馆借资料查阅,与同学的探讨,更加增强了理论

水平和实践能力。

彻悟学海无涯只有苦来作舟,学无止境只有书来作伴。从理论到实践,使同学们不仅可以巩固了以前所学过的知识,而且会学到很多在书本上所没有学到过的知识。在设计中遇到了很多问题,但要更加认真的去做,这样才可以不断地提高自己。

八、电路调试

①由于比较器A1与A2组成正反馈闭环电路,同时输出正弦波与三角波,故可同时安装。在安装RP1与RP2前,要先调整到设计值,否则电路可能不起振。接通电源微调RP1,调整使三角波的输出波形,调节RP2可改变输出频率。

○2三角波—正弦波变换电路调试。将RP3与C4连接,调节RP3使三角波输出幅度等于Vidm值,再调整C6改善波形。当出现如下情况时:

?钟形失真传输特性曲线的特性区太宽,应减小R5。

?半波圆顶或平顶失真传输特性曲线对称性差,应调R12、RP4。

?非线性失真三角波的线性度较差引起的失真,主要受运放性能的影响。可在输出端加滤波网络改善输出波形。

八.参考文献

(1)康华光电子技术基础(模拟部分)第五版高等教育出版社,2005

(2)陈尚松电子测量与仪器第二版电子工业出版社,2010

(3)谢自美《电子线路设计?实验?测试》华中科技大学出版社

(4)梁宗善《电子技术基础课程设计》华中理工大学出版社

(5)童诗白《模拟电子技术基础》高等教育出版社

三角波正弦波转换电路..

目录 1.设计要求 (2) 2.设计方案与论证 (2) 3.设计原理 (4) 3.1硬件分析 (4) 3.1.1总体电路图 (4) 3.1.2三角波产生电路 (4) 3.1.3 门限电压的估算 (5) 3.1.4矩形波产生电路 (6) 3.1.5工作原理 (6) 3.1.6三角波整流电路 (7) 3.1.7调幅电路 (8) 3.1.8偏置电路 (10) 3.2 multisim软件简介 (11) 4.元器件清单 (12) 5.元器件识别与检测 (13) 6.硬件制作与调试 (13) 7.设计心得 (14) 8.参考文献 (14)

1.设计要求 在研制、生产、使用、测试和维修各种电子元器件、部件以及整机设备时,都需要有信号源,由它产生不同频率、不同波形的电压、电流信号并加到被测器件、设备上,用其他测量仪器观察、测量被测者的输出响应,以分析和确定它们的性能参数。 而波形发生器是它们中一种更为常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本次课程设计应用所学电路设计构成可产生三角波形,并在此基础上应用二极管整流网络对所产生的三角波整流为正弦波,再对正弦波进行进一步的处理。 使用模拟或者数字的方法设计一个频率可调的三角波发生器,并利用二极管网络将三角波整成正弦波。对正弦波作进一步处理: 1) 使正弦波峰峰值可变 2) 使正弦波可叠加直流偏置 3) 频率调节范围50Hz~100KHz 分析原理,设计电路,正确选择参数,在实现电路仿真的基础上搭建和调试硬件电路。 2.设计方案与论证 本次课程设计应用多谐振荡电路产生方波,再应用积分电路对所产生的方波进行一次积分产生三角波,用二极管整形网络对三角波进行整流使之产生不失真的正弦波。对正弦波进一步处理:用反相放大器对产生的波形进行放大,后跟反相加法器对正弦波进行直流偏置。用multisim软件对电路仿真。 总体框图如下:

正弦波-方波-锯齿波函数转换器

课程设计说明书 课程设计名称:模拟电子技术课程设计 课程设计题目:正弦波-方波-锯齿波函数转换器 学院名称:信息工程学院 专业:通信工程班级:090421 学号:09042134 :尚虎 评分:教师: 20 11 年 3 月16 日

任务书 题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。设计任务和要求 ①输出波形频率围为0.02Hz~20KHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2 V; ④锯齿波峰-峰值为2V,占空比可调;

摘要 本次课程设计的目的是: 应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。 关键字:正弦波、方波、锯齿波

目录 第一章设计目的及任务 1.1 课程设计的目的 (5) 1.2 课程设计的任务与要求 (5) 1.3 课程设计的技术指标 (5) 第二章系统设计方案选择…………………………………………… 2.1 方案提出 (6) 2.2 方案论证和选择 (6) 第三章系统组成及工作原理......................................................3.1 系统组成 (7) 3.2 正弦波发生电路的工作原理 (7) 3.3 正弦波转换方波电路的工作原理 (8) 3.4 方波转换成锯齿波电路的工作原理 (9) 3.5 总电路图 (11) 第四章单元电路设计、参数计算、器件选择........................4.1 正弦波发生电路的设计 (12) 4.2 正弦波转换方波电路的设计 (13) 4.3 方波转换成锯齿波电路的设计 (14) 第五章实验、调试及测试结果与分析.................................5.1电路总体仿真图如下所示 (17) 5.2 调试方法与调试过程 (18) 第六章结论 (21) 参考文献 (23) 附录(元器件清单) (23)

正弦波与方波的相互转换

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录 一.设计要求 (3) 二.总体设计 (3) 三.设计方案 (4) ㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡将正弦波转换为方波 (4) ㈢将方波转换为正弦波 (4) ㈣还原波形 (4) 四.设计步骤及参数的确定 (4)

㈠用运算放大器产生1000HZ的正弦信号 (4) ㈡正弦波转换为方波 (5) ㈢方波转换为正弦波 (5) ㈣还原波形 (5) ㈤整体电路原理图 (5) 五.实验仿真结果 (5) ㈠正弦波产生且换为方波再换为正弦波的波形 (5) ㈡用放大器放大振幅还原后的波形 (6) 六.电路板的制作 (6) ㈠画图 (6) ㈡元器件清单 (6) ㈢实物焊接 (7) 七.电路的调试 (7) ㈠电路连接 (7) ㈡波形测量 (8) ㈢数据的记录 (8)

八.总结 (9) ㈠设计过程中遇到的问题 (9) ㈡心得体会 (10) 正弦函数发生器 一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。 四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ 的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。

设计制作一个产生正弦波—方波—三角波函数转换器

模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波函数 转换器 专业班级:电信本 学生姓名: 学号:46 指导教师: 设计时间: 01/05 设计制作一个产生正弦波-方波-锯齿波函数转换器 一、设计任务与要求 1、?输出波形频率范围为~20kHz且连续可调; 2、?正弦波幅值为±2V; 3、?方波幅值为2V; 4、?三角波峰-峰值为2V,占空比可调; 5、?分别用三个发光二极管显示三种波形输出;?? 6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证

设计要求产生三种不同的波形分别为正弦波、方波、三角波。正弦波可以通过RC 桥式正弦波振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。各个芯片的电源可用直流电源提供。 方案一 1、直流电源部分 电路图如图1所示 图1 直流电源 2、波形产生部分 方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选 频网络采用LC 电路。在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其 余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。 方案二 1、 直流电源部分同上 2、电路图如图2所示 正、反积分时间 常数可调的积分 电路 滞回比较器 LC 正弦波振荡 电路

图2 正弦波—方波—三角波函数转换电路 方案论证 LC正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接受机的本机振荡电路等。另外由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路。因此对于器材的选择及焊接的要求提高了。 相反,RC正弦波振荡电路的振荡频率较低,一般在1MHz以下,它是以RC串并联网络为选频网络和正反馈网络,以电压串联负反馈放大电路为放大环节,具有振荡频率稳定,带负载能力强,输出电压失真小等优点,因此获得相当广泛的应用。另外对于器材的要求也不高,都是写常见的的集成块、电容、电位器等。在布局方面,简单,清晰! 综合对比两种方案,我选择第二种方案。 三、单元电路设计与参数计算 1、直流电源 (1)、整流电路 设变压器副边电压U2=wt U sin 2 2, U 2 为其有效值。 则:输出电压的平均值

方波转正弦波

很多微控制器(MCU)或PIC都有用于产生正弦波但是效果却不甚理想的数模转换器(DAC)输出。一般来说它们的分辨率都比较低(8到10比特),总谐波失真率(THD)在1%内。或者,MCU或PIC使用一个带方波输出的五阶或七阶开关电容滤波器,并连接到MCU的两个I/O引脚上。一个输出被用作滤波器输入,另一个输出被用作滤波器时钟。此外,这两个输出必须是方波,并以100:1的比率跟随。 因为MCU不仅要产生一个正弦波,它还进行更多处理,所以将两个定时器或一个定时器绑定至固件通常需要很多系统开销。因此系统设计工程师不得不使用更快或更加昂贵的MCU。 这里有一个更好的办法,即利用RDD104可选的4各十进制CMOS除法器和一个MSFS5 开关电容滤波器来构建一个双芯片、失真率为0.2%的正弦波源。RDD104有两个引脚,可以从四个除法器divide-by-10、divide-by-100、divide-by-1000和divide-by-10k中选择一个。在引脚5连接外部时钟或带一个晶振,该器件就可使用。最大频率在5V直流电压下为1.5 MHz。 文中给出了方波-正弦波转换示意图。RDD104的引脚5和引脚6连接一个晶振以及一个10MΩ的电阻。引脚5还接有一个100pF的电容(C5)。MSFS5的输入电容,以及RDD104引脚6与MSF S5引脚4之间的连接具有与晶振引脚2相等的电容。由于DIV_SEL_1电平低,DIV_SEL_2电平高,所以选择100:1除法器。 MSFS5 是一个引脚可选的、七阶、低通/6端带通开关电容滤波器。这个具有8个引脚的IC可以用在Butterworth、Bessel或椭圆低通滤波器上,还可用于倍频程、1/3和1/6倍频程带通滤波器上。RDD104的Clock_Out交流耦合到MSFS5的时钟输入。设置MSFS5为1/6倍频程带通操作以实现在基频无衰减情况下方波谐波的最大衰减。可通过将FSEL和TYPE连接到VDD获得带通和1/6倍频程配置。设置滤波器为单电源运行,VDD为5V,VSS为0,GND通过2个电阻(R4和R5)连接到中间电源。用一个0.1μF的电容作为输入去耦。RDD104的输出通过两个10kΩ的电阻衰减,并交流耦合到MSFS5的滤波器输入端。有了这样的配置,我们就可以得到一个10kHz、1Vrms的正弦波输出。在5V直流下的总电流消耗少于2mA,这使该解决方案很适用于便携式应用,在400 Hz~30 0k Hz带宽之间,THD等于0.2%(在AP Portable One Plus Access测试条件下测试)。

三角波方波正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z 、103H Z 和104Hz;方波的输出电压峰峰值V PP ≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。 即f=f 时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小 的情况下使用。然而,指标要求输出频率分别为102H Z 、103H Z 和104Hz 。因此不满足使用低 通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

设计题目:如何实现正弦波、方波与三角波信号之间的变换

内蒙古工业大学信息工程学院 课程学习报告 设计题目:如何实现正弦波、方波与三角波信号之间的变换 课程名称:模拟电子技术 班级:通信10-1 班 姓名: 学号: 成绩: 指导教师:

设计题目:如何实现正弦波、方波与三角波信号之间的变换 一、课题设计任务与要求 1、输出电压:0-1V之间 2、频率范围:20Hz-20kHz之间 3、信号频率:1KHz的正弦波、2KHz的方波和三角波 任务如下: 1KHz的正弦波 2KHz的正弦波 2KHz的方波 2KHz的三角波 二、总体电路设方案 (1)函数信号发生器设计思路 ①产生正弦波可以通过RC文氏电桥正弦波振荡电路,通过控制RC的值达到选频即控制频率大小的目的。 ②产生的方波经RC积分电路后输出,得到三角波,为调节幅值,则用电压跟随器隔离三角波输出端,再用电位器接在运放输出端调节电压输出幅值。 ③要先产生方波,就必须先用电压比较器和稳压管组成方波产生电路,为调节幅值,则用专用的电压跟随器隔离方波产生端,再用电位器接在运放输出端调节电压输出幅值。 (2)函数信号发生器原理 函数信号发生器是一种用来产生特定需要波形信号的装置,比较常见的有方波、三角波、正弦波和锯齿波发生器。本实验用来产生正弦波--方波--三角波信号。 正弦波发生器:采用RC桥式振荡电路实现输出为正弦波。

②正弦波转换成方波发生器:采用电压比较器与稳压管相结合,实现输出为方波。 ③方波转三角波发生电路:将RC积分电路与运放结合,实现方波转三角波。 (图一)正弦波发生电路图 (图二)正弦波转换成方波发生电路图

(图三)方波转换成三角波发生电路图错误!未指定书签。 三、电路设计与原理说明 1、正弦波发生电路的工作原理 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路等各部分。 RC文氏电桥的正弦波振荡电路中,RC为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。其余部分是带 有负反馈的同相放大电路,R 1、R 2 、R p 构成负反馈网络,调节R p 课改变负反馈的 反馈系数,从而调节放大电路的电压增益,使其满足振荡的幅值条件。图中二极 管D 1、D 2 的作用是有利于正弦波的起振和稳定输出幅值,改善输出波形。当输出 电压V 0的幅值很小时,D 1 、D 2 开路,等效电阻R f 较大,A vf =V o /V p =(R 1 +R f )/R1较 大,有利于起振;而当输出电压V 0的幅值较大时,二极管D 1 、D 2 导通,R f 减小, A vf 随之下降,v 幅值趋于稳定。 2、正弦波转方波发生电路的工作原理 在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。而滞回比较器具有滞回特性,即具有惯性,

正弦波与方波的相互转换

正弦波与方波的相互转 换 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录

正弦函数发生器一.设计要求 1.用运算放大器产生一个1000HZ的正弦波信号。 2.将此正弦波转换为方波。 3.再将此方波转换为正弦波。 4.限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ 的正弦信号 用RC 和一个运放组成文氏电桥振荡电路,调节RC 选频电路来产生1000HZ 的正弦 波。 ㈡ 将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC 滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。

四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。 参数选择中最重要的是R6和C2的值选择,因为它们是选频电路。f=1/2ΠRC 。 f=1000HZ,所以可以确定RC的值。 ㈡正弦波转换为方波 用一个运放接成过零比较器如下图,通向端接信号输入,反向端接地。只要输入信号电压大于或小于零,信号就发生跳变,可以把正弦波转换为方波。 ㈢方波转换为正弦波 用电阻和电容接成RC滤波电路。在R2和C3过后的节点处波形是三角波,最后输出是正弦波。 ㈣还原波形 1.在RC滤波电路输出的正弦波,幅度变小了约9倍的样子,用一个同向放大器放大它的幅度。 2.因为同向放大器的放大倍数为:A=1+R12/R11 。所以确定R11=8k欧姆,R12=1k欧姆。

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

正弦波-方波-三角波函数转换器

课程设计名称:电子课程设计 课程设计题目:设计制作一个产生正弦波-方波-三角波函数转换器学院名称:信息工程学院 专业:班级: 学号:: 评分:教师:

20 13 -20 14 学年第 1 学期第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。 摘要 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。用三角波,方波发生电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。因此,本设计意在用LM324放大器设计一个产生正弦波-方波-三角波的函数转换器。为了使这三种波形实现转换,正弦波可以通过RC振荡电路

产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,三角波的占空比只要求可调即可。从而实现转换器的设计。 关键字:放大器、波形转换、同相滞回比较、电路积分电路、滤波电路 目录 前言 (1) 第一章设计要求 (2) 1.1 设计容及要求 (2) 第二章系统组成及原理 (3)

2.1 方案一 (3) 2.2 方案二 (3) 第三章单元电路设计与计算 (5) 3.1 单元电路设计 (5) 3.1.1 正弦波发生器实验原理 (5) 3.1.2 正弦波—方波转换器实验原理 (6) 3.1.3 方波—三角波转换器实验原理 (8) 3.1.4 直流电源电路原理 (9) 3.2 三角波正弦波转换电路 (11) 3.2.1 直流电源的参数设计 (11) 3.2.2 RC正弦波振荡电路的参数设计 (11) 3.2.3 方波电路的参数设计 (11) 3.2.4 三角波电路的参数设计 (11) 第四章安装与调试 (12) 第五章性能测试及分析 (13) 第六章结论与心得 (14) 6.1 实验结论 (14) 6.2 心得体会 (14) 参考文献 (15) 附录 (16) 1 总原理图 (16) 2 芯片管脚图 (17)

方波正弦波三角波转换器

毕业论文综合实践报告 第一章、系统的组成及工作原理 1.1系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为0.02Hz~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。 同相滞回比较电路 积分电路 三角波

图1—2 正弦波发生电路 1.2工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 2.1、方波—三角波转换电路如图 3.1所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0呈线性上升,当u 0上升到滞回比较器的阈值电压+U T 时即t 2时刻,u 01从-Uz 又跃变回到+Uz ,即返回第一暂态,电路又开始反向积分。如此周而复始,产生振荡。 三角波 滤波电路 正弦波

方波正弦波三角波转换器

方波正弦波三角波转换器 The Standardization Office was revised on the afternoon of December 13, 2020

毕业论文综合实践报告 第一章、系统的组成及工作原理 系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。

图1—2 正弦波发生电路 工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 、方波—三角波转换电路如图所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0 呈线性上升,

设计制作正弦波_方波_三角波函数转换器

物理与电子信息学院模拟电路课程设计成绩评定表专业:电子科学与技术班级:07电子本学号:: 2009年7月2日

模拟电路课程设计报告 正弦波-方波-三角波函数转换器的设计 一、设计任务与要求 ①输出波形频率围为0.2KHz~20kHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤用桥式整流电容滤波集成稳压块电路设计电路所需的 二、方案设计与论证 波形产生电路通常课采用多种不同电路形式和元器件后的所要求的波形信号输出。波形产生电路的关键部分是振荡器,而设计振荡器电路的关键是选择有源器件,确定振荡器电路的形式以及确定元件参数值等。具体设计可参考一下方案。 方案一、文氏桥式振荡器(RC串-并联正弦波振荡器)产生正弦波输出,其主要特点是采用RC串-并联网络作为选频和反馈网络,其振荡频率f =1/(2∏RC),改变RC的数值,可得到不 同频率的正弦波信号输出。用集成运放构成电压比较器,将正弦波信号变换成方波信号输出。用运放构成积分电路,将方波信号变换成三角波或锯齿波信号输出。该电路的优点是:发生信号的非线性失真小,缺点是:调试过程烦琐,所需元器件多,制作难度大,成本较高.方框图:

方案二、用uA741构成信号发生电路,把正弦波信号转换成方波信号再转变成锯齿波信号,该电路调试过程较简单,容易实现波形的转换,制作简单. 三、单元电路设计与参数计算 直流电源: 直流电源由电源变压器,整流电路,滤波电路,稳压电路四部分构成 稳压电源的组成框图 交流 电源 电路图 1.整流,滤波电路 用四个整流二极管组成单相桥式整流电路,将交流电压U2变成脉动的直流电压,为了减小电压的脉动,再经滤波 电容C 1滤除纹波,输出直流电压Ui ,U I =1.2U 2 为了获得较好的滤波效果,在实际电路中,应选择滤波电容的容量满足R L C=(3~5)T/2的条件。两个二极管分别与LM7812和LM7912反向并联,取到保护电路的作用。同时在后面有两个发光二极管监视电路。 变 压 整 流 滤 波 稳 压 负 载

设计制作一个产生正弦波方波三角波函数转换器

设计制作一个产生正弦波方波三角波函数转换 器 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

模拟电路课程设计报告设计课题:设计制作一个产生正弦波—方波—三角波 函数转换器 专业班级:电信本 学生姓名: 学号:46 指导教师: 设计时间: 01/05 设计制作一个产生正弦波-方波-锯齿波函数转换器 一、设计任务与要求 1、输出波形频率范围为~20kHz且连续可调; 2、正弦波幅值为±2V; 3、方波幅值为2V; 4、三角波峰-峰值为2V,占空比可调; 5、分别用三个发光二极管显示三种波形输出; 6、用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证

设计要求产生三种不同的波形分别为正弦波、方波、三角波。正弦波可以通过RC 桥式正弦波振荡电路产生。正弦波通过滞回比较器可以转换成方波,方波通过一个积分电路可以转换成三角波,只要调节三角波的占空比就可以得到锯齿波。各个芯片的电源可用直流电源提供。 方案一 1、直流电源部分 电路图如图1所示 图1 直流电源 2、波形产生部分 方案一: LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本质上是相似的,只是选频网络采用LC 电路。在LC 振荡电路中,当f=f 0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。 方案二 1、 直流电源部分同上 2、电路图如图2所示 图2 正弦波—方波—三角波函数转换电路 方案论证 LC 正弦波振荡电路特别是方案一所采取的电感反馈式振荡电路中N1与N2之间耦合紧密,振幅大;当C 采用可变电容时,可以获得调节范围较宽的振荡频率,最高频率可达几十兆赫兹。由于反馈电压取自电感,对高频信号具有较 正、反积分时间 常数可调的积分电路 滞回比较器 LC 正弦波振荡电路

200KHz方波转正弦波电路

200KHz方波转正弦波电路 2008年07月08日星期二 17:05 200KHz方波转正弦波电路 参数如下: 运放:LM224AJ C=30PF R1=10K R2=3K R3=270K 工作电压: Vi=0~5V方波, V+ = 5V, V- = -5V, Vo= -5V~+5V正弦波 在Multisim 9上仿真调试已完成。 §7—2 串联谐振电路 谐振:对于任意一个由电阻、电容、电感组成的电路,如果在某种条件下, 端口的电压相量与电流相量同相时,电路的等效阻抗的幅角,电路是纯电阻性。这种现象称为谐振。

对于任意一个由电阻、电感和电容组成的电路,设该电路输入端口的等效阻 抗为 等效导纳为 当等效阻抗的辐角( 即,) 时,电路呈 电感性;当等效组抗的辐角( 即,) 时,电路呈电容性。如果在某种条件下,电路的等效阻抗的辐角( 即 ,) ,则电路成电阻性,这种现象称为谐振。谐振现象被广泛地应用于无线电工程和其它电子技术领域中。以实现有选择地传送信号的目的。为了利用谐振现象而以电感线圈和电容器等部件组成的电路.叫做谐振电路。本节将研究串联谐振电路和并联谐振电路的模型。 串联谐振电路 图 7—2—l 表示一个在正弦电压源激励下的串连谐振电路,激励源的角频率为电路的等效阻抗为

图 7-2-1 串联谐振电路 等效阻抗的实部为一常数,其值等于电阻 R ,即 ( 7-2-1 ) 等效阻抗的虚部,即电路的等效电抗 ( 7-2-2 ) 是角频率的函数,它随变化的规律,即电抗的频率特性.如图 7—2—2 所示。

图 7-2-2电抗的频率特性 当时,,电路呈电容性。 当时,,电路呈电感性。 而在这个频率下(即时) ( 7-2-3 ) 等效阻抗的虚部为零,电路呈电阻性。这种状态叫做串联谐振。感抗等于容抗,就是发生串联谐振的条件。 使电路发生串联谐振的角频率叫做串联谐振角频率,根据式 (7—2—3)

正弦波与方波的相互转换

正弦波与方波的相互转 换 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

物理与电子工程学院 课题设计报告 课题名称:正弦函数发生器设计 组别:20组 组长:2011级杨会 组员:2011级胡原彬 组员:2011级廖秋伟 2013年7月10日 目录

正弦函数发生器 一.设计要求 1. 用运算放大器产生一个1000HZ 的正弦波信号。 2. 将此正弦波转换为方波。 3. 再将此方波转换为正弦波。 4. 限用一片LM324和电阻、电容。 二.总体设计 总体设计大体上可分为四个模块: 1. 用振荡电路产生1000HZ 的正弦波信号; 2. 用一个过零比较器把正弦波变为方波; 3. 用RC 滤波电路从方波中滤出正弦波; 4. 检测波形用放大器还原振幅。

三.设计方案 ㈠用运算放大器产生1000HZ的正弦信号 用RC和一个运放组成文氏电桥振荡电路,调节RC选频电路来产生1000HZ的正弦波。 ㈡将正弦波转换为方波 用一个运放接成过零比较器就可以把正弦波转换为方波。但会存在少许误差。 ㈢将方波转换为正弦波 用电阻和电容组成RC滤波电路,选择合适的数据参数就能实现把方波变为正弦波。 ㈣还原波形 用一个同相放大器把波形的幅度放大还原。 四.设计步骤及参数的确定 ㈠用运算放大器产生1000HZ的正弦信号 用电阻、电容、二极管和一个运放组成文氏电桥振荡电路,电路图如下。 参数选择中最重要的是R6和C2的值选择,因为它们是选频电路。 f=1/2ΠRC 。f=1000HZ,所以可以确定RC的值。

三角波方波正弦波发生电路

精心整理 波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z 、103H Z 和104Hz ;方波的输出电压峰峰值V PP ≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 (2f=f 0时,F=1/ 3、器。将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理: 1、方波、三角波发生电路原理 该电路由滞回比较器和积分器组成。图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积 分电路的输出电压u02。则U1A 的同相输入端的电位:101202 up=1212 R u R u R R R R +++g g ,令up=un=0,则阀值电 压:1 022 R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,而且不是+Uz ,就是

-Uz,所以输出电压的表达式为: 01(10) 0202(0) 82 u t t u u t R C - =-+ g ;设初态时u01正好从-Uz跃变到+Uz, 则: (10) 02 82 Uz t t u Ut R C - =-+ g ,积分电路反向积分,u02随时间的增长线性下降,一旦u02=-Ut,在稍 减小,u01将从+Uz跃变为-Uz,使式变为: (21) 02 82 Uz t t u Ut R C - =- g ,积分电路正向积分,u02随时间增 长线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz跃变为+Uz,回到初态。电路重复上述过程,因而产生自激振荡。由上分析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±。 取正向积分过程,正向积分的起始值-Ut,终了值+Ut,积分时间为T/2,代入 (21) 02 82 Uz t t u Ut R C - =- g , 得 Uz T Ut += g1R2 R 2 图中 在 益为1。,

模拟电子方波—正弦波—三角波转换资料

第1章绪论 1.1简介 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形。传统的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,不能根据实际需要灵活扩展。随着微电子技术的发展,运用单片机技术,通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波、方波、三角波、锯齿等幅值可调的信号。与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便。根据用途不同,有产生三种或多种波形的波形发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。正弦信号是使用最广泛的测试信号。 现在,我们通过对函数信号发生器的原理以及构成设计一个能变换出正弦波、方波、三角波的简易发生器。 众所周知,制作函数发生器的电路有很多种。本次设计先通过RC正弦波振荡电路产生正弦波,这是一种频率可调的移相式正弦波发生器电路,其频率稳定一般为实验所

三角波方波正弦波发生电路

三角波方波正弦波发生电 路 The Standardization Office was revised on the afternoon of December 13, 2020

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当 时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际R1=R2、C1=C2。即f=f 操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最 大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同 的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受 频率范围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。(3)工作原理:

相关文档
相关文档 最新文档